留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

四川珙县下软上硬山岭地貌斜坡地震动响应特征

赵方彬 王运生 寇瑞斌 毕杨杨 向超

赵方彬, 王运生, 寇瑞斌, 毕杨杨, 向超. 四川珙县下软上硬山岭地貌斜坡地震动响应特征[J]. 地质科技通报, 2023, 42(2): 279-287. doi: 10.19509/j.cnki.dzkq.2022.0156
引用本文: 赵方彬, 王运生, 寇瑞斌, 毕杨杨, 向超. 四川珙县下软上硬山岭地貌斜坡地震动响应特征[J]. 地质科技通报, 2023, 42(2): 279-287. doi: 10.19509/j.cnki.dzkq.2022.0156
Zhao Fangbin, Wang Yunsheng, Kou Ruibin, Bi Yangyang, Xiang Chao. Seismic dynamic response characteristics of the lower soft and upper hard mountain slopes in Gongxian, Sichuan[J]. Bulletin of Geological Science and Technology, 2023, 42(2): 279-287. doi: 10.19509/j.cnki.dzkq.2022.0156
Citation: Zhao Fangbin, Wang Yunsheng, Kou Ruibin, Bi Yangyang, Xiang Chao. Seismic dynamic response characteristics of the lower soft and upper hard mountain slopes in Gongxian, Sichuan[J]. Bulletin of Geological Science and Technology, 2023, 42(2): 279-287. doi: 10.19509/j.cnki.dzkq.2022.0156

四川珙县下软上硬山岭地貌斜坡地震动响应特征

doi: 10.19509/j.cnki.dzkq.2022.0156
基金项目: 

国家重点研发计划项目 2017YFC1501000

国家自然科学基金项目 41877235

国家创新研究群体科学基金项目 41521002

详细信息
    作者简介:

    赵方彬(1998—), 男, 现正攻读地质工程专业博士学位,主要从事地质工程和地质灾害研究工作。E-mail: zfbdqqyx@qq.com

    通讯作者:

    王运生(1960—), 男, 教授, 博士生导师, 主要从事工程地质力学方向的教学与科研工作。E-mail: wangys60@163.com

  • 中图分类号: P642

Seismic dynamic response characteristics of the lower soft and upper hard mountain slopes in Gongxian, Sichuan

  • 摘要:

    强震中下软上硬坡体同震崩塌发育, 为了揭示这类坡体地震动的响应特征, 在珙县五同村安置了强震监测仪, 对斜坡表面和不同岩性的地震动响应进行监测, 并记录到不同方位、不同震中距的2次地震。研究表明: ①地震动响应规律有极强的方向性和距离性。2次地震相距监测站台的方向和距离不同, 使Ms 4.0级地震的峰值加速度和阿里亚斯强度反而比Ms 3.2级地震小。②0~30 Hz的地震波在低地山岭的高陡临空面附近有放大效应。1#监测点的主频小于3#与5#监测点, 3#监测点的主频最高。5#点的幅值范围为0.018~0.055 m/s-2, 3#点幅值范围为0.036~0.087 m/s-2, 3#点相较于5#点, 其三向最高幅值同比放大了1.58~2.0倍。③泥质砂岩的主频为4.8~8.4 Hz, 灰岩的主频为5.5~21.4 Hz, 不同的岩层共振频率不同, 灰岩对地震波的选频放大效应强于泥质砂岩。④地震波在不同高程的山岭斜坡部位具有选择放大作用, 在一定范围内高程越大地形放大效应越明显。

     

  • 图 1  珙县五同村北东向山岭(a)及监测点剖面图(b)

    Figure 1.  Section of north-facing Mountain (a) and monitoring point (b) of Wutong Village in Gongxian

    图 2  地震监测点与震中位置关系图

    Figure 2.  Map of seismic monitoring points and epicentre locations

    图 3  Ms 3.2级地震时程曲线图

    Figure 3.  Time history curve of the Ms 3.2 earthquake

    图 4  Ms 4.0级地震时程曲线图

    Figure 4.  Time history curve of the Ms 4.0 earthquake

    图 5  Ms 3.2级地震傅里叶频谱图

    Figure 5.  Fourier spectrum of the Ms 3.2 earthquake

    图 6  Ms 4.0级地震傅里叶频谱图

    Figure 6.  Fourier spectrum of the Ms 4.0 earthquake

    图 7  Ms 3.2级地震加速度反应谱

    Figure 7.  Ms 3.2 earthquake acceleration response spectrum

    图 8  Ms 4.0级地震加速度反应谱

    Figure 8.  Ms 4.0 earthquake acceleration response spectrum

    图 9  3#监测点附近斜坡变形

    Figure 9.  Slope deformation near monitoring point 3#

    表  1  监测点场地属性

    Table  1.   Properties of each monitoring site

    监测点编号 绝对高程/m 监测点所在部位 场地类型 场地坐标
    1# 690 一级台阶 泥质砂岩 28°13′43.52″N,104°49′29.64″E
    2# 719 一级台阶 泥质砂岩 28°13′29.82″N,104°49′30.30″E
    3# 910 二级台阶临空面附近 灰岩 28°13′19.71″N,104°49′53.07″E
    4# 900 二级台阶中部 灰岩 28°13′23.47″N,104°49′41.18″E
    5# 916 二级台阶中后部 灰岩 28°13′34.18″N,104°49′47.97″E
    下载: 导出CSV

    表  2  Ms 3.2级地震动响应参数

    Table  2.   Parameters of seismic responses of Ms 3.2 earthquake

    监测点编号 峰值加速度/gal 阿里亚斯强度/(cm·s-1) 主频/Hz
    EW SN UD EW SN UD EW SN UD
    1# 15.5 13.0 11.3 0.053 0.040 0.029 6.5 8.3 4.8
    3# 67.1 95.7 49.8 0.80 0.850 0.410 21.4 18.2 20.3
    5# 25.9 13.2 11.4 0.207 0.041 0.030 7.2 9.6 5.1
    注:1 gal=1 cm/s2;EW.东西向;SN.南北向;UD.垂直向
    下载: 导出CSV

    表  3  Ms 4.0级地震动响应参数

    Table  3.   Parameters of seismic responses of the Ms 4.0 earthquake

    监测点编号 峰值加速度/gal 阿里亚斯强度/(cm·s-1) 主频/Hz
    EW SN UD EW SN UD EW SN UD
    1# 3.3 5.3 3.2 0.008 0.022 0.007 5.2 6.4 5.8
    3# 16.1 21.7 9.7 0.124 0.123 0.031 7.8 7.5 11.5
    5# 12.2 11.2 7.5 0.094 0.059 0.021 6.8 5.5 8.2
    注:1 gal=1 cm/s2
    下载: 导出CSV

    表  4  峰值加速度放大系数监测点(3#/1#)

    Table  4.   Amplication factors of the peat ground acceleration (3#/1#)

    震级 峰值加速放大系数
    EW SN UD
    Ms 3.2 4.32 7.36 4.40
    Ms 4.0 4.87 4.09 3.03
    下载: 导出CSV

    表  5  阿里亚斯强度放大系数监测点(3#/1#)

    Table  5.   Amplication factors of the Arias intensity (3#/1#)

    震级 阿里亚斯强度放大系数
    EW SN UD
    Ms 3.2 15.09 21.25 14.13
    Ms 4.0 15.50 5.59 4.42
    下载: 导出CSV
  • [1] 黄润秋. 汶川地震地质灾害后效应分析[J]. 工程地质学报, 2011, 19(2): 145-151. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201102001.htm

    Huang R Q. After effect of geohazards induced by the Wenchuan earthquake[J]. Journal of Engineering Geology, 2011, 19(2): 145-151(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201102001.htm
    [2] 王飞, 梁旭黎, 杜建波. 地震荷载作用下岩石边坡的高倾覆稳定性分析及可靠度研究[J]. 工程地质学报, 2016, 24(6): 1126-1135. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201606012.htm

    Wang F, Liang X L, Du J B. Stability analysis and reliability study of anti-over-turning stability of rock slope under seismic load[J]. Journal of Engineering Geology, 2016, 24(6): 1126-1135(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201606012.htm
    [3] 王凤山, 戎全兵, 朱万红, 等. 地下工程地震灾害综合风险要素体系研究[J]. 工程地质学报, 2016, 24(6): 1064-1071. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201606004.htm

    Wang F S, Rong Q B, Zhu W H, et al. Comprehensive earthquake risk element system on under-ground engineering[J]. Journal of Engineering Geology, 2016, 24(6): 1064-1071(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201606004.htm
    [4] 文广超, 苏林雪, 谢洪波, 等. "5·12"汶川地震前后四川省主要地质灾害时空发育规律[J]. 地质科技通报, 2021, 40(4): 143-152. doi: 10.19509/j.cnki.dzkq.2021.0430

    Wen G C, Su L X, Xie H B, et al. Spatio-temporal development characteristics of major geohazards in Sichuan Province around "5·12" Wenchuan earthquake[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 143-152(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0430
    [5] 罗永红, 王运生. 汶川地震诱发山地斜坡震动的地形放大效应[J]. 山地学报, 2013, 31(2): 200-210. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201302010.htm

    Luo Y H, Wang Y S. Mountain slope ground motion topographic amplification effect induced by Wenchuan earthquake[J]. Journal of Mountain Science, 2013, 31(2): 200-210(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201302010.htm
    [6] Çelebi M. Topographical and geological amplifications determined from strong-motion and aftershock records of the 3 March 1985 Chile earthquake[J]. Bulletin of the Seismological Society of America, 1987, 77(4): 1147-1167. doi: 10.1785/BSSA0770041147
    [7] 黄润秋, 李为乐. "5·12"汶川大地震触发地质灾害的发育分布规律研究[J]. 岩石力学与工程学报, 2008, 27(12): 2585-2592. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200812032.htm

    Huang R Q, Li W L. Research on development and distribution rules of geohazards induced by Wenchuan earthquake on 12th May, 2008[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(12): 2585-2592(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200812032.htm
    [8] 罗永红, 王运生, 何源, 等. "4·20"芦山地震冷竹关地震动响应监测数据分析[J]. 成都理工大学学报: 自然科学版, 2013, 40(3): 232-241. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201303001.htm

    Luo Y H, Wang Y S, He Y, et al. Monitoring result analysis of Lengzhuguan slope ground shock response of Lushan earthquake of Sichuan, China[J]. Journal of Chengdu University of Technology : Science and Technology Edition, 2013, 40(3): 232-241(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201303001.htm
    [9] Tripe R, Kontoe S, Wong T K C. Slope topogtaphy efficts on ground motion in the presence of deep soil layers[J]. Soil Dynamics and Earthquake Engineering, 2013, 50: 72-84. doi: 10.1016/j.soildyn.2013.02.011
    [10] 许强, 李为乐. 汶川地震诱发滑坡方向效应研究[J]. 四川大学学报: 工程科学版, 2010, 42(增刊1): 7-14. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH2010S1003.htm

    Xu Q, Li W L. Study on the direction effects of landslide triggered by Wenchuan earthquake[J]. Journal of Sichuan University: Engineering Science Edition, 2010, 42 (S1): 7-14(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH2010S1003.htm
    [11] 段书苏, 姚令侃, 郭沉稳. 芦山地震触发崩塌滑坡的优势方向与机理[J]. 西南交通大学学报, 2015, 50(3): 428-434. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201503007.htm

    Duan S S, Yao L K, Guo C W. Predominant direction and mechanism of landslides triggered by Lushan earthquake[J]. Journal of Southwest Jiaotong University, 2015, 50(3): 428-434(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201503007.htm
    [12] 李宗超, 高孟潭, 陈学良, 等. 九寨沟Ms 7.0地震强地震动模拟及漳扎镇地震动强度预测[J]. 地球物理学报, 2019, 62(7): 2567-2581. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201907016.htm

    Li Z C, Gao M T, Chen X L, et al. Simulation of ground motion by the 2017 Jiuzhaigou Ms 7.0 earthquake and estimation of ground motion intensity in the Zhangzha Town[J]. Chinese Journal of Geophysics, 2019, 62(7): 2567-2581(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201907016.htm
    [13] 金刚, 王运生, 明伟庭, 等. 宜宾长宁Ms 6.0级地震斜坡动力响应特征[J]. 山地学报, 2019, 37(6): 943-954. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201906015.htm

    Jin G, Wang Y S, Ming W T, et al. Characteristics of seismic response of the 6.0 magnitude earthquake, Changning County of Yibin in southwest China's Sichuan Province[J]. Mountain Research, 2019, 37(6): 943-954(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201906015.htm
    [14] 李长海, 赵伦, 刘波, 等. 碳酸盐岩裂缝研究进展及发展趋势[J]. 地质科技通报, 2021, 40(4): 31-48. doi: 10.19509/j.cnki.dzkq.2021.0403

    Li C H, Zhao L, Liu B, et al. Research status and development trend of fractures in carbonate reservoir[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 31-48(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0403
    [15] 陈国平, 温留汉·黑沙, 王帅. 多种表征强震动记录特性的参数对比分析[J]. 华南地震, 2011, 31(2): 45-53. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDI201102005.htm

    Chen G P, Win L H, Wang S. Comparisons of various characteristic parameters of strong motions[J]. South China Journal of Seismology, 2011, 31(2): 45-53(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HNDI201102005.htm
    [16] 刘洪兵, 朱晞. 地震中地形放大效应的观测和研究进展[J]. 世界地震工程, 1999, 15(3): 20-25. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC199903002.htm

    Liu H B, Zhu X. Progress in observation and research on topographic amplication in earthquakes[J]. World Earthquake Engineering. 1999, 15(3): 20-25(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC199903002.htm
    [17] 贺建先, 王运生, 罗永红. 康定Ms6.3级地震斜坡地震动响应监测分析[J]. 工程地质学报, 2015, 23(23): 383-393. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201503003.htm

    He J X, Wang Y S, Luo Y H. Monitoring result analysis of slope seismic response during the Kangding Ms 6.3 earthquake[J]. Journal of Engineering Geology, 2015, 23(23): 383-393(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201503003.htm
    [18] 典德济. 地震波主特性参数的提取[J]. 石油地球物理勘探, 1989, 24(2): 155-165. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ198902004.htm

    Dian D J. Extraction of main characteristic parameters of seismic wave[J]. Oil Geophysical Prospecting. 1989, 24(2): 155-165 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ198902004.htm
    [19] Boit M A. A michanical analyzer for prediction of earthquake stress[J]. Bulletin of the Seismological Society of America, 1941, 31: 151-171(in Chinese with English abstract).
    [20] 李杰. 几类反应谱的概念差异及其意义[J]. 世界地震工程, 1993, 9(4): 9-14. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC199304002.htm

    Li J. Concept difference and significance of several reaction spectra[J]. World Earthquake Engineering. 1993, 9(4): 9-14(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC199304002.htm
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  539
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-17

目录

    /

    返回文章
    返回