Provenance and tectonic setting of the Upper Cretaceous Yaojia Formation sandstones in the Hailijin area, southern Songliao Basin: Constraints from petrogeochemistry and zircon U-Pb chronology
-
摘要:
针对可地浸砂岩型铀矿潜在铀储层预测、铀源评价而言, 明确赋矿砂体的物源是关键。海力锦铀矿床位于松辽盆地南部, 赋矿砂体为上白垩统姚家组灰色砂岩。系统采集了该矿床内16个钻孔中的26件样品, 首次对姚家组灰色、褐红色、褐黄色砂体展开了碎屑岩岩石学、地球化学及锆石年代学分析工作。测试结果表明, 这套多色砂岩在铀工业矿孔、矿化孔及无矿孔中整体表现较为一致, 均具高SiO2, 相对较低的Al2O3、Fe2O3、MgO、MnO、Na2O、TiO2, 地球化学分类属于岩屑砂岩、亚岩屑砂岩类, 指示源岩可能为酸性岩类; 化学蚀变指数(
CIA )值为62.93~83.46(平均74.08), 成分变异指数(ICV )值为0.4~1(平均0.6), 推测其经历过半干旱-半潮湿气候背景下的中等化学风化作用影响; 根据源岩属性判别其母岩主要为长英质(酸性)岩石, 且源区构造背景属于被动大陆边缘环境; 碎屑锆石U-Pb测年显示谐和年龄主要集中分布在3个年龄区间, 分别为180~110, 320~230, 2 536~1 738 Ma。结合岩石地层划分、盆缘岩浆岩年代以及区域构造演化特征, 推断海力锦地区姚家组下段沉积物最有可能来源于大兴安岭南缘的林西地区。Abstract:Objective Tracing the provenance of host clastic rocks is key for understanding uranium reservoir projection and uranium source evaluation of alluvial uranium ore.
Methods The Hailijin uranium ore, of which the host rock is the Upper Cretaceous Yaojia Formation, is located in the southern part of Songliao Basin, northeastern China. This paper performed detailed petrography, whole-rock geochemistry and detrital zircon U-Pb geochronology of sandstone in the Yaojia Formation.
Results Twenty-six samples collected from 16 drill holes display high contents of SiO2 and relatively low contents of Al2O3, Fe2O3, MgO, MnO, Na2O and TiO2, which plot in the area of lithic sandstone to sublithic sandstone, thus indicative of source rocks as the felsic components. The chemical index of alteration values range from 62.93 to 83.46, while the index of compositional variability values range from 0.4 to 1, which corresponds to moderate chemical weathering in a semiarid to semihumid climatic setting. The geochemical discriminant diagram shows that the tectonic background of the Yaojia Formation is a passive continental margin. Zircon U-Pb ages are mainly distributed at 180-110 Ma, 320-230 Ma and 2 536-1 738 Ma.
Conclusion Combined with stratigraphy, magmatic records around the Songliao Basin and regional tectonic evolution, this study suggests that the sediments of the Yaojia Formation in the Hailijin were sourced from the Linxi area of the southern Great Xing'an Range.
-
Key words:
- Songliao Basin /
- Yaojia Formation /
- geochemistry /
- zircon geochronology /
- provenance analysis
-
图 1 松辽盆地构造单元区划图[4]
Figure 1. Division of tectonic units in the Songliao Basin
图 2 海力锦地区区域地质简图[15]
Figure 2. Geological sketch map of the Hailijin area
图 3 海力锦地区地层综合柱状图[16]
Figure 3. Comprehensive stratigraphic histogram in the Hailijin area
图 6 海力锦地区姚家组砂岩陆源砂岩-页岩岩石分类图(底图据文献[21])
Figure 6. Classification of terrigenous sandstone-shale rocks in sandstones of the Yaojia Formation in the Hailijin area
图 10 海力锦地区姚家组砂岩w(SiO2)-w(Al3O2+K2O+Na2O)古气候判别图(底图据文献[26]修改)
Figure 10. Discrimination diagram of the SiO2-(Al3O2 +K2O+Na2O) paleoclimate of the Yaojia Formation sandstones in the Hailijin area
图 11 海力锦地区姚家组砂岩主量元素A-CN-K图(底图据文献[28]修改)
Figure 11. A-CN-K diagram of major elements of the Yaojia Formation sandstones in the Hailijin area
图 12 姚家组砂岩K2O/Na2O-w(SiO2)图(底图据文献[30]修改)
Figure 12. Diagram of K2O/Na2O-SiO2 of the Yaojia Formation sandstones in the Hailijin area
图 13 姚家组砂岩SiO2/Al2O3-K2O/Na2O图(底图据文献[31]修改)
Figure 13. Diagram of SiO2/Al2O3-K2O/Na2O of the Yaojia Formation sandstones
表 1 海力锦地区姚家组砂岩地球化学分析数据
Table 1. Data table of principal element analysis of the Yaojia Formation sandstones in the Hailijin area
样品编号 孔号 深度/ m 样品描述 SiO2 Al2O3 CaO Fe2O3 K2O MgO MnO Na2O P2O5 TiO2 LOI CIA ICV wB/% H1-1 ZK宝10-4 586.80 褐红色细砂岩 77.34 12.23 0.32 2.1 3.15 0.24 0.012 0.39 0.141 0.563 2.79 81.23 0.55 H1-2 ZK宝10-4 588.50 褐红色细砂岩 76.07 11.96 0.93 1.67 3.47 0.65 0.041 1.03 0.103 0.323 3.11 69.68 0.68 H2-1 HL16-7 574.10 灰色细砂岩 80.12 9.85 0.59 0.90 3.41 0.35 0.015 0.41 0.110 0.227 2.90 72.25 0.60 H2-2 HL16-7 575.00 灰色中砂岩 81.25 9.05 0.55 0.76 3.56 0.30 0.015 0.38 0.087 0.214 2.35 69.58 0.64 H2-3 HL16-7 577.70 灰色中砂岩 79.65 8.85 1.29 0.49 3.05 0.65 0.031 0.35 0.092 0.260 3.60 72.53 0.69 H2-4 HL16-7 580.80 灰色中砂岩 79.24 10.33 0.28 1.10 2.63 0.38 0.079 0.30 0.112 0.345 3.88 81.50 0.50 H3 ZKH0-2 566.00 灰色中砂岩 78.68 9.48 1.41 0.87 2.67 0.70 0.019 0.32 0.053 0.342 4.02 77.40 0.67 H4 ZK宝13-1 605.50 褐红色中砂岩 75.69 12.19 1.14 1.58 3.11 0.69 0.054 0.34 0.109 0.359 3.78 80.28 0.60 H5 ZKH1-6 592.43 灰色中砂岩 80.15 10.22 0.47 0.60 2.93 0.23 0.020 0.57 0.109 0.297 2.52 75.08 0.50 H6-1 ZKL32-8 593.10 灰色中砂岩 77.36 11.67 0.64 0.79 3.20 0.45 0.028 0.60 0.064 0.360 3.39 74.91 0.52 H6-2 ZKL32-8 541.50 灰色中砂岩 71.58 13.24 1.91 0.78 3.10 1.01 0.044 0.66 0.072 0.415 5.44 77.69 0.60 H7 ZKL24-0 550.20 灰色细砂岩 75.58 9.75 2.37 0.53 3.70 1.00 0.043 0.47 0.070 0.213 4.77 69.54 0.85 H8 ZKH2-4 571.10 灰色细砂岩 81.32 9.61 0.64 0.80 2.96 0.34 0.025 0.50 0.079 0.215 2.45 72.86 0.57 H9-1 ZKH0-6 530.15 灰色中砂岩 74.02 11.70 2.44 0.60 3.71 0.89 0.038 1.43 0.088 0.304 2.61 62.93 0.80 H9-2 ZKH0-6 511.05 灰色细砂岩 79.87 10.32 0.89 0.45 3.29 0.45 0.021 0.89 0.050 0.255 2.28 67.31 0.61 H9-3 ZKH0-6 539.50 灰色中砂岩 74.85 12.39 1.35 0.66 3.67 0.71 0.054 0.72 0.063 0.301 3.39 72.61 0.60 H9-4 ZKH0-6 580.55 灰色中砂岩 76.62 11.21 1.65 0.55 3.58 0.75 0.043 0.78 0.057 0.223 3.07 69.65 0.67 H9-5 ZKH0-6 588.95 灰色中砂岩 78.66 10.66 1.00 0.43 3.01 0.51 0.021 0.51 0.099 0.303 3.23 74.97 0.54 H10 ZKH1-12 609.00 灰色细砂岩 81.02 10.33 0.41 0.34 3.03 0.22 0.013 0.69 0.113 0.257 2.51 74.38 0.48 H11 ZKH2-3 596.65 褐黄色中砂岩 78.41 9.59 1.39 1.12 2.87 0.69 0.138 0.43 0.089 0.283 3.18 74.46 0.72 H12 ZKH4-6 621.15 灰色细砂岩 76.11 11.63 1.16 0.96 3.01 0.53 0.028 0.68 0.078 0.370 3.57 74.64 0.58 H13 ZKH0-1 579.70 灰色中砂岩 77.06 12.75 0.20 1.10 3.18 0.34 0.012 0.34 0.146 0.530 3.83 83.46 0.45 H14 ZK宝11-2 586.80 灰色中砂岩 73.39 11.99 2.41 0.81 3.21 0.98 0.035 0.72 0.102 0.401 4.93 73.90 0.71 H15 ZKH1-10 592.85 灰色中砂岩 72.87 12.52 1.28 0.70 3.06 0.69 0.104 0.76 0.100 0.420 4.96 75.15 0.56 PAAS 62.40 18.90 1.29 7.18 3.68 2.19 0.11 1.19 0.11 0.99 注:PAAS.澳大利亚后太古宙页岩; LOI.烧失量; CIA.化学蚀变指数;ICV.成分变异指数 表 2 姚家组灰色砂岩(HL16-7)碎屑锆石LA-ICP-MS定年结果
Table 2. LA-ICP-MS dating results of zircons from the Yaojia Formation sandstones
分析点号 Th U Th/U 同位素比值 定年结果/Ma 谐和度/% wB/10-6 207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ 207Pb/ 206Pb ±1σ 207Pb/ 235U ±1σ 206Pb/ 238U ±1σ HL16-7-1 59 150 0.39 0.049 7 0.002 9 0.140 0 0.007 8 0.020 4 0.000 3 181 137 133 7 130 2 91 HL16-7-3 89 86 1.02 0.050 7 0.004 1 0.138 0 0.009 7 0.019 7 0.000 4 228 186 131 9 126 3 92 HL16-7-4 149 412 0.36 0.050 2 0.001 6 0.167 1 0.005 5 0.024 2 0.000 4 202 72 157 5 154 2 96 HL16-7-5 63 250 0.25 0.048 8 0.002 8 0.096 9 0.004 7 0.014 4 0.000 5 139 135 94 5 92 3 93 HL16-7-6 143 75 1.90 0.053 3 0.002 8 0.289 7 0.014 4 0.039 4 0.000 7 342 119 258 13 249 4 95 HL16-7-7 36 86 0.42 0.047 7 0.005 9 0.123 8 0.014 6 0.018 8 0.000 5 84 292 118 14 120 3 99 HL16-7-8 57 377 0.15 0.135 7 0.002 0 7.276 4 0.144 5 0.389 0 0.005 1 2 173 25 2 146 43 2 118 28 98 HL16-7-9 166 315 0.53 0.052 5 0.002 2 0.130 3 0.004 7 0.018 0 0.000 2 307 96 124 4 115 2 95 HL16-7-10 112 177 0.64 0.167 8 0.002 4 11.134 5 0.169 3 0.481 3 0.005 0 2 536 24 2 534 39 2 533 26 97 HL16-7-11 362 431 0.84 0.050 2 0.002 2 0.153 4 0.006 3 0.022 1 0.000 4 205 104 145 6 141 2 99 HL16-7-12 188 284 0.66 0.050 3 0.001 7 0.167 9 0.006 0 0.024 2 0.000 4 208 79 158 6 154 2 99 HL16-7-13 78 172 0.45 0.117 2 0.001 7 5.263 0 0.082 4 0.325 7 0.003 1 1 914 27 1 863 29 1 818 17 98 HL16-7-15 112 163 0.69 0.051 3 0.003 5 0.155 3 0.010 1 0.022 0 0.000 5 254 159 147 10 140 3 94 HL16-7-16 219 387 0.57 0.052 4 0.002 3 0.263 9 0.011 2 0.036 6 0.000 4 301 99 238 10 231 3 92 HL16-7-17 173 406 0.43 0.052 1 0.002 0 0.143 0 0.005 3 0.019 9 0.000 2 288 87 136 5 127 2 99 HL16-7-18 59 186 0.32 0.049 2 0.002 1 0.107 3 0.004 6 0.015 8 0.000 2 159 101 104 4 101 1 92 HL16-7-19 589 1 299 0.45 0.052 4 0.000 9 0.296 0 0.007 8 0.041 0 0.000 9 304 39 263 7 259 5 92 HL16-7-20 187 180 1.03 0.051 5 0.003 3 0.289 1 0.018 3 0.040 7 0.000 5 264 147 258 16 257 3 90 HL16-7-21 28 81 0.35 0.052 9 0.004 0 0.132 7 0.010 2 0.018 2 0.000 4 324 171 126 10 116 3 99 HL16-7-22 66 110 0.60 0.049 3 0.002 6 0.144 0 0.007 3 0.021 2 0.000 4 163 121 137 7 135 2 98 HL16-7-23 357 602 0.59 0.053 3 0.001 8 0.303 0 0.010 6 0.041 3 0.000 8 340 77 269 9 261 5 90 HL16-7-24 128 184 0.70 0.052 0 0.002 0 0.287 6 0.011 7 0.040 1 0.000 6 284 86 257 10 254 4 99 HL16-7-25 67 151 0.45 0.055 6 0.001 5 0.515 0 0.014 8 0.067 2 0.000 8 436 62 422 12 419 5 97 HL16-7-26 329 323 1.02 0.053 5 0.002 2 0.425 0 0.017 6 0.057 7 0.000 6 348 95 360 15 361 4 99 HL16-7-27 164 242 0.68 0.048 5 0.001 6 0.155 6 0.005 4 0.023 3 0.000 3 125 80 147 5 148 2 99 HL16-7-28 117 189 0.62 0.048 6 0.004 3 0.141 6 0.011 0 0.021 1 0.000 3 129 208 134 10 135 2 97 HL16-7-29 86 262 0.33 0.116 2 0.002 2 5.202 5 0.104 2 0.324 7 0.002 7 1 899 33 1 853 37 1 813 15 99 HL16-7-31 114 157 0.72 0.052 4 0.001 8 0.294 9 0.010 7 0.040 8 0.000 6 302 79 262 10 258 4 99 HL16-7-32 114 271 0.42 0.047 1 0.003 0 0.139 7 0.008 9 0.021 5 0.000 4 56 149 133 8 137 3 98 HL16-7-33 433 324 1.34 0.048 3 0.002 0 0.131 4 0.005 5 0.019 7 0.000 2 112 95 125 5 126 1 99 HL16-7-34 57 277 0.21 0.050 0 0.002 6 0.082 9 0.005 6 0.012 0 0.000 4 196 119 81 5 77 2 99 HL16-7-35 217 172 1.26 0.050 8 0.001 9 0.259 4 0.009 1 0.037 0 0.000 4 231 86 234 8 234 3 98 HL16-7-36 193 357 0.54 0.050 7 0.002 4 0.148 7 0.006 8 0.021 3 0.000 2 226 108 141 6 136 2 98 HL16-7-37 150 203 0.74 0.112 8 0.001 7 5.136 4 0.081 2 0.330 2 0.003 4 1 845 27 1 842 29 1 839 19 99 HL16-7-38 81 251 0.32 0.051 2 0.001 5 0.301 7 0.008 7 0.042 7 0.000 5 250 65 268 8 270 3 96 HL16-7-39 485 959 0.51 0.049 7 0.001 4 0.113 3 0.004 8 0.016 5 0.000 4 183 66 109 5 106 3 99 HL16-7-40 79 141 0.56 0.051 5 0.002 8 0.141 3 0.007 3 0.019 9 0.000 3 264 123 134 7 127 2 96 HL16-7-41 743 590 1.26 0.050 7 0.001 4 0.147 3 0.004 4 0.021 1 0.000 3 226 63 140 4 135 2 96 HL16-7-42 146 486 0.30 0.050 6 0.006 4 0.127 9 0.017 1 0.018 3 0.000 7 223 293 122 16 117 4 97 HL16-7-44 158 208 0.76 0.051 2 0.001 8 0.321 0 0.011 8 0.045 5 0.000 5 248 82 283 10 287 3 97 HL16-7-45 75 179 0.42 0.055 9 0.001 5 0.559 9 0.017 4 0.072 6 0.001 0 449 61 451 14 452 6 97 HL16-7-46 182 463 0.39 0.048 3 0.001 5 0.144 5 0.004 6 0.021 7 0.000 3 113 73 137 4 138 2 99 HL16-7-47 100 194 0.52 0.052 9 0.001 8 0.287 7 0.009 2 0.039 4 0.000 6 326 76 257 8 249 4 99 HL16-7-48 63 80 0.78 0.047 8 0.003 8 0.132 7 0.009 0 0.020 1 0.000 4 90 187 127 9 129 2 99 HL16-7-50 69 134 0.52 0.051 0 0.009 4 0.145 1 0.025 5 0.020 6 0.001 2 242 425 138 24 132 8 96 HL16-7-51 76 131 0.58 0.048 6 0.003 8 0.146 8 0.011 9 0.021 9 0.000 4 128 182 139 11 140 3 98 HL16-7-52 221 163 1.36 0.048 3 0.002 4 0.142 1 0.006 7 0.021 3 0.000 4 116 117 135 6 136 2 99 HL16-7-53 179 270 0.66 0.050 9 0.002 5 0.144 0 0.007 3 0.020 5 0.000 3 237 115 137 7 131 2 96 HL16-7-55 47 78 0.60 0.053 3 0.003 1 0.277 0 0.015 9 0.037 7 0.001 1 341 133 248 14 239 7 98 HL16-7-56 332 1 139 0.29 0.051 1 0.001 1 0.146 9 0.004 0 0.020 8 0.000 3 247 52 139 4 133 2 90 HL16-7-57 56 85 0.66 0.053 3 0.002 4 0.370 8 0.017 8 0.050 4 0.000 7 343 102 320 15 317 5 99 HL16-7-58 94 188 0.50 0.051 2 0.001 6 0.313 3 0.010 2 0.044 4 0.000 6 251 71 277 9 280 4 97 HL16-7-60 100 67 1.50 0.051 7 0.007 0 0.139 9 0.016 8 0.019 6 0.000 6 273 310 133 16 125 4 99 HL16-7-61 50 260 0.19 0.120 4 0.002 0 4.813 0 0.086 7 0.289 9 0.003 8 1 962 30 1 787 32 1 641 22 97 HL16-7-62 41 109 0.38 0.117 9 0.002 7 4.808 9 0.130 7 0.295 9 0.005 0 1 924 41 1 786 49 1 671 28 99 HL16-7-63 182 330 0.55 0.050 8 0.001 8 0.153 6 0.005 5 0.021 9 0.000 3 231 82 145 5 140 2 99 HL16-7-65 34 47 0.72 0.052 0 0.004 8 0.274 8 0.024 1 0.038 3 0.000 9 285 211 246 22 242 6 98 HL16-7-66 20 60 0.33 0.050 5 0.004 9 0.125 3 0.012 7 0.018 0 0.000 5 220 224 120 12 115 3 99 HL16-7-67 468 2 023 0.23 0.051 0 0.001 2 0.122 0 0.002 9 0.017 3 0.000 2 241 52 117 3 111 1 99 HL16-7-68 226 703 0.32 0.050 4 0.001 7 0.126 0 0.004 1 0.018 1 0.000 3 214 76 121 4 116 2 98 HL16-7-69 78 186 0.42 0.052 1 0.002 2 0.174 9 0.007 6 0.024 4 0.000 3 289 96 164 7 155 2 98 HL16-7-70 376 909 0.41 0.053 5 0.001 1 0.300 8 0.007 3 0.040 8 0.000 6 349 47 267 6 258 4 99 HL16-7-71 190 449 0.42 0.051 4 0.001 7 0.136 7 0.004 5 0.019 3 0.000 2 258 77 130 4 123 1 96 HL16-7-72 20 22 0.92 0.051 3 0.005 0 0.254 6 0.019 7 0.036 0 0.001 0 254 224 230 18 228 6 99 HL16-7-73 254 477 0.53 0.047 6 0.001 4 0.141 7 0.004 2 0.021 6 0.000 3 81 71 135 4 138 2 96 HL16-7-74 39 88 0.44 0.050 6 0.003 2 0.157 7 0.008 9 0.022 6 0.000 4 223 145 149 8 144 3 96 HL16-7-75 58 108 0.54 0.054 4 0.002 2 0.367 0 0.015 1 0.048 9 0.000 8 387 93 317 13 308 5 93 HL16-7-77 140 361 0.39 0.051 6 0.001 5 0.189 4 0.005 9 0.026 6 0.000 3 270 67 176 6 169 2 99 HL16-7-78 91 129 0.71 0.106 4 0.003 2 4.264 1 0.150 5 0.290 8 0.006 0 1 738 55 1 686 60 1 645 34 98 HL16-7-79 143 164 0.87 0.050 4 0.003 7 0.276 9 0.024 6 0.039 9 0.001 0 213 171 248 22 252 6 95 HL16-7-80 112 52 2.13 0.048 3 0.006 8 0.120 9 0.014 0 0.018 2 0.000 8 113 332 116 13 116 5 97 HL16-7-81 292 260 1.12 0.058 3 0.001 6 0.693 4 0.020 7 0.086 2 0.001 0 542 58 535 16 533 6 99 HL16-7-82 111 190 0.58 0.061 7 0.002 1 0.862 8 0.033 1 0.101 5 0.002 0 663 72 632 24 623 12 99 HL16-7-83 298 1 183 0.25 0.051 4 0.001 4 0.237 5 0.009 4 0.033 5 0.000 9 258 63 216 9 213 6 98 HL16-7-85 47 105 0.45 0.054 8 0.003 5 0.445 8 0.025 3 0.059 0 0.001 0 404 144 374 21 370 6 94 表 3 不同构造背景主量元素特征参数对比
Table 3. Comparison of characteristic parameters of principal elements in different tectonic backgrounds
-
[1] 杨江海, 杜远生, 徐亚军, 等. 砂岩的主量元素特征与盆地物源分析[J]. 中国地质, 2007, 34(6): 1032-1043. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200706008.htmYang J H, Du Y S, Xu Y J, et al. Major element characteristics of sandstones and provenance analysis of basins[J]. Geology in China, 2007, 34(6): 1032-1043(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200706008.htm [2] 徐亚军, 杜远生, 杨江海. 沉积物物源分析研究进展[J]. 地质科技情报, 2007, 26(3): 26-32. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200703005.htmXu Y J, Du Y S, Yang J H. Prospects of sediment provenance analysis[J]. Geological Science and Technology Information, 2007, 26(3): 26-32(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200703005.htm [3] 蔡宁宁, 邹妞妞, 付勇, 等. 松辽盆地大庆长垣南缘四方台组砂岩型铀矿碳氧同位素特征及铀成矿意义[J]. 地质科技通报, 2021, 40(3): 140-150. doi: 10.19509/j.cnki.dzkq.2021.0307Cai N N, Zhou N N, Fu Y, et al. Carbon and oxygen isotopic characteristics and uranium mineralization significance of the sandstone-type uranium deposit in the Sifangtai Formation at the southern margin of Daqing placanticline in Songliao Basin[J]. Bullentin of Geological Science and Technology, 2021, 40(3): 140-150(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0307 [4] 陈振岩, 满安静, 陈星州, 等. 沉积盆地水文地质与砂岩型铀矿成矿关系: 以松辽盆地开鲁坳陷砂岩型铀矿为例[J]. 大地构造与成矿学, 2021, 45(6): 1174-1184. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202106007.htmChen Z Y, Man A J, Chen X Z, et al. Relationship between hydrogeology and sandstone uranium mineralization in sedimentary basin: A case study of sandstone uranium survey in the Kailu Depression of the Songliao Basin[J]. Geotectonica et Metallogenia, 2021, 45(6): 1174-1184(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202106007.htm [5] 郭福能. 松辽盆地西南部上白垩统姚家组铀成矿规律与远景预测[D]. 南昌: 东华理工大学, 2017.Guo F N. Uranium metallogenic regularity and prospect prediction of Upper Cretaceous Yaojia Formation in southwestern Songliao Basin[D]. Nanchang: East China University of Technology, 2017(in Chinese with English abstract). [6] 宁君, 夏菲, 聂逢君, 等. 浅析松辽盆地南部姚下段灰色砂体与铀成矿关系[J]. 东华理工大学大学学报: 自然科学版, 2018, 41(4): 336-342. https://www.cnki.com.cn/Article/CJFDTOTAL-HDDZ201804005.htmNing J, Xia F, Nie F J, et al. Analysis of the relation between uranium mineralization and the grey sand body in the lower part of Yaojia Formation in the south of Songliao Basin[J]. Journal of East China University of Technology: Natural Science, 2018, 41(4): 336-342(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HDDZ201804005.htm [7] 曹民强. 松辽盆地钱家店铀矿含铀岩系层序地层结构对铀成矿的约束[J]. 地质科技通报, 2021, 40(4): 131-142. doi: 10.19509/j.cnki.dzkq.2021.0408Cao M Q. Constraints of the sequence stratigraphic structure of uranium-bearing series on mineralization in Qianjiadian uranium deposit, Songliao Basin[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 131-142(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0408 [8] 聂逢君, 严兆彬, 夏菲, 等. 砂岩型铀矿的"双阶段双模式"成矿作用[J]. 地球学报, 2021, 42(6): 823-848. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB202106009.htmNie F J, Yan Z B, Xia F, et al. Two-stage and two-mode uranium mineralization for sandstone-type uranium deposits[J]. Acat Geoscientica Sinica, 2021, 42(6): 823-848(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB202106009.htm [9] 陈方鸿, 张明瑜, 林畅松. 开鲁盆地钱家店凹陷含铀岩系姚家组沉积环境及其富铀意义[J]. 沉积与特提斯地质, 2005, 25(3): 74-79. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD200503011.htmChen F H, Zhang M Y, Lin C S. Sedimentary environments and uranium enrichment in the Yaojia Formation, Qianjiadian Depression, Kailu Basin[J]. Sedimentary Geology and Tethyan Geology, 2005, 25(3): 74-79(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD200503011.htm [10] 罗毅, 何中波, 马汉峰, 等. 松辽盆地钱家店砂岩型铀矿成矿地质特征[J]. 矿床地质, 2012, 31(2): 391-400. doi: 10.3969/j.issn.0258-7106.2012.02.018Luo Y, He Z B, Ma H F, et al. Metallogenic characteristics of Qianjiadian sandstone uranium deposit in Songliao Basin[J]. Mineral Deposits, 2012, 31(2): 391-400(in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2012.02.018 [11] 徐增连, 里宏亮, 李建国, 等. 松辽盆地开鲁坳陷钱家店地区姚家组砂岩地球化学特征及物源和构造背景分析[J]. 矿物岩石地球化学通报, 2019, 38(3): 572-586. doi: 10.19658/j.issn.1007-2802.2019.38.058Xu Z L, Li H L, Li J G, et al. Geochemistry of the Yaojia Formation sandstone in the Kailu Depression, Songliao Basin: Implications for its provenance and tectonic setting[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2019, 38(3): 572-586(in Chinese with English abstract). doi: 10.19658/j.issn.1007-2802.2019.38.058 [12] 夏飞勇, 焦养泉, 荣辉, 等. 松辽盆地南部钱家店铀矿床姚家组砂岩地球化学特征及地质意义[J]. 地球科学, 2019, 44(2): 4236-4251. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201912034.htmXia F Y, Jiao Y Q, Rong H, et al. Geochemical characteristics and geological implications of sandstones from the Yaojia Formation in Qianjiadian uranium deposit, southern Songliao Basin[J]. Earth Science, 2019, 44(2): 4236-4251(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201912034.htm [13] 李研, 聂逢君, 严兆彬. 松辽盆地东北缘姚家组岩石地球化学特征、物源构造环境及其与铀成矿关系浅析[J]. 地质学报, 2021, 95(11): 3472-3491. doi: 10.19762/j.cnki.dizhixuebao.2021217Li Y, Nie F J, Yan Z B. Geochemical characteristics, provenance, tectonic settings and their relationships with uranium mineralization of the rocks of the Yaojia Formation in the northeastern margin of the Songliao Basin[J]. Acta Geologica Sinica, 2021, 95(11): 3472-3491(in Chinese with English abstract). doi: 10.19762/j.cnki.dizhixuebao.2021217 [14] 张森, 刘超, 胡慧婷, 等. 松辽盆地南部中央凹陷区姚家组砂岩地球化学特征及沉积物源[J]. 地质与资源, 2021, 30(5): 544-554. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSD202105004.htmZhang S, Liu C, Hu H T, et al. Geochemistry and sediment provenance of sandstone from Yaojia Formation in Central Depression, southern Songliao Basin[J]. Geology and Resources, 2021, 30(5): 544-554 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GJSD202105004.htm [15] 李锦轶, 刘建峰, 曲军峰, 等. 中国东北地区主要地质特征和地壳构造格架[J]. 岩石学报, 2019, 35(10): 2989-3016. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201910005.htmLi J Y, Liu J F, Qu J F, et al. Major geological features and crustal tectonic framework of Northeast China[J]. Acta Petrologica Sinica, 2019, 35(10): 2989-3016(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201910005.htm [16] 宁君, 李继木. 内蒙古通辽市HLJ铀矿床普查地质报告[R]. 内蒙古赤峰: 核工业二四三大队, 2022.Ning J, Li J M. Geological report of HLJ uranium deposit in Tongliao, Inner Mongolia[R]. Chifeng, Inner Mongolia: Geologic Party No. 243, 2022(in Chinese). [17] 钟延秋, 马文娟. 松辽盆地北部中-新生代构造运动特征及对砂岩型铀矿的控制作用[J]. 地质找矿论丛, 2011, 26(4): 411-416. https://www.cnki.com.cn/Article/CJFDTOTAL-DZZK201104010.htmZhong Y Q, Ma W J. Mesozoic-Cenozoic tectonic movements and the control on sandstone-hosted uranium deposit in north Songliao Basin[J]. Contributions to Geology and Mineral Resources Research, 2011, 26(4): 411-416(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZZK201104010.htm [18] Hu Z C, Gao S, Liu Y S, et al. Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas[J]. Journal of Analytical Atomic Spectrometry, 2008, 23(8): 1093-1101. [19] Ludwig K. A geochronological toolkit for Microsoft Excel[M]. Berkeley, California: Berkeley Geochronology Center, 2003. [20] Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55(15): 1535-1546. [21] Herron M M. Geochemical classification of terrigenous sands and shales from core or log data[J]. Journal of Sedimentary Petrology, 1988, 58(5): 820-829. [22] Taylor S R, McLennan S M. The continental crust: Its composition and evolution[J]. The Journal of Geology, 1985, 94(4): 57-72. [23] Shaanan U, Rosenbaum G, Campbell, M J. Detrital fingerprint: The use of Early Precambrian zircon age spectra as unique identifiers of Phanerozoic terranes[J]. Earth Planet Sci. Lett., 2019, 506: 97-103. [24] Nesbitt H W, Young G M. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations[J]. Geochimica et Cosmochimica Acta, 1984, 48(7): 1523-1534. [25] Cox R, Lowe D R, Cullers R L. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States[J]. Geochimica et Cosmochimica Acta, 1995, 59(14): 2919-2940. [26] Suttner L J, Dutta P K. Alluvial sandstone composition and paleoclimate: Framework Mineralogy[J]. Journal of Sedimentary Research, 1986, 56(3): 329-345. [27] Bhatia M R. Plate tectonics and geochemical composition of sandstones[J]. The Journal of Geology, 1983, 91(6): 611-627. [28] Fedo C M, Nesbitt H W, Young G M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for pale weathering conditions and provenance[J]. Geology, 1995, 23(10): 921-924. [29] McLennan S M, Hemming S R, McDanniel D K, et al. Geochemical approaches to sedimentation, provenance and tectonics[C]//Johnson M J, Basin A. Processes Controlling the Composition of Clastic Sediments. [S. l. ]: The Geological Society of America Special Paper, 1993, 284: 21-40. [30] Roser B P, Korsch R J. Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio[J]. The Journal of Geology, 1986, 94(5): 635-650. [31] Maynard J B, Valloni R, Yu H S. Composition of modern deep-sea sands from arc-related basins: Trench and fore-arc sedimentation[J]. The Geological Society of London Special Publications, 1982(10): 551-561. [32] Wu F Y, Sun D Y, Ge W C, et al. Geochronology of the phanerozoic granitoids in northeastern China[J]. Journal of Asian Earth Sciences, 2011, 41(1): 1-30. [33] Zhao G C, Cawood P A. Precambrian geology of China[J]. Precambrian Research, 2012, 222: 13-54. [34] Yuan Y, Zong K Q, He Z Y, et al. Geochemical evidence for Paleozoic crustal growth and tectonic conversion in the northern Beishan Orogenic Belt, southern Central Asian Orogenic Belt[J]. Lithos, 2018, 302/303(3): 189-202. [35] Zhao S, Liu J F, Zhang Y T, et al. Geochronology and petrogenesis of the Yuanbaoshan leucogranite in southeast Inner Mongolia: Implications for the collision between the Sino-Korean and Siberian paleo-plates[J]. Lithos, 2021, 384/385(3): 15-23. [36] 鲍庆中, 张长捷, 吴之理, 等. 内蒙古白音高勒地区石炭纪石英闪长岩SHRIMP锆石U-Pb年代学及其意义[J]. 吉林大学学报: 地球科学版, 2007, 37(1): 15-23. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200701002.htmBao Q Z, Zhang C J, Wu Z L, et al. SHRIMP U-Pb zircon geochronology of a Carboniferous quartz-diorite in Baiyingaole area, Inner Mongolia and its implications[J]. Journal of Jilin University: Earth Science Edition, 2007, 37(1): 15-23(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200701002.htm [37] 李宝霞. 内蒙古西乌旗锡林郭勒杂岩的解体与年代学研究[D]. 北京: 中国地质大学(北京), 2014.Li B X. Research on disintegration and chronology of Xilin Gol complex in Xiwuqi, Inner Mongolia[D]. Beijing: China University of Geosciences (Beijing), 2014(in Chinese with English abstract). [38] 刘建峰, 迟效国, 张兴洲, 等. 内蒙古西乌旗南部石炭纪石英闪长岩地球化学特征及其构造意义[J]. 地质学报, 2009, 83(3): 365-376. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200903006.htmLiu J F, Chi X G, Zhang X Z, et al. Geochemical characteristic of Carboniferous quartz-diorite in the southern Xiwuqi area, Inner Mongolia and its tectonic significance[J]. Acta Geologica Sinica, 2009, 83(3): 365-376(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200903006.htm [39] 苗来成. 大兴安岭SHRIMP锆石年代学研究[R]. 北京: 中国科学院地质与地球物理研究所, 2003.Miao L C. SHRIMP zircon geochronology of the Great Hinggan Mountains[R]. Beijing: Institute of Geology and Geophysics, Chinese Academy of Sciences, 2003. [40] Wu F Y, Jahn B M, Wilde S A, et al. Highly fractionated Ⅰ-type granites in NE China: Ⅰ. Geochronology and petrogenesis[J]. Lithos, 2003, 66(2): 241-273. [41] Miao L C, Fan W M, Zhang F Q, et al. Zircon SHRIMP geochronology of the Xinkailing-Kele complex in the northwestern Lesser Xing'an Range and its geological implications[J]. Chinese Science Bulletin, 2004, 49: 2201-2209. [42] 张彦龙, 葛文春, 高妍, 等. 龙镇地区花岗岩锆石U-Pb年龄和Hf同位素及地质意义[J]. 岩石学报, 2010, 26(4): 1059-1073. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201004006.htmZhang Y L, Ge W C, Gao Y, et al. Zircon U-Pb ages and Hf isotopes of granites in Longzhen area and their geological implications[J]. Acta Petrologica Sinica, 2010, 26(4): 1059-1073(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201004006.htm [43] Wu F Y, Jahn B M, Wilde S, et al. Phanerozoic continental crustal growth: Sr-Nd isotopic evidence from the granites in northeastern China[J]. Tectonophysic, 2000, 328: 89-113. [44] Wu F Y, Sun D Y, Li H M, et al. A-type granites in northeastern China: Age and geochemical constraints on their petrogenesis[J]. Chemical Geology, 2002, 187: 143-173. [45] Wu F Y, Wilde S A, Sun D Y, et al. Geochronology and petrogenesis of post-orogenic Cu, Ni-bearing mafic-ultramafic intrusions in Jilin, NE China[J]. Journal of Asian Earth Sciences, 2004, 23: 781-797. [46] 陈雷, 孙景贵, 陈行时, 等. 张广才岭东侧英城子金矿区花岗岩锆石U-Pb年龄及地质意义[J]. 地质学报, 2009, 83(9): 1327-1334. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200909012.htmChen L, Sun J G, Chen X S, et al. Zircon LA-ICPMS U-Pb dating of granite from the Yinchengzi gold deposit area in the eastern Zhangguangcailing area and its geological significance[J]. Acta Geologica Sinica, 2009, 83(9): 1327-1334(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200909012.htm [47] Zhang X H, Zhang H F, Wilde S A, et al. Late Permian to Early Triassic mafic to felsic intrusive rocks from north Liaoning, North China: Petrogenesis and implications for Phanerozoic continental crustal growth[J]. Lithos, 2010, 117(1/4): 283-306. [48] Zhang X H, Zhang H F, Zhai M G, et al. Geochemistry of Middle Triassic gabbros from northern Liaoning, North China: Origin and tectonic implications[J]. Geological Magazine, 2009, 146: 540-551. [49] 张春艳, 张兴洲, 邱殿明. 延边地区青龙村群斜长角闪岩中锆石U-Pb同位素年龄及地质意义[J]. 吉林大学学报: 地球科学版, 2007, 37(4): 672-677. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200704005.htmZhang C Y, Zhang X Z, Qiu D M. Zircon U-Pb isotopic ages of amphibolite of Qinglongcun Group in Yanbian area and its geological significance[J]. Journal of Jilin University: Earth Science Edition, 2007, 37(4): 672-677(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200704005.htm [50] Liu S, Hu R Z, Gao S, et al. Zircon U-Pb age and Sr-Nd-Hf isotope geochemistry of Permian granodiorite and associated gabbro in the Songliao Block, NE China and implications for growth of juvenile crust[J]. Lithos, 2010, 114(2): 423-436. [51] 武广, 孙丰月, 赵财胜, 等. 额尔古纳地块北缘早古生代后碰撞花岗岩的发现及其地质意义[J]. 科学通报, 2005, 50(20): 2733-2743. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200520016.htmWu G, Sun F Y, Zhao C S, et al. Discovery of Early Paleozoic post-collisional granites in the northern margin of Erguna Block and its geological significance[J]. Chinese Science Bulletin, 2005, 50(20): 2733-2743(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200520016.htm [52] 隋振民, 葛文春, 吴福元, 等. 大兴安岭东北部侏罗纪花岗质岩石的锆石U-Pb年龄, 地球化学特征及成因[J]. 岩石学报, 2007, 23(2): 461-480. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702024.htmSui Z M, Ge W C, Wu F Y, et al. Zircon U-Pb ages, geochemistry and its petrogenesis of Jurassic granites in northeastern part of the Da Hinggan Mountain[J]. Acta Petrologica Sinica, 2007, 23(2): 461-480(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702024.htm [53] 张彦龙, 葛文春, 柳小明, 等. 大兴安岭新林镇岩体的同位素特征及其地质意义[J]. 吉林大学学报: 地球科学版, 2008, 38(2): 3-12. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200802001.htmZhang Y L, Ge W C, Liu X M, et al. Isotopic characteristics and its significance of the Xinlin Town pluton, Great Hinggan Mountains[J]. Journal of Jilin University: Earth Science Edition, 2008, 38(2): 3-12(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200802001.htm [54] Wang P J, Liu W Z, Wang S X, et al. 40Ar/39Ar and K/Ar dating on the volcanic rocks in the Songliao Basin, NE China: Constraints on stratigraphy and basin dynamics[J]. International Journal of Earth Sciences, 2002, 91(2): 331-340. [55] Wu C, Liu C F, Zhu Y, et al. Early Paleozoic magmatic history of central Inner Mongolia, China: Implications for the tectonic evolution of the southeast Central Asian Orogenic Belt[J]. International Journal of Earth Sciences, 2015, 105(5): 1307-1327. [56] 王粉丽, 王海鹏, 鲁红峰, 等. 大兴安岭北部上其地区中生代花岗岩年代学, 岩石地球化学特征及构造背景[J]. 地质科技情报, 2016, 35(4): 18-28. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201604004.htmWang F L, Wang H P, Lu H F, et al. Geochronology, petrogeochemical characteristics and tectonic setting of Mesozoic granite in Shangqi area of the Da Hinggan Mountains[J]. Geological Science and Technology Information, 2016, 35(4): 18-28(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201604004.htm [57] 周文孝. 内蒙古锡林浩特地区古生代岩浆作用的年代学与地球化学研究[D]. 武汉: 中国地质大学(武汉), 2012.Zhou W X. Studies of geochronology and geochemistry of Paleozoic magmatism in Xilinhot area, Inner Mongolia[D]. Wuhan: China University of Geosciences(Wuhan), 2012(in Chinese with English abstract). [58] Eizenhfer P R, Zhao G. Solonker suture in East Asia and its bearing on the final closure of the eastern segment of the Palaeo-Asian Ocean[J]. Earth-Science Reviews, 2018, 186: 153-172.