留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

小尺寸模型在五峰隧道涌突水判别中的应用

徐啸川 徐光黎 林高炜 李溢渊 马郧

徐啸川, 徐光黎, 林高炜, 李溢渊, 马郧. 小尺寸模型在五峰隧道涌突水判别中的应用[J]. 地质科技通报, 2023, 42(6): 42-52. doi: 10.19509/j.cnki.dzkq.2022.0149
引用本文: 徐啸川, 徐光黎, 林高炜, 李溢渊, 马郧. 小尺寸模型在五峰隧道涌突水判别中的应用[J]. 地质科技通报, 2023, 42(6): 42-52. doi: 10.19509/j.cnki.dzkq.2022.0149
Xu Xiaochuan, Xu Guangli, Lin Gaowei, Li Yiyuan, Ma Yun. Application of a small-scale model test in distinguishing of water inrush in the Wufeng Tunnel[J]. Bulletin of Geological Science and Technology, 2023, 42(6): 42-52. doi: 10.19509/j.cnki.dzkq.2022.0149
Citation: Xu Xiaochuan, Xu Guangli, Lin Gaowei, Li Yiyuan, Ma Yun. Application of a small-scale model test in distinguishing of water inrush in the Wufeng Tunnel[J]. Bulletin of Geological Science and Technology, 2023, 42(6): 42-52. doi: 10.19509/j.cnki.dzkq.2022.0149

小尺寸模型在五峰隧道涌突水判别中的应用

doi: 10.19509/j.cnki.dzkq.2022.0149
基金项目: 

湖北省重点研发计划项目 2021BCA219

详细信息
    作者简介:

    徐啸川(1988—), 男, 现正攻读土木工程专业博士学位, 主要从事岩土工程、地质灾害防治等方面的研究工作。E-mail: 993642890@qq.com

    通讯作者:

    徐光黎(1963—), 男, 教授, 博士生导师, 主要从事岩土力学、地质灾害等方面的教学与研究工作。E-mail: xu1963@cug.edu.cn

  • 中图分类号: U453.6

Application of a small-scale model test in distinguishing of water inrush in the Wufeng Tunnel

  • 摘要:

    岩溶隧道的涌突水问题对于隧道安全性存在着较大影响。以宜来高速五峰隧道为研究对象, 通过现场水文地质调查、钻孔水位与降雨量观测、数值模拟并结合室内小尺寸模型试验对隧道涌突水的风险进行了判别。试验结果显示隧道涌突水风险主要受到岩溶管道与隧道相对空间位置和管道水压的影响, 当试验水压为0.2 MPa时, 随着隧道上覆土体的厚度增加能够有效地减小渗流作用对隧道的影响, 但随着水压的增大, 管道水的渗流不单以垂直渗流为主, 还包括水平向的渗流, 水压的增大使隔水层中的断续裂隙发生扩展, 从而使隧道产生涌水破坏; 数值模拟结果显示五峰隧道在拱顶和拱肩处剪力最大, 在地下水渗流的条件下容易形成沿着拱顶和拱肩处的拉剪破坏, 隧道涌突水是剪应力场与渗流场耦合作用下的结果。隧道涌点水破坏的首要因素为水压并与隔水岩盘的厚度息息相关。

     

  • 图 1  五峰隧道岩溶水系统平面图

    D2-3y.云台观组;S1lr.罗惹坪组;P1q.栖霞组;P1l.梁山组;D3h.黄家蹬组;S1-2s.纱帽组;D3C1x.写经寺组;YK64为隧道右线64 km处

    Figure 1.  Karst hydrogeologic map of the Wufeng Tunnel

    图 2  五峰隧道纵断面图

    Figure 2.  Cross section of the Wufeng Tunnel

    图 3  五峰隧道与岩溶管道关系图

    Figure 3.  Relationship between the Wufeng Tunnel and karst channel

    图 4  五峰隧道钻孔水位及降雨量与时间关系曲线图

    Figure 4.  Relationship between borehole water level and rainfall in the Wufeng Tunnel

    图 5  岩溶隧道突水试验监测系统

    Figure 5.  Water inrush test monitoring system in a karst tunnel

    图 6  试验装置图

    Figure 6.  Diagram of experimental device

    图 7  不同工况条件下模型位移随水压大小的变化规律

    Figure 7.  Displacement of the model under different water pressures

    图 8  渗流作用下的隧道受力模型

    a.隧道的半径(m); θ.应力和隧道水平方向夹角(°); r0.损伤区半径(m); b.弹性区半径(m); P0.原岩垂直应力(kPa); r.应力计算点到隧道中心的计算距离(m); σr.岩体某点的径向应力(kPa); p.自重应力(kPa); σθ.岩体某点的切向应力(kPa); βp.岩体某点的剪切应力(kPa)

    Figure 8.  Stress model of the tunnel under seepage

    图 9  室内试验数值模拟结果

    Figure 9.  Results of indoor numerical simulation

    图 10  实际工程数值模拟对比结果

    Figure 10.  Comparison of numerical simulation of the actual projects

    图 11  隧道涌突水破坏进程

    Figure 11.  Damage process of water inrush in a tunnel

    图 12  岩溶管道对五峰隧道影响情况图

    Figure 12.  Influence of the karst pipeline on the Wufeng Tunnel

    表  1  设计工况

    Table  1.   Design conditions

    工况 监测点位置 岩溶管道与隧道的空间位置关系及水压情况
    工况1 测点1
    测点2
    测点3
    岩溶管道位于拱顶正上方5 cm处,且水压分别为0.2, 0.4, 0.6, 0.8 MPa时围岩的位移情况
    工况2 测点1
    测点2
    测点3
    岩溶管道位于拱顶正上方10 cm处,且水压分别为0.2, 0.4, 0.6, 0.8 MPa时围岩的位移情况
    工况3 测点1
    测点2
    测点3
    岩溶管道位于拱顶正上方20 cm处,且水压分别为0.2, 0.4, 0.6, 0.8 MPa时围岩的位移情况
    工况4 测点1
    测点2
    测点3
    岩溶管道位于拱腰右侧5 cm、垂直方向10 cm处,水压分别为0.2, 0.4, 0.6, 0.8 MPa时围岩的位移情况
    下载: 导出CSV

    表  2  数值模拟参数

    Table  2.   Table of numerical simulation parameters

    单轴抗压强度/MPa 泊松比 密度/(kg·m-3) 完整岩石材料常数 弹性模量/GPa 扰动因子 地质强度指数
    32 0.22 2 670 8 25 0.55 35
    下载: 导出CSV
  • [1] Putika R, Marschalko M, Yilmaz I, et al. Surface geophysical methods used to verify the karst geological structure in the built-up area: A case study of specific engineering-geological conditions[J]. Acta Geologica Sinica: English Edition, 2021, 95(5): 1763-1770. doi: 10.1111/1755-6724.14761
    [2] 罗玉龙, 吴强, 詹美礼, 等. 渗流-侵蚀-应力耦合管涌试验装置的研制及初步应用[J]. 岩石力学与工程学报, 2013, 32(10): 2108-2114.

    Luo Y L, Wu Q, Zhan M L, et al. Development of seepage-erosion-stress coupling piping test apparatus and its primary application[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(10): 2108-2114 (in Chinese with English abstract).
    [3] 周毅. 隧道充填型管道构造突涌水机理与预测预警及工程应用[D]. 济南: 山东大学, 2015.

    Zhou Y. Study on water inrush mechanism and early warning of filled piping-type disaster and its engineering applications in tunnels[D]. Jinan: Shandong University, 2015(in Chinese with English abstract).
    [4] 李利平, 李术才, 张庆松. 岩溶地区隧道裂隙水突出力学机制研究[J]. 岩土力学, 2010, 31(2): 523-528. doi: 10.3969/j.issn.1000-7598.2010.02.031

    Li L P, Li S C, Zhang Q S. Study of mechanism of water inrush induced by hydraulic fracturing in karst tunnels[J]. Rock and Soil Mechanics, 2010, 31(2): 523-528 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2010.02.031
    [5] 周宗青, 李术才, 李利平, 等. 岩溶隧道突涌水危险性评价的属性识别模型及其工程应用[J]. 岩土力学, 2013, 34(3): 818-826. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201303036.htm

    Zhou Z Q, Li S C, Li L P, et al. Attribute recognition model of fatalness assessment of water inrush in karst tunnels and its application[J]. Rock and Soil Mechanics, 2013, 34(3): 818-826 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201303036.htm
    [6] 罗明明, 周宏, 郭绪磊, 等. 峡口隧道间歇性岩溶涌突水过程及来源解析[J]. 地质科技通报, 2021, 40(6): 246-254. doi: 10.19509/j.cnki.dzkq.2021.0054

    Luo M M, Zhou H, Guo X L, et al. Peocesses and sources identification of intermittent karst water inrush in Xiakou Tunnel[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 246-254 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0054
    [7] 曹茜. 岩溶隧道与溶洞的安全距离研究[D]. 北京: 北京交通大学, 2010.

    Cao Q. Study on safe thickness for rock between tunnel and karst cave in karst region[D]. Beijing: Beijing Jiaotong University, 2010(in Chinese with English abstract).
    [8] 郭佳奇, 乔春生, 曹茜. 侧部高压富水溶腔与隧道间岩柱安全厚度的研究[J]. 现代隧道技术, 2010, 47(6): 10-16.

    Guo J Q, Qiao C S, Cao Q. Research on safe thickness of rock pillar between the tunnel and adjacent karst cave with pressurised water[J]. Modern Tunneling Technology, 2010, 47(6): 10-16 (in Chinese with English abstract).
    [9] Zhang L W, Fu H, Wu J, et al. Effects of karst cave shape on the stability and minimum safety thickness of tunnel surrounding rock[J]. International Journal of Geomechanics, 2021, 21(9): 110-121.
    [10] Li L P, Xiong Y F, Wang J, et al. Comprehensive influence analysis of multiple parameters on the safety thickness against water inrush in shield tunnel[J]. International Journal of Geomechanics, 2020, 20(12): 226-237.
    [11] 宋战平, 党宏斌, 李宁. 既有溶洞对隧道围岩位移特征影响的数值试验[J]. 长江科学院院报, 2008, 25(5): 79-83.

    Song Z P, Dang H B, Li N. Numerical experimentation of influence of karst cave on displacement characteristics of rock mass[J]. Journal of Yangtze River Scientific Research Institute, 2008, 25(5): 79-83 (in Chinese with English abstract).
    [12] 宋战平, 綦彦波, 李宁. 顶部既有隐伏溶洞对圆形隧道稳定性影响的数值分析[J]. 岩土力学, 2007, 28(增刊): 485-489.

    Song Z P, Qi Y B, Li N. Numerical experimentational research on concealed karst cave's influence on circular tunnel stability[J]. Rock and Soil Mechanics, 2007, 28(S): 485-489 (in Chinese with English abstract).
    [13] Ma J J, Guan J W, Duan J F, et al. Stability analysis on tunnels with karst caves using the distinct lattice spring model[J]. Underground Space, 2020, 6(4): 469-481.
    [14] 许振浩, 李术才, 李利平, 等. 基于层次分析法的岩溶隧道突水突泥风险评估[J]. 岩土力学, 2011, 32(6): 1757-1766. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201106036.htm

    Xu Z H, Li S C, Li L P, et al. Risk assessment of water or mud inrush of karst tunnels based on analytic hierarchy process[J]. Rock and Soil Mechanics, 2011, 32(6): 1757-1766 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201106036.htm
    [15] 田清朝, 万军伟, 黄琨, 等. 高家坪隧道岩溶水系统识别及涌水量预测[J]. 安全与环境工程, 2016, 23(5): 13-19. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201605003.htm

    Tian Q C, Wan J W, Huang K, et al. Karst water system identification and water inflow prediction in Gaojiaping Tunnel[J]. Safety and Environmental Engineering, 2016, 23(5): 13-19 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201605003.htm
    [16] 成建梅, 罗伟, 徐子东, 等. 火山岩体围岩隧道断层带涌水量计算方法综合研究: 以青云山隧道为例[J]. 地质科技情报, 2015, 34(6): 193-199.

    Chen J M, Luo W, Xu Z D, et al. Calculation method for water in flow of typical fault zone in volcanic rock tunnel: Case study of Qingyunshan Tunnel[J]. Geological Science and Technology Information, 2015, 34(6): 193-199(in Chinese with English Abstract).
    [17] 刘宗辉, 刘毛毛, 周东, 等. 基于探地雷达属性分析的典型岩溶不良地质识别方法[J]. 岩土力学, 2019, 40(8): 3282-3290. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201908046.htm

    Liu Z H, Liu M M, Zhou D, et al. Recognition method of typical anomalies in karst tunnel construction based on attribute analysis of ground penetrating radar[J]. Rock and Soil Mechanics, 2019, 40(8): 3282-3290 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201908046.htm
    [18] Guo J Q, Wu W L, Liu X L, et al. Theoretical analysis on safety thickness of the water-resistant rock mass of karst tunnel face taking into account seepage effect[J]. Geotechnical and Geological Engineering, 2021, 40(2): 697-709.
    [19] Li S C, Wu J. A multi-factor comprehensive risk assessment method of karst tunnels and its engineering application[J]. Bulletin of Engineering Geology and the Environment, 2019, 78(3): 1761-1776.
    [20] 葛颜慧, 李术才, 张庆松. 高风险岩溶隧道突水预警防灾体系研究[J]. 山东大学学报: 工学版, 2009, 39(3): 122-128. https://www.cnki.com.cn/Article/CJFDTOTAL-SDGY200903028.htm

    Ge Y H, Li S C, Zhang Q S. Study on early warning and disaster prevention system of water inrush into high risk karst tunnels[J]. Journal of Shandong University: Engineering Science, 2009, 39(3): 122-128 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SDGY200903028.htm
    [21] Xu Z L, Luo Y B, Chen J X, et al. Mechanical properties and reasonable proportioning of similar materials in physical model test of tunnel lining cracking[J]. Construction and Building Materials. 2021, 300: 123960.
    [22] Wang Z Y, Zhang Q, Shao J L, et al. New type of similar material for simulating the processes of water inrush from roof bed separation. [J]. ACS Omega, 2020, 47(5): 405-415.
    [23] Samaila S, Yunus M, Zurairahetty N, et al. Numerical simulation with hardening soil model parameters of marine clay obtained from conventional tests[J]. SN Applied Sciences, 2021, 3(2): 125-132.
    [24] Li J T, Shi K B, Yan X J. Basic analysis of Homogenous slope stability by finite element method based on plaxis[C]//Du X L, Zheng J J, Yan W M, et al. Advanced Materials Research. 2nd International Conference on Structures and Building Materials. Hangzhou: [s. n. ], 2012.
    [25] Yang J H, Dai J H, Yao C, et al. Estimation of rock mass properties in excavation damage zones of rock slopes based on the Hoek-Brown criterion and acoustic testing[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 126: 104192.
    [26] Feng W K, Dong S, Wang Q, et al. Improving the Hoek-Brown criterion based on the disturbance factor and geological strength index quantification[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 108: 96-104.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  435
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-20
  • 录用日期:  2022-04-29
  • 修回日期:  2022-04-15

目录

    /

    返回文章
    返回