Seismic dynamic response characteristics of the lower soft and upper hard mountain slopes in Gongxian, Sichuan
-
摘要:
强震中下软上硬坡体同震崩塌发育, 为了揭示这类坡体地震动的响应特征, 在珙县五同村安置了强震监测仪, 对斜坡表面和不同岩性的地震动响应进行监测, 并记录到不同方位、不同震中距的2次地震。研究表明: ①地震动响应规律有极强的方向性和距离性。2次地震相距监测站台的方向和距离不同, 使
M s 4.0级地震的峰值加速度和阿里亚斯强度反而比M s 3.2级地震小。②0~30 Hz的地震波在低地山岭的高陡临空面附近有放大效应。1#监测点的主频小于3#与5#监测点, 3#监测点的主频最高。5#点的幅值范围为0.018~0.055 m/s-2, 3#点幅值范围为0.036~0.087 m/s-2, 3#点相较于5#点, 其三向最高幅值同比放大了1.58~2.0倍。③泥质砂岩的主频为4.8~8.4 Hz, 灰岩的主频为5.5~21.4 Hz, 不同的岩层共振频率不同, 灰岩对地震波的选频放大效应强于泥质砂岩。④地震波在不同高程的山岭斜坡部位具有选择放大作用, 在一定范围内高程越大地形放大效应越明显。Abstract:The coseismic collapse of lower soft and upper hard slopes develops during strong earthquakes. To reveal the response characteristics of such slopes under dynamic loads, a strong-earthquake monitor was installed in Wutong Village, Gongxian County, to collect the slope surface and the ground motion with respect to different lithologies, and two earthquakes with different azimuths and epicentral distances were also recorded. Research shows that: ①The response law of ground motion has strong directivity and distance. The two earthquakes are in different directions and distances from the monitoring station, making the peak acceleration and Arias intensity of the
M s 4.0 earthquake smaller than those of theM s 3.2 earthquake. ②The 0-30 Hz seismic wave has an amplification effect near the high and steep open surface of the lowland mountains. The main frequency of monitoring point No.1 is lower than that of monitoring points No.3 and No.5, and the main frequency of monitoring point No.3 is the highest. The amplitude range of point No.5 is 0.018-0.055 m/s-2, while the amplitude range of point No.3 is 0.036-0.087 m/s-2. Compared with point No.5, point No.3 has the highest three-way amplitude magnified by 1.58-2.0 times year-on-year. ③The dominant frequency of argillaceous sandstone is 4.8-8.4 Hz, and the dominant frequency of limestone is 5.5-21.4. Different rock formations have different resonance frequencies. The frequency-selective amplification effect of limestone on seismic waves is stronger than that of argillaceous sandstone. ④Seismic waves have a selective amplification effect on mountain slopes with different elevations. The larger the elevation within a certain range, the more obvious the terrain amplification effect is. -
表 1 监测点场地属性
Table 1. Properties of each monitoring site
监测点编号 绝对高程/m 监测点所在部位 场地类型 场地坐标 1# 690 一级台阶 泥质砂岩 28°13′43.52″N,104°49′29.64″E 2# 719 一级台阶 泥质砂岩 28°13′29.82″N,104°49′30.30″E 3# 910 二级台阶临空面附近 灰岩 28°13′19.71″N,104°49′53.07″E 4# 900 二级台阶中部 灰岩 28°13′23.47″N,104°49′41.18″E 5# 916 二级台阶中后部 灰岩 28°13′34.18″N,104°49′47.97″E 表 2 Ms 3.2级地震动响应参数
Table 2. Parameters of seismic responses of Ms 3.2 earthquake
监测点编号 峰值加速度/gal 阿里亚斯强度/(cm·s-1) 主频/Hz EW SN UD EW SN UD EW SN UD 1# 15.5 13.0 11.3 0.053 0.040 0.029 6.5 8.3 4.8 3# 67.1 95.7 49.8 0.80 0.850 0.410 21.4 18.2 20.3 5# 25.9 13.2 11.4 0.207 0.041 0.030 7.2 9.6 5.1 注:1 gal=1 cm/s2;EW.东西向;SN.南北向;UD.垂直向 表 3 Ms 4.0级地震动响应参数
Table 3. Parameters of seismic responses of the Ms 4.0 earthquake
监测点编号 峰值加速度/gal 阿里亚斯强度/(cm·s-1) 主频/Hz EW SN UD EW SN UD EW SN UD 1# 3.3 5.3 3.2 0.008 0.022 0.007 5.2 6.4 5.8 3# 16.1 21.7 9.7 0.124 0.123 0.031 7.8 7.5 11.5 5# 12.2 11.2 7.5 0.094 0.059 0.021 6.8 5.5 8.2 注:1 gal=1 cm/s2 表 4 峰值加速度放大系数监测点(3#/1#)
Table 4. Amplication factors of the peat ground acceleration (3#/1#)
震级 峰值加速放大系数 EW SN UD Ms 3.2 4.32 7.36 4.40 Ms 4.0 4.87 4.09 3.03 表 5 阿里亚斯强度放大系数监测点(3#/1#)
Table 5. Amplication factors of the Arias intensity (3#/1#)
震级 阿里亚斯强度放大系数 EW SN UD Ms 3.2 15.09 21.25 14.13 Ms 4.0 15.50 5.59 4.42 -
[1] 黄润秋. 汶川地震地质灾害后效应分析[J]. 工程地质学报, 2011, 19(2): 145-151. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201102001.htmHuang R Q. After effect of geohazards induced by the Wenchuan earthquake[J]. Journal of Engineering Geology, 2011, 19(2): 145-151(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201102001.htm [2] 王飞, 梁旭黎, 杜建波. 地震荷载作用下岩石边坡的高倾覆稳定性分析及可靠度研究[J]. 工程地质学报, 2016, 24(6): 1126-1135. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201606012.htmWang F, Liang X L, Du J B. Stability analysis and reliability study of anti-over-turning stability of rock slope under seismic load[J]. Journal of Engineering Geology, 2016, 24(6): 1126-1135(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201606012.htm [3] 王凤山, 戎全兵, 朱万红, 等. 地下工程地震灾害综合风险要素体系研究[J]. 工程地质学报, 2016, 24(6): 1064-1071. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201606004.htmWang F S, Rong Q B, Zhu W H, et al. Comprehensive earthquake risk element system on under-ground engineering[J]. Journal of Engineering Geology, 2016, 24(6): 1064-1071(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201606004.htm [4] 文广超, 苏林雪, 谢洪波, 等. "5·12"汶川地震前后四川省主要地质灾害时空发育规律[J]. 地质科技通报, 2021, 40(4): 143-152. doi: 10.19509/j.cnki.dzkq.2021.0430Wen G C, Su L X, Xie H B, et al. Spatio-temporal development characteristics of major geohazards in Sichuan Province around "5·12" Wenchuan earthquake[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 143-152(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0430 [5] 罗永红, 王运生. 汶川地震诱发山地斜坡震动的地形放大效应[J]. 山地学报, 2013, 31(2): 200-210. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201302010.htmLuo Y H, Wang Y S. Mountain slope ground motion topographic amplification effect induced by Wenchuan earthquake[J]. Journal of Mountain Science, 2013, 31(2): 200-210(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201302010.htm [6] Çelebi M. Topographical and geological amplifications determined from strong-motion and aftershock records of the 3 March 1985 Chile earthquake[J]. Bulletin of the Seismological Society of America, 1987, 77(4): 1147-1167. doi: 10.1785/BSSA0770041147 [7] 黄润秋, 李为乐. "5·12"汶川大地震触发地质灾害的发育分布规律研究[J]. 岩石力学与工程学报, 2008, 27(12): 2585-2592. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200812032.htmHuang R Q, Li W L. Research on development and distribution rules of geohazards induced by Wenchuan earthquake on 12th May, 2008[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(12): 2585-2592(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200812032.htm [8] 罗永红, 王运生, 何源, 等. "4·20"芦山地震冷竹关地震动响应监测数据分析[J]. 成都理工大学学报: 自然科学版, 2013, 40(3): 232-241. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201303001.htmLuo Y H, Wang Y S, He Y, et al. Monitoring result analysis of Lengzhuguan slope ground shock response of Lushan earthquake of Sichuan, China[J]. Journal of Chengdu University of Technology : Science and Technology Edition, 2013, 40(3): 232-241(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201303001.htm [9] Tripe R, Kontoe S, Wong T K C. Slope topogtaphy efficts on ground motion in the presence of deep soil layers[J]. Soil Dynamics and Earthquake Engineering, 2013, 50: 72-84. doi: 10.1016/j.soildyn.2013.02.011 [10] 许强, 李为乐. 汶川地震诱发滑坡方向效应研究[J]. 四川大学学报: 工程科学版, 2010, 42(增刊1): 7-14. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH2010S1003.htmXu Q, Li W L. Study on the direction effects of landslide triggered by Wenchuan earthquake[J]. Journal of Sichuan University: Engineering Science Edition, 2010, 42 (S1): 7-14(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH2010S1003.htm [11] 段书苏, 姚令侃, 郭沉稳. 芦山地震触发崩塌滑坡的优势方向与机理[J]. 西南交通大学学报, 2015, 50(3): 428-434. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201503007.htmDuan S S, Yao L K, Guo C W. Predominant direction and mechanism of landslides triggered by Lushan earthquake[J]. Journal of Southwest Jiaotong University, 2015, 50(3): 428-434(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201503007.htm [12] 李宗超, 高孟潭, 陈学良, 等. 九寨沟Ms 7.0地震强地震动模拟及漳扎镇地震动强度预测[J]. 地球物理学报, 2019, 62(7): 2567-2581. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201907016.htmLi Z C, Gao M T, Chen X L, et al. Simulation of ground motion by the 2017 Jiuzhaigou Ms 7.0 earthquake and estimation of ground motion intensity in the Zhangzha Town[J]. Chinese Journal of Geophysics, 2019, 62(7): 2567-2581(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201907016.htm [13] 金刚, 王运生, 明伟庭, 等. 宜宾长宁Ms 6.0级地震斜坡动力响应特征[J]. 山地学报, 2019, 37(6): 943-954. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201906015.htmJin G, Wang Y S, Ming W T, et al. Characteristics of seismic response of the 6.0 magnitude earthquake, Changning County of Yibin in southwest China's Sichuan Province[J]. Mountain Research, 2019, 37(6): 943-954(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201906015.htm [14] 李长海, 赵伦, 刘波, 等. 碳酸盐岩裂缝研究进展及发展趋势[J]. 地质科技通报, 2021, 40(4): 31-48. doi: 10.19509/j.cnki.dzkq.2021.0403Li C H, Zhao L, Liu B, et al. Research status and development trend of fractures in carbonate reservoir[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 31-48(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0403 [15] 陈国平, 温留汉·黑沙, 王帅. 多种表征强震动记录特性的参数对比分析[J]. 华南地震, 2011, 31(2): 45-53. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDI201102005.htmChen G P, Win L H, Wang S. Comparisons of various characteristic parameters of strong motions[J]. South China Journal of Seismology, 2011, 31(2): 45-53(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HNDI201102005.htm [16] 刘洪兵, 朱晞. 地震中地形放大效应的观测和研究进展[J]. 世界地震工程, 1999, 15(3): 20-25. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC199903002.htmLiu H B, Zhu X. Progress in observation and research on topographic amplication in earthquakes[J]. World Earthquake Engineering. 1999, 15(3): 20-25(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC199903002.htm [17] 贺建先, 王运生, 罗永红. 康定Ms6.3级地震斜坡地震动响应监测分析[J]. 工程地质学报, 2015, 23(23): 383-393. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201503003.htmHe J X, Wang Y S, Luo Y H. Monitoring result analysis of slope seismic response during the Kangding Ms 6.3 earthquake[J]. Journal of Engineering Geology, 2015, 23(23): 383-393(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201503003.htm [18] 典德济. 地震波主特性参数的提取[J]. 石油地球物理勘探, 1989, 24(2): 155-165. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ198902004.htmDian D J. Extraction of main characteristic parameters of seismic wave[J]. Oil Geophysical Prospecting. 1989, 24(2): 155-165 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ198902004.htm [19] Boit M A. A michanical analyzer for prediction of earthquake stress[J]. Bulletin of the Seismological Society of America, 1941, 31: 151-171(in Chinese with English abstract). [20] 李杰. 几类反应谱的概念差异及其意义[J]. 世界地震工程, 1993, 9(4): 9-14. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC199304002.htmLi J. Concept difference and significance of several reaction spectra[J]. World Earthquake Engineering. 1993, 9(4): 9-14(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC199304002.htm