Shale gas horizontal well geosteering technologies and countermeasures research in narrow and steep syncline formations of northern Guizhou area
-
摘要:
黔北地区五峰组-龙马溪组页岩地层残留于窄陡型向斜中, 具有地层速度变化大, 地震资料靶点预测精度低; 地层倾角变化频, 地层走向及轨迹难以把控; 地层稳定性差, 井眼扩大严重等难点。增大了地质导向难度, 水平井钻遇率低。针对这些问题, 梳理分析了实钻中地质导向遇到的难点, 通过井震结合, 完善三维地震速度模型, 精确提取各地层、各方位地层视倾角; 实钻中通过多元厚度建模, 不断矫正细化对靶点深度的预测, 优化随钻三维轨迹; 进入箱体后, 强化地球物理响应特征, 对随钻曲线进行正演提取及反演对比, 利用多元元素谱及成像技术精细刻画箱体成像特征。在7口井的钻探应用中靶点误差与设计降低至25 m, 优质页岩钻遇率提高到99.2%, 箱体钻遇率从87.6%提高至96.5%, 其中3口实现了中靶率、优质页岩钻遇率和箱体钻遇率3个100%的地质导向成果。类似于黔北地区这种窄陡型残余留向斜地质导向难点通过该套技术对策可以及时避开小褶皱等细微构造变化, 有效保障水平井箱体钻遇率, 为水平井地质导向提供了扎实的技术支撑。
Abstract:Northern Guizhou area is located at the edge of the Sichuan Basin, and its structure belongs to Wuling fold area. Wufeng Longmaxi shale stratum is in a series of narrow and steep residual synclines, and the main developed shale stratum is within five meters of the bottom of the Longmaxi Formation, with a thin thickness. Due to the complex surface and underground geological conditions, the seismic velocity changes in this area, and the horizontal and vertical changes in various geological factors, such as the stratum dip angle and thickness, are large, so the drilling rate of horizontal wells in this area is relatively low. In this paper, the difficulties encountered in horizontal well geosteering in the narrow and steep residual syncline are sorted, and the modelling of velocity, structure, thickness, dip angle and curve was carried out. Combined with the element change law and element imaging technology, the track while drilling horizon was identified step by step to improve the hit target rate and drilling encounter rate. The actual drilling results show that the deviation from the geological design was reduced within 25 meters, the drilling encounter rate of high-quality shale was increased to 99.2%, and the drilling encounter rate of the box was increased to 96.5% from 87.6%. Three wells of them achieved the geosteering achievements of hit rate 100%, high-quality shale encounter rate 100%, and box body encounter rate 100%. In areas similar to the narrow and steep residual syncline geosteering difficulty in the northern Guizhou area, the application of this set of technical countermeasures can avoid subtle structural changes such as small folds in time and effectively ensure the box drilling rate of horizontal wells, which can provides solid technical support for horizontal well geosteering.
-
Key words:
- northern Guizhou area /
- Wufeng-Longmaxi formations /
- shale gas /
- narrow and steep syncline /
- geosteering
-
-
[1] Liu D X, Wang H Y, Zhao Q, et al. Major understanding and innovation, challenges and potential analysis of shale gas exploration and development in China[J]. IOP Conference Series: Earth and Environmental Science, 2021, 696(1): 12016-12020. doi: 10.1088/1755-1315/696/1/012016 [2] 岳勇, 陈孝红, 张国涛, 等. 宜昌斜坡区南华系-震旦系断坳结构发现及其地质意义[J]. 地质科技通报, 2020, 39(2): 1-9. doi: 10.19509/j.cnki.dzkq.2020.0201Yue Y, Chen X H, Zhang G T, et al. Discovery and geological significance of Nanhua-Sinian faulted-depression, Yichang Slope[J]. Bulletion of Geological Science and Technology, 2020, 39(2): 1-9(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0201 [3] 杨跃明, 陈玉龙, 刘燊阳, 等. 四川盆地及其周缘页岩气勘探开发现状、潜力与展望[J]. 天然气工业, 2021, 41(1): 42-58. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202101006.htmYang Y M, Chen Y L, Liu S Y, et al. Status, potential and prospect of shale gas exploration and development in the Sichuan Basin and its periphery[J]. Natural Gas Industry, 2021, 41(1): 42-58(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202101006.htm [4] 蔡勋育, 赵培荣, 高波, 等. 中国石化页岩气"十三五"发展成果与展望[J]. 石油与天然气地质, 2021, 42(1): 16-27. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202101003.htmCai X Y, Zhao P R, Gao B, et al. Sinopec's shale gas development achievements during the "Thirteenth Five-Year Plan" period and outlook for the future[J]. Oil & Gas Geology, 2021, 42(1): 16-27 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202101003.htm [4] Wang J, Tan X F, Tian J C, et al. The effect of diagenetic evolution on shale gas exploration and development of the Longmaxi Formation shale, Sichuan Basin, China[J]. Frontiers in Earth Science, 2021, 9: 1-17. [5] 张福, 黄艺, 蓝宝锋, 等. 正安地区五峰组-龙马溪组页岩储层特征及控制因素[J]. 地质科技通报, 2021, 40(1): 49-56. doi: 10.19509/j.cnki.dzkq.2021.0016Zhang F, Huang Y, Lan B F, et al. Characteristics and controlling factors of shale reservoir in the Wufeng-Longmaxi Formation of the Zheng'an area[J]. Bulletion of Geological Science and Technology, 2021, 40(2): 49-56(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0016 [6] Fan C H, Li H, Qin Q R, et al. Geological conditions and exploration potential of shale gas reservoir in Wufeng and Longmaxi Formation of southeastern Sichuan Basin, China[J]. Journal of Petroleum Science and Engineering, 2020, 191: 107138-107138. doi: 10.1016/j.petrol.2020.107138 [7] 黄玉珍, 黄金亮, 葛春梅, 等. 技术进步是推动美国页岩气快速发展的关键[J]. 天然气工业, 2009, 29(5): 7-10, 44, 133-134. doi: 10.3787/j.issn.1000-0976.2009.05.002Huang Y Z, Huang J L, Ge C M, et al. A key factor promoting rapid development of shale gas in America: Technical progress[J]. Natural Gas Industry, 2009, 29(5): 7-10, 44, 133-134(in Chinese with English abstract). doi: 10.3787/j.issn.1000-0976.2009.05.002 [8] 赵培荣. 页岩气水平井穿行层位优选[J]. 石油实验地质, 2020, 42(6): 1014-1023. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202006018.htmZhao P R. Optimization of target layer selection in shale gas horizontal wells[J]. Petroleum Geology & Experiment, 2020, 42(6): 1014-1023(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202006018.htm [9] Shi W R, Wang X Z, Zhang C M, et al. Experimental study on gas content of adsorption and desorption in Fuling shale gas field[J]. Journal of Petroleum Science and Engineering, 2019, 180: 1069-1076. doi: 10.1016/j.petrol.2019.06.021 [10] 汤济广, 汪凯明, 秦德超, 等. 川东南南川地区构造变形与页岩气富集[J]. 地质科技通报, 2021, 40(5): 11-21. doi: 10.19509/j.cnki.dzkq.2021.0502Tang J G, Wang K M, Qin D C, et al. Tectonic deformation and its constraints to shale gas accumulation in Nanchuan area, southeastern Sichuan Basin[J]. Bulletion of Geological Science and Technology, 2021, 40(5): 11-21. (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0502 [11] 沈国兵, 刘明国, 晁文学, 等. 涪陵页岩气田三维水平井井眼轨迹控制技术[J]. 石油钻探技术, 2016, 44(2): 10-15. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201602002.htmShen G B, Liu M G, Chao W X, et al. 3D trajectory control technology for horizontal wells in the Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2016, 44(2): 10-15(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201602002.htm [12] 刘匡晓, 王庆军, 兰凯, 等. 涪陵页岩气田三维水平井大井眼导向钻井技术[J]. 石油钻探技术, 2016, 44(5): 16-21. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201605004.htmLiu K X, Wang Q J, Lan K, et al. Large diameter hole steering drilling technology for three-dimensional horizontal well in theFuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2016, 44(5): 16-21(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201605004.htm [13] 杨锦舟. 基于随钻自然伽马、电阻率的地质导向系统及应用[J]. 测井技术, 2005, 29(4): 285-288, 388. doi: 10.3969/j.issn.1004-1338.2005.04.003Yang J Z. Application of geosteering system based on GR and resistivity LWD[J]. Well Logging Technology, 2005, 29(4): 285-288, 388(in Chinese with English abstract). doi: 10.3969/j.issn.1004-1338.2005.04.003 [14] 齐林, 初迎利, 乔忠明, 等. 地层特性对井眼轨道影响分析[J]. 大庆石油学院学报, 1995, 19(4): 117-120. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY504.028.htmQi L, Chu Y L, Qiao Z M, et al. Effects of stratigraphic characteristics on borehole trajectory[J]. Journal of Daqing Petroleum Institute, 1995, 19(4): 117-120(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY504.028.htm [15] Sun J, Zhang R J, Chen M Q, et al. Real-time updating method of local geological model based on logging while drilling process[J]. Arabian Journal of Geosciences, 2021, 14(9): 746-764. doi: 10.1007/s12517-021-07034-1 [16] 刘旭礼. 页岩气水平井钻井的随钻地质导向方法[J]. 天然气工业, 2016, 36(5): 69-73. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201605017.htmLiu X L. Geosteering technology in the drilling of shale gas horizontal wells[J]. Natural Gas Industry, 2016, 36(5): 69-73(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201605017.htm [17] 洪薇. 基于元素录井技术的泥页岩沉积环境分析[J]. 煤炭技术, 2018, 37(5): 136-138. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201805053.htmHong W. Analysis of mud shale sedimentary environment based on element logging technology[J]. Coal Technology, 2018, 37(5): 136-138(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201805053.htm [18] Yin P, Qi L, Zhu Q X, et al. Application of element logging to lithologic identification of key horizons in Sichuan Chongqing gas provinces[J]. Natural Gas Industry B, 2018, 5(2): 132-138. doi: 10.1016/j.ngib.2018.01.005 [19] 阎荣辉, 田伟志, 鲍永海, 等. 元素录井技术在鄂尔多斯盆地致密砂岩水平井地质导向中的研究与应用[J]. 录井工程, 2020, 31(4): 22-28. doi: 10.3969/j.issn.1672-9803.2020.04.004Yan R H, Tian W Z, Bao Y H, et al. Research and application of element logging in horizontal well geosteering of tight sandstone in Ordos Basin[J]. Mud Logging Engineering, 2020, 31(4): 22-28(in Chinese with English abstract). doi: 10.3969/j.issn.1672-9803.2020.04.004 [20] Yarbrough L D, Carr R, Lentz N. X-ray fluorescence analysis of the Bakken and Three Forks Formations and logging applications[J]. Journal of Petroleum Science and Engineering, 2018, 172: 764-775.