留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

酸腐蚀作用下川渝红层砂岩蠕变特性试验研究

谢妮 王丁浩 吕阳 高青

谢妮, 王丁浩, 吕阳, 高青. 酸腐蚀作用下川渝红层砂岩蠕变特性试验研究[J]. 地质科技通报, 2022, 41(5): 141-149. doi: 10.19509/j.cnki.dzkq.2022.0142
引用本文: 谢妮, 王丁浩, 吕阳, 高青. 酸腐蚀作用下川渝红层砂岩蠕变特性试验研究[J]. 地质科技通报, 2022, 41(5): 141-149. doi: 10.19509/j.cnki.dzkq.2022.0142
Xie Ni, Wang Dinghao, Lü Yang, Gao Qing. Experimental study on creep behaviors of red sandstone in Sichuan and Chongqing under acid corrosion[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 141-149. doi: 10.19509/j.cnki.dzkq.2022.0142
Citation: Xie Ni, Wang Dinghao, Lü Yang, Gao Qing. Experimental study on creep behaviors of red sandstone in Sichuan and Chongqing under acid corrosion[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 141-149. doi: 10.19509/j.cnki.dzkq.2022.0142

酸腐蚀作用下川渝红层砂岩蠕变特性试验研究

doi: 10.19509/j.cnki.dzkq.2022.0142
基金项目: 

国家自然科学基金项目 4187071735

详细信息
    作者简介:

    谢妮(1985—), 女, 副教授, 主要从事多尺度多场耦合岩石本构理论方面的研究工作。E-mail: shelly93111@163.com

    通讯作者:

    王丁浩(1997—), 男, 正攻读地质工程专业硕士学位, 主要从事岩石蠕变方面的研究工作。E-mail: 1048311677@qq.com

  • 中图分类号: P642.1

Experimental study on creep behaviors of red sandstone in Sichuan and Chongqing under acid corrosion

  • 摘要:

    岩石蠕变特性对岩体工程的长期稳定有着重要影响, 尤其是在酸雨等水化学作用下, 岩石的细观结构遭到破坏, 蠕变特性及变形更为显著。以重庆二佛寺红层砂岩为研究对象, 通过开展室内三轴压缩分级蠕变试验, 研究了酸腐蚀状态下砂岩的蠕变特性。结果表明: 酸的腐蚀和浸泡会使砂岩内部孔隙增加, 导致砂岩在第一级荷载下会产生较大的瞬时应变和蠕变量, 之后瞬时应变量和蠕变量随着应力增加而增大; 岩样受到腐蚀软化, 蠕变破坏强度为抗压强度的76%, 长期强度仅为抗压强度的54%。为了描述蠕变全过程, 建立了一个损伤蠕变模型来拟合试验数据, 验证了其适用性, 可以为岩土工程建设的稳定性提供参考。

     

  • 图 1  真空饱和装置

    Figure 1.  Vacuum saturation plant

    图 2  酸腐蚀岩样

    Figure 2.  Acid-etched rock sample

    图 3  三轴压缩应力-应变曲线

    D′是酸腐蚀试样体积应变最大的点,标志着岩样由压缩为主的变形转变为扩容为主的变形; a.酸腐蚀试样轴向、径向和体积应变-应力曲线; b.不同工况下轴向应变-应力曲线

    Figure 3.  Stress and strain curves under triaxial compression

    图 4  RTX-1000多场耦合岩石三轴仪

    Figure 4.  RTX-1000 multifield coupled rock triaxial instrument

    图 5  酸腐蚀砂岩分级加载蠕变曲线

    Figure 5.  Creep curve of acid-corroded sandstone under graded loading

    图 6  饱水砂岩恒应力蠕变曲线

    Figure 6.  Constant stress creep curve of saturated sandstone

    图 7  应力水平和稳态蠕变速率曲线

    Figure 7.  Stress level and steady-state creep rate curves

    图 8  砂岩应变、应变率与时间关系曲线

    Figure 8.  Relation curve of sandstone strain, strain rate and time

    图 9  等时应力-应变曲线

    Figure 9.  Isochronous stress-strain curve

    图 10  砂岩蠕变损伤模型

    E0E1分别为弹性模量和黏弹性模量(GPa);η1, η2为黏滞系数(GPa·h);σs为长期强度(MPa);η3为损伤黏塑性体的黏滞系数(GPa·h)

    Figure 10.  Creep damage model of sandstone

    图 11  实验数据和拟合曲线

    Figure 11.  Experimental data and fitting curves

    图 12  实验数据和拟合曲线

    Figure 12.  Experimental data and fitting curves

    表  1  岩石强度和变形参数结果

    Table  1.   Rock strength and deformation parameter results

    岩样编号 工况 围压/MPa 抗压强度/MPa 峰值应变/10-3 弹性模量/GPa 泊松比
    13 酸腐蚀 1 36.7 7.705 3.649 0.368
    7 饱水 1 24.2 6.864 3.083 0.100
    30 干燥 1 48.8 6.085 6.516 0.116
    下载: 导出CSV

    表  2  各级荷载下的轴向应变量

    Table  2.   Axial strain variable under various loads

    加载级数 瞬时应变ε0/% 蠕变量ε/%
    1 0.506 9 0.038 5
    2 0.048 5 0.023 6
    3 0.040 5 0.024 2
    4 0.035 0 0.030 5
    5 0.031 6 0.036 1
    6 0.022 9 0.035 9
    7 0.028 6 0.055 4
    8 0.018 6 0.038 1
    9 0.016 4 0.045 9
    10 0.003 4 0.069 6
    下载: 导出CSV

    表  3  各应力水平下拟合参数

    Table  3.   Fit parameters at various stress levels

    应力大小/MPa K0/GPa G0/GPa G1/GPa η1/GPa·h η2/GPa·h η3/GPa·h m R2
    12 2.595 0.751 19.675 402.352 0.980 1
    14 2.728 0.790 21.655 387.043 0.990 6
    24 3.117 0.902 48.691 1023.359 709.597 0.984 5
    26 3.316 0.960 36.247 111.153 871.840 0.978 8
    28 3.569 1.033 49.645 4.020 30.149 48.267 0.007 0.997 2
    下载: 导出CSV

    表  4  拟合参数

    Table  4.   Fitting parameters

    应力大小/MPa K0/GPa G0/GPa G1/GPa η1/(GPa·h) η2/(GPa·h) η3/(GPa·h) m R2
    7 140.550 5.525 15.744 55.341 0.965 9
    14 80.485 5.431 34.238 289.663 0.952 4
    21 110.867 5.637 57.190 247.253 257.069 0.983 9
    28 143.503 5.405 89.571 51.626 706.105 368.931 0.004 0.978 4
    下载: 导出CSV
  • [1] Zhang M, McSaveney M. Is air pollution causing landslides in China?[J]. Earth & Planetary Science Letters, 2018, 481: 284-289. doi: 10.11899/zzfy20180204
    [2] 王芝银, 杨志法, 李云鹏, 等. 石窟顶板流变断裂过程的数值模拟与反演分析[J]. 岩石力学与工程学报, 2006, 25(1): 9-14. doi: 10.3321/j.issn:1000-6915.2006.01.002

    Wang Z Y, Yang Z F, Li Y P, et al. Numerical simulation and back analysis of rheologic fracture process of Longyou grotto roof[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(1): 9-14(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2006.01.002
    [3] 陈卫昌, 李黎, 邵明申, 等. 酸雨作用下碳酸盐岩类文物的溶蚀过程与机理[J]. 岩土工程学报, 2017, 39(11): 2058-2067. doi: 10.11779/CJGE201711014

    Chen W C, Li L, Shao M S, et al. Experimental study on carbonate dissolution and erosion effect under attack of simulated sulphuric acid rain[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(11): 2058-2067(in Chinese with English abstract). doi: 10.11779/CJGE201711014
    [4] 马淑芝, 方云, 贾洪彪, 等. 云冈石窟第9、10窟列柱地质病害特征与加固设计[J]. 地质科技情报, 2011, 30(1): 123-126. doi: 10.3969/j.issn.1000-7849.2011.01.022

    Ma S Z, Fang Y, Jia H B, et al. Characters of geological disease and reinforcement design of the 9th and 10th grotto's columniations of Yungang Grottoes[J]. Geological Science and Technology Information, 2011, 30(1): 123-126(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7849.2011.01.022
    [5] 宋佳航, 严绍军, 项伟, 等. 大足石刻宝顶山砂岩毛细水迁移特性影响因素研究[J/OL]. 地质科技通报: 1-11[2021-05-26]DOI: 10.19509/j.cnki.dzkq.2021.0099.

    Song J H, Yan S J, Xiang W, et al. Study on the influencing factors of capillary water migration inside the Baoding area sandstone of the Dazu Stone Carvings[J/OL]. Bulletin of Geological Science and Technology: 1-11[2021-05-26]. DOI: 10.19509/j.cnki.dzkq.2021.0099(in Chinese with English abstract).
    [6] 朱合华, 叶斌. 饱水状态下隧道围岩蠕变力学性质的试验研究[J]. 岩石力学与工程学报, 2002, 21(12): 1791-1796. doi: 10.3321/j.issn:1000-6915.2002.12.009

    Zhu H H, Ye B. Experimental study on mechanical properties of rock creep in saturation[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(12): 1791-1796(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2002.12.009
    [7] 康文献, 于怀昌, 王玲玲, 等. 三轴应力下水对粉砂质泥岩蠕变力学特性影响作用试验研究[J]. 工程地质学报, 2016, 24(4): 622-628. doi: 10.13544/j.cnki.jeg.2016.04.018

    Kang W X, Yu H C, Wang L L, et al. Experimental study of influence of water on creep properties of silty mudstone under triaxial compression[J]. Journal of Engineering Geology, 2016, 24(4): 622-628(in Chinese with English abstract). doi: 10.13544/j.cnki.jeg.2016.04.018
    [8] Yu C, Tang S, Tang C, et al. The effect of water on the creep behavior of red sandstone[J]. Engineering Geology, 2019, 253: 64-74. doi: 10.1016/j.enggeo.2019.03.016
    [9] 王泽成, 李栋伟, 张潮潮, 等. 考虑含水率对人工冻结红黏土力学特性的影响[J/OL]. 地质科技通报: 1-7[2021-05-26]. DOI: 10.19509/j.cnki.dzkq.2022.0090.

    Wang Z C, Li D W, Zhang C C, et al. Effect of water content on mechanical properties of artificially frozen red clay[J]. Bulletin of Geological Science and Technology: 1-7[2021-05-26]. DOI: 10.19509/j.cnki.dzkq.2022.0090(in Chinese with English abstract).
    [10] 谢森林. 酸腐蚀条件下石膏岩单轴压缩蠕变损伤特性及本构模型研究[D]. 长沙: 湖南科技大学, 2020.

    Xie S L. Research on uniaxial compression creep damage characteristics and constitutive model of gypsum rock under acid corrosion[D]. Changsha: University of Science and Technology of Hunan, 2020(in Chinese with English abstract).
    [11] 徐晓晨. 腐蚀砂岩蠕变试验及微观结构研究[D]. 郑州: 中原工学院, 2018.

    Xu X C. Study on creep and microstructure of corroded sandstone[D]. Zhengzhou: Zhongyuan University of Technology, 2018(in Chinese with English abstract).
    [12] 周宏伟, 王春萍, 段志强, 等. 基于分数阶导数的盐岩流变本构模型[J]. 中国科学: 物理学、力学、天文学, 2012, 42(3): 310-318. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201203012.htm

    Zhou H H, Wang C P, Duan Z Q, et al. Time-based fractional derivative approach to creep constitutive model of salt rock[J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2012, 42(3): 310-318(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201203012.htm
    [13] 汪妍妍, 盛冬发. 岩石非线性黏弹塑性蠕变模型研究[J]. 应用力学学报, 2020, 37(2): 689-694, 936. https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX202002033.htm

    Wang Y Y, Sheng D F. Investigation on nonlinear viscoelasto-plastic creep model of rocks[J]. Chinese Journal of Applied Mechanics, 2020, 37(2): 689-694, 936(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX202002033.htm
    [14] 张向东, 王睿, 张印, 等. 砂岩蠕变损伤模型特性[J]. 辽宁工程技术大学学报: 自然科学版, 2019, 38(1): 39-43. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKY201901007.htm

    Zhang X D, Wang R, Zhang Y, et al. Creep damage model of sandstone[J]. Journal of Liaoning Technical University: Natural Science Edition, 2019, 38(1): 39-43(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-FXKY201901007.htm
    [15] 刘文博, 张树光, 陈雷, 等. 基于统计损伤原理的岩石加速蠕变模型研究[J]. 岩土工程学报, 2020, 42(9): 1696-1704. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202009020.htm

    Liu W B, Zhang S G, Chen L, et al. Accelerated creep model for rock based on statistical damage principle[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1696-1704(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202009020.htm
    [16] Liu H Z, Xie H Q, He J D, et al. Nonlinear creep damage constitutive model for soft rocks[J]. Mechanics of Time Dependent Materials, 2016, 21(1): 73-96.
    [17] 安阳, 晏鄂川, 李兴明, 等. 石膏岩干湿循环细观模拟及损伤本构模型[J]. 地质科技情报, 2019, 38(4): 240-246. doi: 10.19509/j.cnki.dzkq.2019.0425

    An Y, Yan E C, Li X M, et al. Meso simulation of dry wet cycle and damage constitutive model of gypsum rock[J]. Geological Science and Technology Information, 2019, 38(4): 240-246(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2019.0425
    [18] 谢妮, 孙晨光, 李鹏程. 水化学作用下砂岩力学特性劣化试验研究[J]. 科学技术与工程, 2021, 21(23): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202123019.htm

    Xie N, Sun C G, Li P C. Experimental study on mechanical properties deterioration of sandstone under hydrochemical action[J]. Science Technology and Engineering, 2021, 21(23): 1-9(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202123019.htm
    [19] 张灿, 孟小星, 张关丽. 重庆地区酸雨污染现状[J]. 绿色科技, 2018(16): 11-14. doi: 10.16663/j.cnki.lskj.2018.16.004

    Zhang C, Meng X X, Zhang G L. Acid rain pollution in Chongqing area[J]. Green Science and Technology, 2018(16): 11-14(in Chinese with English abstract). doi: 10.16663/j.cnki.lskj.2018.16.004
    [20] Heap M J, Baud P, Meredith P G, et al. Time-dependent brittle creep in Darley Dale sandstone[J]. Journal of Geophysical Research Solid Earth, 2009, 114(B7): B07203.
    [21] Heap M, Baud P, Meredith P, et al. Brittle creep in basalt and its application to time-dependent volcano deformation[J]. Earth & Planetary Science Letters, 2011, 307(1): 71-82(in Chinese with English abstract). doi: 10.3969/j.issn.1000-0844.2011.01.013
    [22] 宋勇军. 干燥和饱水状态下炭质板岩流变力学特性与模型研究[D]. 西安: 长安大学, 2013.

    Song Y J. Study on rheological mechanical properties and model of carbonaceous slate in dry and saturated state[D]. Xi'an: Chang'an University, 2013(in Chinese with English abstract).
    [23] 杨帅东, 谭维佳, 方应学. 石英砂岩蠕变力学特性及长期强度研究[J]. 水力发电, 2021, 47(4): 43-50. doi: 10.3969/j.issn.0559-9342.2021.04.010

    Yang S D, Tan W J, Fang Y X. Study on creep mechanical properties and long-term strength of quartz sandstone[J]. Water Power, 2021, 47(4): 43-50(in Chinese with English abstract). doi: 10.3969/j.issn.0559-9342.2021.04.010
    [24] 沈明荣, 谌洪菊. 红砂岩长期强度特性的试验研究[J]. 岩土力学, 2011, 32(11): 3301-3305. doi: 10.3969/j.issn.1000-7598.2011.11.017

    Shen M R, Chen H J. Testing study of long-term strength characteristics of red sandstone[J]. Rock and Soil Mechanics, 2011, 32(11): 3301-3305(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2011.11.017
    [25] Rabotnov Y N. On the equation of state of creep[J]. Proceedings of the Institution of Mechanical Engineers Conference Proceedings, 1963, 178(31): 117-122.
    [26] 张亮亮, 王晓健. 岩石黏弹塑性损伤蠕变模型研究[J]. 岩土工程学报, 2020, 42(6): 1085-1092. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202006015.htm

    Zhang L L, Wang X J. Viscoelastic-plastic damage creep model for rock[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1085-1092(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202006015.htm
    [27] 齐亚静, 姜清辉, 王志俭, 等. 改进西原模型的三维蠕变本构方程及其参数辨识[J]. 岩石力学与工程学报, 2012, 31(2): 347-355. doi: 10.3969/j.issn.1000-6915.2012.02.014

    Qi Y J, Jiang Q H, Wang Z J, et al. 3D creep constitutive equation of modified Nishihara model and its parameters identification[J]. Chinese Journal of Rock Mechanics & Engineering, 2012, 31(2): 347-355(in Chinese with English abstract). doi: 10.3969/j.issn.1000-6915.2012.02.014
    [28] 刘凡熙, 赵立财, 余建星, 等. 砂岩蠕变特性试验及三维非线性力学模型研究[J]. 山东科学, 2021, 34(2): 104-113. https://www.cnki.com.cn/Article/CJFDTOTAL-SDKX202102015.htm

    Liu F X, Zhao L C, Yu J X, et al. study on creep characteristics of sandstone and three-dimensional nonlinear mechanical model[J]. Shandong Science, 2021, 34(2): 104-113(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SDKX202102015.htm
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  449
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-20
  • 网络出版日期:  2022-11-10

目录

    /

    返回文章
    返回