Application of a small-scale model test in distinguishing of water inrush in the Wufeng Tunnel
-
摘要:
岩溶隧道的涌突水问题对于隧道安全性存在着较大影响。以宜来高速五峰隧道为研究对象, 通过现场水文地质调查、钻孔水位与降雨量观测、数值模拟并结合室内小尺寸模型试验对隧道涌突水的风险进行了判别。试验结果显示隧道涌突水风险主要受到岩溶管道与隧道相对空间位置和管道水压的影响, 当试验水压为0.2 MPa时, 随着隧道上覆土体的厚度增加能够有效地减小渗流作用对隧道的影响, 但随着水压的增大, 管道水的渗流不单以垂直渗流为主, 还包括水平向的渗流, 水压的增大使隔水层中的断续裂隙发生扩展, 从而使隧道产生涌水破坏; 数值模拟结果显示五峰隧道在拱顶和拱肩处剪力最大, 在地下水渗流的条件下容易形成沿着拱顶和拱肩处的拉剪破坏, 隧道涌突水是剪应力场与渗流场耦合作用下的结果。隧道涌点水破坏的首要因素为水压并与隔水岩盘的厚度息息相关。
Abstract:Objective Water inrush in karst tunnel has a great influence on tunnel safety.
Methods Taking the Wufeng Tunnel of Yilai Expressway as the research object, the risk of water inrush in the tunnel was identified though field hydrogeological investigation, borehole water level and indoor rainfall monitoring, numerical simulation and small-scale model tests.
Results The test results show that the risk of water inrush in the tunnel is mainly affected by the relative spatial position between the karst pipeline and tunnel, including the water pressure of the pipeline. The influence of seepage on the tunnel can be effectively reduced by increasing the thickness of the overlying soil when the test water pressure is 0.2 MPa. But with the increase in water pressure, the seepage of pipeline water is not only vertical seepage but also includes horizontal seepage. The intermittent cracks in the waterproof layer expand, which finally results in water inrush damage in the tunnel. The numerical simulation results show that the maximum shear force of the Wufeng Tunnel is at the arc and shoulder, which may easily form tensile shear failure along this part under groundwater seepage. The finding is consistent with the test results of the small-scale model. The water inrush in the tunnel is the coupling effect of the shear force and seepage field.
Conclusion The primary factor of water inrush in the tunnel is water pressure and is closely related to the thickness of water barrier rock.
-
Key words:
- Wufeng Tunnel /
- seepage effect /
- karst channel /
- water and mud inrush /
- tensile shear failure
-
表 1 设计工况
Table 1. Design conditions
工况 监测点位置 岩溶管道与隧道的空间位置关系及水压情况 工况1 测点1
测点2
测点3岩溶管道位于拱顶正上方5 cm处,且水压分别为0.2, 0.4, 0.6, 0.8 MPa时围岩的位移情况 工况2 测点1
测点2
测点3岩溶管道位于拱顶正上方10 cm处,且水压分别为0.2, 0.4, 0.6, 0.8 MPa时围岩的位移情况 工况3 测点1
测点2
测点3岩溶管道位于拱顶正上方20 cm处,且水压分别为0.2, 0.4, 0.6, 0.8 MPa时围岩的位移情况 工况4 测点1
测点2
测点3岩溶管道位于拱腰右侧5 cm、垂直方向10 cm处,水压分别为0.2, 0.4, 0.6, 0.8 MPa时围岩的位移情况 表 2 数值模拟参数
Table 2. Table of numerical simulation parameters
单轴抗压强度/MPa 泊松比 密度/(kg·m-3) 完整岩石材料常数 弹性模量/GPa 扰动因子 地质强度指数 32 0.22 2 670 8 25 0.55 35 -
[1] Putika R, Marschalko M, Yilmaz I, et al. Surface geophysical methods used to verify the karst geological structure in the built-up area: A case study of specific engineering-geological conditions[J]. Acta Geologica Sinica: English Edition, 2021, 95(5): 1763-1770. doi: 10.1111/1755-6724.14761 [2] 罗玉龙, 吴强, 詹美礼, 等. 渗流-侵蚀-应力耦合管涌试验装置的研制及初步应用[J]. 岩石力学与工程学报, 2013, 32(10): 2108-2114.Luo Y L, Wu Q, Zhan M L, et al. Development of seepage-erosion-stress coupling piping test apparatus and its primary application[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(10): 2108-2114 (in Chinese with English abstract). [3] 周毅. 隧道充填型管道构造突涌水机理与预测预警及工程应用[D]. 济南: 山东大学, 2015.Zhou Y. Study on water inrush mechanism and early warning of filled piping-type disaster and its engineering applications in tunnels[D]. Jinan: Shandong University, 2015(in Chinese with English abstract). [4] 李利平, 李术才, 张庆松. 岩溶地区隧道裂隙水突出力学机制研究[J]. 岩土力学, 2010, 31(2): 523-528. doi: 10.3969/j.issn.1000-7598.2010.02.031Li L P, Li S C, Zhang Q S. Study of mechanism of water inrush induced by hydraulic fracturing in karst tunnels[J]. Rock and Soil Mechanics, 2010, 31(2): 523-528 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2010.02.031 [5] 周宗青, 李术才, 李利平, 等. 岩溶隧道突涌水危险性评价的属性识别模型及其工程应用[J]. 岩土力学, 2013, 34(3): 818-826. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201303036.htmZhou Z Q, Li S C, Li L P, et al. Attribute recognition model of fatalness assessment of water inrush in karst tunnels and its application[J]. Rock and Soil Mechanics, 2013, 34(3): 818-826 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201303036.htm [6] 罗明明, 周宏, 郭绪磊, 等. 峡口隧道间歇性岩溶涌突水过程及来源解析[J]. 地质科技通报, 2021, 40(6): 246-254. doi: 10.19509/j.cnki.dzkq.2021.0054Luo M M, Zhou H, Guo X L, et al. Peocesses and sources identification of intermittent karst water inrush in Xiakou Tunnel[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 246-254 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0054 [7] 曹茜. 岩溶隧道与溶洞的安全距离研究[D]. 北京: 北京交通大学, 2010.Cao Q. Study on safe thickness for rock between tunnel and karst cave in karst region[D]. Beijing: Beijing Jiaotong University, 2010(in Chinese with English abstract). [8] 郭佳奇, 乔春生, 曹茜. 侧部高压富水溶腔与隧道间岩柱安全厚度的研究[J]. 现代隧道技术, 2010, 47(6): 10-16.Guo J Q, Qiao C S, Cao Q. Research on safe thickness of rock pillar between the tunnel and adjacent karst cave with pressurised water[J]. Modern Tunneling Technology, 2010, 47(6): 10-16 (in Chinese with English abstract). [9] Zhang L W, Fu H, Wu J, et al. Effects of karst cave shape on the stability and minimum safety thickness of tunnel surrounding rock[J]. International Journal of Geomechanics, 2021, 21(9): 110-121. [10] Li L P, Xiong Y F, Wang J, et al. Comprehensive influence analysis of multiple parameters on the safety thickness against water inrush in shield tunnel[J]. International Journal of Geomechanics, 2020, 20(12): 226-237. [11] 宋战平, 党宏斌, 李宁. 既有溶洞对隧道围岩位移特征影响的数值试验[J]. 长江科学院院报, 2008, 25(5): 79-83.Song Z P, Dang H B, Li N. Numerical experimentation of influence of karst cave on displacement characteristics of rock mass[J]. Journal of Yangtze River Scientific Research Institute, 2008, 25(5): 79-83 (in Chinese with English abstract). [12] 宋战平, 綦彦波, 李宁. 顶部既有隐伏溶洞对圆形隧道稳定性影响的数值分析[J]. 岩土力学, 2007, 28(增刊): 485-489.Song Z P, Qi Y B, Li N. Numerical experimentational research on concealed karst cave's influence on circular tunnel stability[J]. Rock and Soil Mechanics, 2007, 28(S): 485-489 (in Chinese with English abstract). [13] Ma J J, Guan J W, Duan J F, et al. Stability analysis on tunnels with karst caves using the distinct lattice spring model[J]. Underground Space, 2020, 6(4): 469-481. [14] 许振浩, 李术才, 李利平, 等. 基于层次分析法的岩溶隧道突水突泥风险评估[J]. 岩土力学, 2011, 32(6): 1757-1766. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201106036.htmXu Z H, Li S C, Li L P, et al. Risk assessment of water or mud inrush of karst tunnels based on analytic hierarchy process[J]. Rock and Soil Mechanics, 2011, 32(6): 1757-1766 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201106036.htm [15] 田清朝, 万军伟, 黄琨, 等. 高家坪隧道岩溶水系统识别及涌水量预测[J]. 安全与环境工程, 2016, 23(5): 13-19. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201605003.htmTian Q C, Wan J W, Huang K, et al. Karst water system identification and water inflow prediction in Gaojiaping Tunnel[J]. Safety and Environmental Engineering, 2016, 23(5): 13-19 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201605003.htm [16] 成建梅, 罗伟, 徐子东, 等. 火山岩体围岩隧道断层带涌水量计算方法综合研究: 以青云山隧道为例[J]. 地质科技情报, 2015, 34(6): 193-199.Chen J M, Luo W, Xu Z D, et al. Calculation method for water in flow of typical fault zone in volcanic rock tunnel: Case study of Qingyunshan Tunnel[J]. Geological Science and Technology Information, 2015, 34(6): 193-199(in Chinese with English Abstract). [17] 刘宗辉, 刘毛毛, 周东, 等. 基于探地雷达属性分析的典型岩溶不良地质识别方法[J]. 岩土力学, 2019, 40(8): 3282-3290. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201908046.htmLiu Z H, Liu M M, Zhou D, et al. Recognition method of typical anomalies in karst tunnel construction based on attribute analysis of ground penetrating radar[J]. Rock and Soil Mechanics, 2019, 40(8): 3282-3290 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201908046.htm [18] Guo J Q, Wu W L, Liu X L, et al. Theoretical analysis on safety thickness of the water-resistant rock mass of karst tunnel face taking into account seepage effect[J]. Geotechnical and Geological Engineering, 2021, 40(2): 697-709. [19] Li S C, Wu J. A multi-factor comprehensive risk assessment method of karst tunnels and its engineering application[J]. Bulletin of Engineering Geology and the Environment, 2019, 78(3): 1761-1776. [20] 葛颜慧, 李术才, 张庆松. 高风险岩溶隧道突水预警防灾体系研究[J]. 山东大学学报: 工学版, 2009, 39(3): 122-128. https://www.cnki.com.cn/Article/CJFDTOTAL-SDGY200903028.htmGe Y H, Li S C, Zhang Q S. Study on early warning and disaster prevention system of water inrush into high risk karst tunnels[J]. Journal of Shandong University: Engineering Science, 2009, 39(3): 122-128 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SDGY200903028.htm [21] Xu Z L, Luo Y B, Chen J X, et al. Mechanical properties and reasonable proportioning of similar materials in physical model test of tunnel lining cracking[J]. Construction and Building Materials. 2021, 300: 123960. [22] Wang Z Y, Zhang Q, Shao J L, et al. New type of similar material for simulating the processes of water inrush from roof bed separation. [J]. ACS Omega, 2020, 47(5): 405-415. [23] Samaila S, Yunus M, Zurairahetty N, et al. Numerical simulation with hardening soil model parameters of marine clay obtained from conventional tests[J]. SN Applied Sciences, 2021, 3(2): 125-132. [24] Li J T, Shi K B, Yan X J. Basic analysis of Homogenous slope stability by finite element method based on plaxis[C]//Du X L, Zheng J J, Yan W M, et al. Advanced Materials Research. 2nd International Conference on Structures and Building Materials. Hangzhou: [s. n. ], 2012. [25] Yang J H, Dai J H, Yao C, et al. Estimation of rock mass properties in excavation damage zones of rock slopes based on the Hoek-Brown criterion and acoustic testing[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 126: 104192. [26] Feng W K, Dong S, Wang Q, et al. Improving the Hoek-Brown criterion based on the disturbance factor and geological strength index quantification[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 108: 96-104.