Physical model test on the effect of different anchoring methods on the mechanical and deformation characteristics of anchored slide-resistant piles
-
摘要:
锚索抗滑桩是滑坡的主要支护结构之一。目前, 软硬相间地层条件下锚索抗滑桩的受力与变形特征尚缺乏系统研究。以软硬相间地层为地质背景, 基于自主研发的柔性测斜仪和自动加载系统, 构建了锚索抗滑桩加固滑坡物理模型试验系统, 开展了锚索抗滑桩加固滑坡的物理模型试验, 揭示了推力不断增加过程中抗滑桩、锚索和滑体的变形与受力特征, 对比研究了布锚方式对桩-锚受力与变形的影响规律, 通过数值模拟的方法分析了软硬相间地层对锚索抗滑桩的影响机理, 并以双锚点抗滑桩为例进行了理论分析。研究结果表明: ①在滑坡-锚索抗滑桩体系中, 桩身各点位移和滑体深部位移均随桩身深度的增加而减小, 滑体后部位移速率大于中部, 且滑体位移速率大于桩身位移速率; ②单锚点抗滑桩的桩-锚推力分担比经历了4个阶段的变化, 趋于稳定时桩-锚推力分担比约为9∶1, 锚索拉力作用下桩身弯矩呈"S"型分布, 正负弯矩非对称; ③锚固角度越大, 锚索拉力的增速越大, 不同锚固角度对桩身内力值的影响主要体现在受荷段; ④多锚点抗滑桩结构的锚索分担更多的推力, 与单锚点抗滑桩相比, 双锚点与三锚点抗滑桩的最大桩身弯矩分别减小了22.41%和40.55%;⑤与均质地层相比, 软硬相间地层中软、硬岩交界面处基岩应力发生突变, 不同软岩厚度比和桩底是否嵌入硬岩, 均对锚索拉力和桩-岩之间的相互作用有不同程度的影响; 其次, 双锚点抗滑桩内力的理论值与试验结果较为接近。本研究成果可为软硬相间地层中锚索抗滑桩加固滑坡工程的优化设计提供依据。
Abstract:Anchored slide-resistant piles are one of the main supporting structures for landslides. To date, there is still a lack of systematic studies on the characteristics of the mechanics and deformation of anchored slide-resistant piles in weak-hard interbedded strata. This study taking weak-hard interbedded strata as the geological background, based on the self-developed flexible inclinometer and automatic loading system, the test system was constructed. Model tests of landslides reinforced by anchored slide-resistant piles were conducted, and the force and deformation characteristics of piles, anchor cables, and sliding mass were revealed in the process of increasing loading force. The influence of the layout of anchor cables on the force and deformation of the pile-anchor was analyzed. The influence mechanism of the stratum with weak-hard interbedded rock on the anchored slide-resistant piles was analyzed by numerical simulation. In addition, the theoretical analysis was carried out by taking the double-anchored pile as an example. The results show that: ① in the landslide-pile-anchor system, the deep displacement of the pile and sliding mass decreases with increasing pile depth, the growth rate of the rear is greater than that of the middle in the sliding mass, and the growth rate of the sliding mass is greater than that of the pile. ② The thrust sharing ratio of the pile-anchor undergoes four stages, which is approximately 9∶1 when it becomes stable. Meanwhile, the bending moment of the pile is distributed in an "S" shape under the action of the anchor cable tension, and the positive and negative bending moments are asymmetrical. ③ The growth rate of the anchor cable tension increases with the increase in the anchoring angle, and the influence of different anchoring angles on the internal force of the pile is mainly reflected in the loaded section. ④ The multianchored pile structure can share more thrust than the single-anchored pile, and the maximal bending moment values of the double-anchored pile and triple-anchored pile are reduced by 22.41% and 40.55%, respectively. ⑤ Compared with the homogeneous stratum, the stress of the bedrock at the interface between a weak and hard rock in the weak-hard interbedded stratum changes abruptly, and the thickness ratios of the weak rock and whether the pile bottom is embedded in hard rock all affect the axial force of the anchor cable and the pile-rock interaction to varying degrees.Meanwhile, the theoretical value for the internal force of the double-anchored pile is closer to the test result. The study results of this paper can provide evidence for the optimal design of projects for landslides reinforced by anchored slide-resistant piles in weak-hard interbedded strata.
-
图 20 不同基岩组合中抗滑桩嵌固段基岩应力分布图(a~f对应表 2中工况a~f)
Figure 20. Stress contour map of the rock on the side of the embedded section in different bedrock combinations
图 21 不同模型中嵌固段桩前与桩后基岩应力分布曲线(a~f对应表 2中工况a~f)
Figure 21. Stress distribution curve of rock on both sides of the embedded section of pile in different bedrock combinations
表 1 材料的相似比和力学参数
Table 1. Similar ratio and mechanical parameters of materials
名称 密度/(g·cm-3) 弹性模量/GPa 黏聚力/kPa 内摩擦角/(°) 抗拉强度/MPa 相似比 1 100 1 1 100 滑体 1.97 0.018 26.08 11.65 / 软岩 2.16 0.15 39.1 16.3 / 硬岩 2.21 0.45 110.5 30.0 / 表 2 锚索拉力统计(数值模拟结果)
Table 2. Statistical analysis of the axial force of the anchor cable(numerical simulation results)
工况 a.软硬相间(w=1/3) b.全软岩 c.全硬岩 d.软硬相间(w=1/2) e.软硬相间(w=1/4) f.上硬下软(w= 2/3) 锚索拉力值/N 152 195 141 157 143 178 基岩顶部应力最大值/kPa -213 -176 -248 -191 -218 -242 桩底后侧应力最大值/kPa -99 -111 -52 -105 -90 -110 最大弯矩值/(N·m) 182 221 162 203 164 210 表 3 计算参数统计(双锚点抗滑桩)
Table 3. Statistical for calculation parameters(double-anchored pile)
名称 参数值 名称 参数值 名称 参数值 H 0.66 m l1 0.40 m R2 2.8×103 kPa L 0.16 m l2 0.35 m E 3×105 kPa h1 0.45 m s1 0.65 m K1 1.21×104 kN/m3 h2 0.21 m s2 0.55 m K2 1.02×104 kN/m3 a 0.05 m Eg 1.3×103 kPa K3 1.21×104 kN/m3 b 0.075 m As 2.83×10-5 m2 / / θ 30° R1 6.6×103 kPa / / 注:H为桩长;L为桩间距;h1为桩身受荷段长度;h2为桩身嵌固段长度;a×b为桩截面尺寸;E为桩身弹性模量;Ki为第i层岩性的水平地基系数,通过与岩石抗压强度的拟合公式进行换算[1];Eg为锚索弹性模量;As为锚索截面积;li为第i排锚索锚点至滑面的距离;si为第i排锚索自由段长度,θ为锚索锚固角度; R1,R2分别为硬岩和软岩单轴抗压强度 -
[1] 李长冬, 唐辉明, 胡新丽, 等. 三峡库区侏罗系地层滑坡中抗滑桩布设和结构优化研究[M]. 武汉: 中国地质大学出版社, 2015.Li C D, Tang H M, Hu X L, et al. Plane arrangement and structure optimization of stabilizing piles for landslides developing in Jurassic strata of Three Gorges Reservoir Region[M]. Wuhan: China university of Geosciences Press, 2015(in Chinese). [2] Li C D, Fu Z Y, Wang Y, et al. Susceptibility of reservoir-induced landslides and strategies for increasing the slope stability in the Three Gorges Reservoir Area: Zigui Basin as an example[J]. Engineering Geology, 2019, 261: 105279. doi: 10.1016/j.enggeo.2019.105279 [3] 姚文敏. 基于水致岩体劣化的三峡库区侏罗系地层水库滑坡抗滑桩嵌固机理及其优化研究[D]. 武汉: 中国地质大学(武汉), 2020.Yao W M. Embedded mechanism and optimization of stabilizing piles for reservoir landslides in Jurassic strata of Three Gorges Reservoir region based upon water induced deterioration of rock mass[D]. Wuhan: China University of Geosciences(Wuhan), 2020(in Chinese with English abstract). [4] 彭书林, 高大水. 马槽岭滑坡拉锚抗滑桩支挡及新型无黏结锚索应用[C]//佚名. 湖北省三峡库区地质灾害防治工程论文集. 武汉: 湖北人民出版社, 2005: 186-192.Peng S L, Gao D S. The anchor peg support and stick-free anchor cable in macaoling landslide[C]//Anon. A collection of academic theses on prevention and control of geohazards in the Three Gorges Reservoir of Hubei Province. Wuhan: Hubei People's Press, 2005: 186-192(in Chinese). [5] 曹志民, 李予红, 王润涛. 锚索抗滑桩在张家坝滑坡治理工程中的施工技术[C]//佚名. 湖北省三峡库区地质灾害防治工程论文集. 武汉: 湖北人民出版社, 2005: 417-425.Cao Z M, Li Y H, Wang R T. The anchor cable piles in the Zhangjiaba project[C]//Anon. A collection of academic theses on prevention and control of geohazards in the Three Gorges Reservoir of Hubei Province. Wuhan: Hubei People's Press, 2005: 417-425(in Chinese). [6] 李长冬, 龙晶晶, 姜茜慧, 等. 水库滑坡成因机制研究进展与展望[J]. 地质科技通报, 2020, 39(1): 67-77. doi: 10.19509/j.cnki.dzkq.2020.0108Li C D, Long J J, Jiang X H, et al. Advance and prospect of formation mechanism for reservoir landslides[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 67-77(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0108 [7] 王贵华, 李长冬, 陈文强, 等. 复合多层滑床条件下锚索抗滑桩受力特征研究[J]. 岩石力学与工程学报, 2019, 38(11): 2219-2230. doi: 10.13722/j.cnki.jrme.2019.0349Wang G H, Li C D, Chen W Q, et al. Mechanical characteristics of anchored slide-resistant pile under the condition of composite multilayer sliding bed[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(11): 2219-2230(in Chinese with English abstract). doi: 10.13722/j.cnki.jrme.2019.0349 [8] Yao W M, Li C D, Zhan H B, et al. Multiscale study of physical and mechanical properties of sandstone in Three Gorges Reservoir region subjected to cyclic wetting-drying of Yangtze River water[J]. Rock Mechanics and Rock Engineering, 2020, 53(1): 2215-2231. [9] 刘彬, 聂德新, 张勇, 等. 软硬相间层状复杂岩体综合变形模量原位试验研究[J]. 工程地质学报, 2010, 18(4): 538-542. doi: 10.3969/j.issn.1004-9665.2010.04.014Liu B, Nie D X, Zhang Y, et al. In-situ testing of integrated deformation modulus for complicated rock mass of soft and hard interlayers[J]. Journal of Engineering Geology, 2010, 18(4): 538-542(in Chinese with English abstract). doi: 10.3969/j.issn.1004-9665.2010.04.014 [10] Tang H M, Zhang Y Q, Li C D, et al. Development and application of in situ plate-loading test apparatus for landslide-stabilizing pile holes[J]. Geotechnical Testing Journal, 2016, 39(5): 757-768. [11] 梁德明, 李长冬, 雍睿, 等. 基于参数劣化的软硬相间顺层边坡稳定性研究[J]. 岩土力学, 2014, 35(增刊1): 195-202. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2014S1027.htmLiang D M, Li C D, Yong R, et al. Study of stability of soft-hard interbedded slope based on degradation of strength parameters[J]. Rock and Soil Mechanics, 2014, 35(S1): 195-202(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2014S1027.htm [12] 雷国平, 唐辉明, 李长冬, 等. 抗滑桩嵌固段设计修正方法研究[J]. 岩石力学与工程学报, 2013, 32(3): 605-614. doi: 10.3969/j.issn.1000-6915.2013.03.019Lei G P, Tang H M, Li C D, et al. Study of improved design method of anti-slide pile socketed segment[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(3): 605-614(in Chinese with English abstract). doi: 10.3969/j.issn.1000-6915.2013.03.019 [13] 詹红志, 王亮清, 王昌硕, 等. 考虑滑床不同地基系数的抗滑桩受力特征研究[J]. 岩土力学, 2014, 35(增刊2): 250-256. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2014S2035.htmZhan H Z, Wang L Q, Wang C S, et al. Study of mechanical characters of anti-sliding piles considering different foundation coefficients of sliding bed[J]. Rock and Soil Mechanics, 2014, 35(S2): 250-256(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2014S2035.htm [14] 董曼曼, 王亮清, 葛云峰, 等. 考虑滑床复合倾斜岩体综合地基系数的抗滑桩受力特征研究简述[J]. 岩土力学, 2017, 38(10): 3000-3008. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201710030.htmDong M M, Wang L Q, Ge Y F, et al. Mechanical characteristics of anti-sliding pile considering comprehensive foundation coefficient of sliding bed on composite inclined rock mass[J]. Rock and Soil Mechanics, 2017, 38(10): 3000-3008(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201710030.htm [15] Li C D, Wu J J, Tang H M, et al. Model testing of the response of stabilizing piles in landslides with upper hard and lower weak bedrock[J]. Engineering Geology, 2016, 204: 65-76. doi: 10.1016/j.enggeo.2016.02.002 [16] 毛明章, 邹先锋. 预应力锚索抗滑桩协同工作机理[J]. 地下空间与工程学报, 2010, 6(2): 1552-1555. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2010S2012.htmMao M Z, Zou X F. Research on mechanism of collaborative working of prestressed anchor anti-slide piles[J]. Chinese Journal of Underground Space and Engineering, 2010, 6(2): 1552-1555(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2010S2012.htm [17] 周德培, 王建松. 预应力锚索桩内力的一种计算方法[J]. 岩石力学与工程学报, 2002, 21(2): 247-250. doi: 10.3321/j.issn:1000-6915.2002.02.019Zhou D P, Wang J S. Design method of retaining pile with prestressed cable[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(2): 247-250(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2002.02.019 [18] Qu H L, Li R F, Zhang J J, et al. A novel approach for seismic design of anchored sheet pile wall[J]. Tehnicki Vjesnik-Technical Gazette, 2016, 23(2): 455-463. [19] 桂树强, 殷坤龙, 罗平. 预应力锚索抗滑桩治理滑坡应用研究[J]. 岩土力学, 2003, 24(增刊2): 239-243. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2003S2054.htmGui S Q, Yin K L, Luo P. A study on applications of stabilizing piles with prestressed anchor cables in landslides remediation works[J]. Rock and Soil Mechanics, 2003, 24(S2): 239-243(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2003S2054.htm [20] Qiu H Z, Kong J M, Wang R C. Dynamic active earth pressures of the retaining piles with anchors under vehicle loads[J]. Shock and Vibration, 2016(3): 1-8. [21] 刘小丽, 张占民, 周德培. 预应力锚索抗滑桩的改进计算方法[J]. 岩石力学与工程学报, 2004, 23(15): 2568-2568. doi: 10.3321/j.issn:1000-6915.2004.15.017Liu X L, Zhang Z M, Zhou D P. Improved method for computing anti-sliding pile with prestressed anchoring cable[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(15): 2568-2568(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2004.15.017 [22] Huang C, Ren W Z, Kong L W. New mathematical modelling of stabilizing pile with prestressed tieback anchors[J]. Mathematical Problems in Engineering, 2013(10): 561-576. [23] Zhang S F, Li C, Qi H, et al. Soil arch evolution characteristics and parametric analysis of slope anchored anti-slide pile[J]. KSCE Journal of Civil Engineering, 2021, 11(25): 4121-4132. [24] Yang Z P, Li S Q, Yu Y, et al. Study on the variation characteristics of the anchor cable prestress based on field monitoring in a foundation pit[J]. Arabian Journal of Geosciences, 2020, 13(23): 1269. [25] 李玉瑞, 吴红刚, 赖天文, 等. 分层填筑对桩-锚-加筋土组合结构加固边坡试验研究[J]. 中国地质灾害与防治学报, 2018, 29(6): 83-91. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH201806011.htmLi Y R, Wu H G, Lai T W, et al. Effects of layered filling on slope reinforcement with pile-anchor-reinforced soil composite structure[J]. The Chinese Journal of Geological and Control, 2018, 29(6): 83-91(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH201806011.htm [26] 吴红刚, 牌立芳, 赖天文, 等. 山区机场高填方边坡桩-锚-加筋土组合结构协同工作性能优化研究[J]. 岩石力学与工程学报, 2019, 38(7): 1498-1511. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201907018.htmWu H G, Pai L F, Lai T W, et al. Study on cooperative performance of pile-anchor-reinforced soil combined retaining structure of high fill slopes in mountainous airports[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(7): 1498-1511(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201907018.htm [27] 牌立芳, 吴红刚, 马惠民. 地震作用下多锚点桩加固土质边坡的抗震优化对比振动台试验研究[J]. 岩石力学与工程学报, 2021, 40(4): 751-765. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202104009.htmPai L F, Wu H G, Ma H M. Shaking table test study on seismic optimization comparisons of multi-anchor piles for strengthening soil slopes under earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(4): 751-765(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202104009.htm [28] Ma N, Wu H, Ma H, et al. Examining dynamic soil pressures and the effectiveness of different pile structures inside reinforced slopes using shaking table tests[J]. Soil Dynamics and Earthquake Engineering, 2019, 116: 293-303. [29] 叶海林, 郑颖人, 李安洪, 等. 地震作用下边坡预应力锚索振动台试验研究[J]. 岩石力学与工程学报, 2012, 31(1): 2847-2854. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2012S1031.htmYe H L, Zheng Y R, Li A H, et al. Shaking table test studies of prestressed anchor cable of slope under earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(1): 2847-2854(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2012S1031.htm [30] Huang Y, Xu X, Liu J J, et al. Centrifuge modeling of seismic response and failure mode of a slope reinforced by a pile-anchor structure[J]. Soil Dynamics and Earthquake Engineering, 2020, 131: 106037.1-106037.11. [31] 郑桐, 刘红帅, 袁晓铭, 等. 锚索抗滑桩地震响应的离心振动台模型试验研究[J]. 岩石力学与工程学报, 2016, 35(11): 2276-2286. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201611012.htmZheng T, Liu H S, Yuan X M, et al. Experimental study on seismic response of anti-slide piles with anchor cables by centrifugal shaking table[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(11): 2276-2286(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201611012.htm [32] 王成汤, 王浩, 张玉丰, 等. 锚索抗滑桩加固堆积型滑坡的受力特性模型试验与数值模拟研究[J]. 岩土力学, 2020, 41(10): 3343-3354. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202010020.htmWang C T, Wang H, Zhang Y F, et al. Model test and numerical simulation study on the mechanical characteristics of the anchored slide-resistant pile for stabilizing the colluvial landslide[J]. Rock and Soil Mechanics, 2020, 41(10): 3343-3354(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202010020.htm [33] Xu H Y, Chen L Z, Deng J L. Uplift tests of jet mixing anchor pile[J]. Soils and Foundations, 2014, 54(2): 168-175. [34] 李寻昌, 门玉明, 何光宇. 锚杆抗滑桩桩侧地层抗力分布模式的试验研究[J]. 岩土力学, 2009, 30(9): 2655-2659. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200909023.htmLi X C, Men Y M, He G Y. Test research on strata resistance of pile side of anchor anti-slide pile[J]. Rock and Soil Mechanics, 2009, 30(9): 2655-2659(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200909023.htm [35] 胡田飞, 朱本珍, 刘建坤, 等. 预应力锚索对微型桩结构抗滑性能影响的试验研究[J]. 中国铁道科学, 2017, 38(3): 10-18. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201703002.htmHu T F, Zhu B Z, Liu J K, et al. Experimental research on effect of prestressed anchor cable on anti-sliding performance of micropile structure[J]. China Railway Science, 2017, 38(3): 10-18(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201703002.htm [36] Zhang Y Q, Tang H M, Li C D, et al. Design andtesting of a flexible inclinometer probe for model tests of landslide deep displacement measurement[J]. Sensors, 2018, 18(1): 224. [37] Hu X L, Zhou C, Xu C, et al. Model tests of the response of landslide-stabilizing piles to piles with different stiffness[J]. Landslides, 2019, 16(11): 2187-2200. [38] 张杰豪, 胡新丽, 徐楚, 等. 基于物理模型试验的多层滑带堆积层滑坡-抗滑桩受力特征[J]. 地质科技通报, 2021, 40(4): 171-178. doi: 10.19509/j.cnki.dzkq.2021.0410Zhang J H, Hu X L, Xu C, et al. Mechanical characteristics of anti-slide pile of multi-layer sliding zone accumulation layer based on physical model test[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 171-178(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0410 [39] 孙训方, 方孝淑, 关来泰. 材料力学[M]. 北京: 高等教育出版社, 2013.Sun X F, Fang X S, Guan L T. Mechanics of materials[M]. Beijing: Higher Education Press, 2013(in Chinese). [40] 国家市场监督管理总局. 滑坡防治设计规范: GB/T 38509-2020[S]. 北京: 中国标准出版社, 2020.State Administration for Market Regulation. Code for the design of landslide stabilization: GB/T 38509-2020[S]. Beijing: Standards Press of China, 2020(in Chinese). [41] 铁道部第二勘测设计院. 抗滑桩设计与计算[M]. 北京: 中国铁道出版社, 1983.No. 2 Survey and Design Institute, Ministry of Railways. Design and calculation of anti-slide pile[M]. Beijing: China Railway Publishing House, 1983(in Chinese).