Experimental investigation of the influence of pressure and temperature on the acoustic velocity and spectral characteristics of carbonate rocks
-
摘要:
碳酸盐岩声波传播特征具有重要的应用价值,系统性地分析流体类型、流体压力、温度及围压对碳酸盐岩声波速度与频谱特性影响的研究仍需加强。选取四川盆地合川-潼南地区灯影组缝洞碳酸盐岩,开展了不同条件下的声波透射实验,分析了围压、孔隙压力、压力差、温度及流体类型对碳酸盐岩样品声波速度的影响及不同条件下透射声波的主频特征。研究结果表明:饱和地层水时声波速度对压力变化的敏感度较饱和氮气时低。压力变化过程中,声波速度变化幅度与岩样孔隙度为正相关关系。实验温度范围内,随着温度逐渐升高,饱和地层水、氮气岩心纵波速度、横波速度均小幅降低。当差应力较低时,通过改变孔隙压力来改变差应力的方式对应的声波速度大于通过改变围压来改变差应力方式对应的声波速度,当差应力较高时,结论相反。相同差应力条件下,声波速度对围压变化较孔隙压力变化更为敏感。定围压变孔隙压力与定孔压变围压曲线所对应的2条声波速度-差应力关系曲线的夹角及斜率差可定性反映岩样动态Biot有效应力系数相对大小。随着差应力增大,孔隙压力对有效应力的贡献逐渐降低。随着孔隙压力增大,纵波主频幅值、横波主频幅值均逐渐下降,随着围压增大,纵波主频幅值、横波主频幅值均逐渐增大,随着温度逐渐升高,纵波主频幅值、横波主频幅值均逐渐增大。研究结果有助于基于测井声波信息开展碳酸盐岩地层孔隙压力预测相关理论研究及工程应用。
Abstract:The acoustic wave propagation characteristics of carbonate rocks have important application value. The systematic analysis of the effects of fluid type, fluid pressure, temperature and confining pressure on acoustic wave velocity and spectrum characteristics of carbonate rocks still needs to be strengthened. Carbonate rocks with pores and fractures mined from the Dengying Formation in the Hechuan and Tongnan areas, Sichuan Basin, were selected to carry out acoustic transmission experiments under different conditions. The effects of confining pressure, pore pressure, pressure difference, temperature and fluid category on the acoustic velocity of carbonate rocks and the dominant frequency characteristics of transmitted acoustic waves were analyzed. The results show that the sensitivity of acoustic velocity to pressure change in saturated formation water is lower than that in saturated nitrogen. In the process of pressure change, the variation amplitude of acoustic velocity is positively correlated with the porosity of rock samples. Within the experimental temperature range, with increasing temperature, the P-wave velocity and S-wave velocity of the saturated formation water and nitrogen samples decreases lightly. When the differential stress is low, the acoustic velocity corresponding to the way of changing the differential stress by changing the pore pressure is greater than that by changing the confining pressure, and the conclusion is opposite when the differential stress is high. Under the same differential stress condition, the acoustic velocity is more sensitive to changes in the confining pressure than the changes of pore pressure. The included angle and slope difference of the two acoustic velocity-differential stress curves corresponding to constant confining pressure and constant pore pressure can qualitatively reflect the relative size of the dynamic Biot effective stress coefficient of carbonate rock samples. With increasing differential stress, the contribution of pore pressure to effective stress decreases gradually. With increasing pore pressure, the dominant frequency amplitudes of the P-wave and S-wave gradually decrease. With increasing confining pressure, the dominant frequency amplitudes of the P-wave and S-wave gradually increase. With increasing temperature, the dominant frequency amplitudes of the P-wave and S-wave gradually increase. The research results are helpful to the theoretical research and engineering application of pore pressure predictionin carbonate formation based on logging acoustic information.
-
Key words:
- carbonate rock /
- acoustic wave /
- pressure /
- temperature /
- spectral charcteristics
-
表 1 岩样基础物性参数
Table 1. Basic physical parameters of the rock samples
岩心编号 长度/cm 直径/cm 干重/g 体积密度/(g·cm-3) 骨架密度/(g·cm-3) 围压/MPa 孔隙度/% 渗透率/10-3 μm2 S1 9.06 6.54 836.65 2.75 2.83 5.00 4.57 12.816 S2 9.77 6.52 867.87 2.66 2.78 5.00 7.07 0.221 S3 9.84 6.51 900.55 2.75 2.80 5.00 3.22 0.106 S4 9.72 6.51 903.25 2.79 2.83 5.00 1.95 0.131 S5 9.61 6.52 884.46 2.76 2.83 5.00 3.89 0.034 S6 10.00 6.52 901.41 2.70 2.78 5.00 4.42 0.030 -
[1] 金之钧, 庞雄奇, 吕修祥. 中国海相碳酸盐岩油气勘探[J]. 勘探家, 1998, 3(4): 66-68. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY199804019.htmJin Z J, Pang X Q, Lü X X. Oil and gas exploration of marine carbonate rocks in China[J]. Petroleum Exploration, 1998, 3(4): 66-68(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY199804019.htm [2] 洪毅. 海相碳酸盐岩地层孔隙压力预测研究[D]. 湖北荆州: 长江大学, 2015.Hong Y. Study on pore pressure prediction of marine carbonate formation[D]. Jingzhou Hubei: Changjiang University, 2015(in Chinese with English abstract). [3] 张攀, 刘红岐, 王伟俊, 等. 常规测井-气测资料在H油田K油藏碳酸盐岩储层流体识别中的应用[J]. 地质科技通报, 2022, 41(3): 140-149. doi: 10.19509/j.cnki.dzkq.2021.0062Zhang P, Liu H Q, Wang W J, et al. Application of conventional logging and gas logging data to fluid identification of carbonate reservoirs in K reservoir of H Oilfield[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 140-149(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0062 [4] 赵亚男, 王小强, 余文丽, 等. X射线荧光光谱法测定石灰岩和白云岩中主次量组分[J]. 中国无机分析化学, 2021, 11(4): 25-30. doi: 10.3969/j.issn.2095-1035.2021.04.005Zhao Y N, Wang X Q, Yu W L, et al. Determination of major and minor components in limestone and dolomite by X-ray fluorescence spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2021, 11(4): 25-30(in Chinese with English abstract). doi: 10.3969/j.issn.2095-1035.2021.04.005 [5] 廉培庆, 高文彬, 汤翔, 等. 基于CT扫描图像的碳酸盐岩油藏孔隙分类方法[J]. 石油与天然气地质, 2020, 41(4): 852-861. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202004018.htmLian P Q, Gao W B, Tang X, et al. Workflow for pore-type classification of carbonate reservoirs based on CT scanned images[J]. Oil & Gas Geology, 2020, 41(4): 852-861(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202004018.htm [6] 李长海, 赵伦, 刘波, 等. 碳酸盐岩裂缝研究进展及发展趋势[J]. 地质科技通报, 2021, 40(4): 31-48. doi: 10.19509/j.cnki.dzkq.2021.0403Li C H, Zhao L, Liu B, et al. Research status and development trend of fractures in carbonate reservoir[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 31-48(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0403 [7] 王子振. 碳酸盐岩孔隙结构对其弹性波特性的影响规律研究[D]. 山东青岛: 中国石油大学(华东), 2016.Wang Z Z. Study on the influence of pore structure of carbonate rock on its elastic wave characteristics[D]. Qingdao Shandong: China University of Petroleum (East China), 2016(in Chinese with English abstract). [8] 张树林, 赵铭海. 地层压力预测技术及其在油层保护中的应用[J]. 地质科技情报, 2002, 21(3): 43-47. doi: 10.3969/j.issn.1000-7849.2002.03.008Zhang S L, Zhao M H. Formation pressure prediction and its application in reservoir protection[J]. Geological Science and Technology Information, 2002, 21(3): 43-47(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7849.2002.03.008 [9] 李勇, 杨海军, 郭小文, 等. 库车前陆盆地超压特征及测井响应[J]. 地质科技情报, 2015, 34(2): 136-142. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201502019.htmLi Y, Yang H J, Guo X W, et al. Characteristics of overpressure and well-log response of Kuqa foreland basin[J]. GeologicalScience and Technology Information, 2015, 34(2): 136-142(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201502019.htm [10] 刘宇坤, 何生, 何治亮, 等. 基于多孔介质弹性理论的碳酸盐岩地层超压预测[J]. 地质科技情报, 2019, 38(4): 53-61. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201904007.htmLiu Y K, He S, He Z L, et al. Overpressure prediction of carbonate formation based on elastic theory of porous media[J]. Geological Science and Technology Information, 2019, 38(4): 53-61(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201904007.htm [11] 刘向君, 杨超, 陈乔, 等. 孔洞型碳酸盐岩地层超声波实验研究[J]. 天然气工业, 2011, 31(8): 56-59. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201108016.htmLiu X J, Yang C, Chen Q, et al. Ultrasonic experimental study on vuggy carbonate formation[J]. Natural Gas Industry, 2011, 31(8): 56-59(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201108016.htm [12] 曹均. 裂隙储层物理模型的实验研究[D]. 成都: 成都理工大学, 2003.Cao J. Experimental study on physical model of fractured reservoir[D]. Chengdu: Chengdu University of Technology, 2003(in Chinese with English abstract). [13] 李天阳, 王子振, 王瑞和, 等. 含裂缝VTI介质的弹性波传播特性研究[J]. 地球物理学进展, 2015, 30(6): 2498-2504. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201506009.htmLi T Y, Wang Z Z, Wang R H, et al. Study on elastic wave propagation characteristics of fractured VTI media[J]. Progress in Geophysics, 2015, 30(6): 2498-2504(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201506009.htm [14] 梁利喜, 周龙涛, 刘向君, 等. 孔洞结构对超声波衰减特性的影响研究[J]. 岩石力学与工程学报, 2015, 34(增刊1): 3208-3214. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S1075.htmLiang L X, Zhou L T, Liu X J, et al. Study on the influence of hole structure on ultrasonic attenuation characteristics[J]. Journal of Rock Mechanics and Engineering, 2015, 34(S1): 3208-3214(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S1075.htm [15] 周游, 陈乔, 程亮, 等. 碳酸盐岩孔洞模型中超声波传播特性[J]. 科技导报. 2017, 35(18): 66-74. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201718018.htmZhou Y, Chen Q, Cheng L, et al. Characteristics of ultrasonic propagation in carbonate rock pore model[J]. Science & Technology Review, 2017, 35(18): 66-74(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201718018.htm [16] 陈乔, 刘向君, 梁利喜, 等. 裂缝模型声波衰减系数的数值模拟[J]. 地球物理学报, 2012, 55(6): 2044-2052. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201206025.htmChen Q, Liu X J, Liang L X, et al. Numerical simulation of acoustic attenuation coefficient of fracture model[J]. Journal of Geophysics, 2012, 55(6): 2044-2052(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201206025.htm [17] Baechle G T, Colpaert A, Eberli G P, et al. Modeling velocity in carbonates using a dual-porosity DEM model[J]. SEG Technical Program Expanded Abstracts, 2007, 26(1): 1589. [18] Kazatchenko E, Markov M, Mousatov A. Simulation of acoustic velocities, electrical and thermal conductivities using unified pore-structure model of double-porosity carbonate rocks[J]. Journal of Applied Geophysics, 2006, 59(1): 16-35. [19] 张明明, 梁利喜, 刘向君. 碳酸盐岩不同含水饱和度对声波传播特性影响[J]. 测井技术, 2017, 41(1): 14-19. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS201701003.htmZhang M M, Liang L X, Liu X J. Effect of different water saturation on acoustic propagation characteristics of carbonate rocks[J]. Well Logging Technology, 2017, 41(1): 14-19(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS201701003.htm [20] 刘向君, 王森, 刘洪, 等. 碳酸盐岩含气饱和度对超声波衰减特性影响的研究[J]. 石油地球物理勘探, 2012, 47(6): 926-930. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201206011.htmLiu X J, Wang S, Liu H, et al. Study on the influence of gas saturation of carbonate rocks on ultrasonic attenuation characteristics[J]. Petroleum Geophysical Exploration, 2012, 47(6): 926-930(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201206011.htm [21] 曾鑫, 孙建孟, 崔瑞康, 等. 孔隙含气压力对不同孔隙结构砂岩声学属性的影响[J]. 科学技术与工程, 2020, 20(6): 2192-2201. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202006012.htmZeng X, Sun J M, Cui R K, et al. Effect of pore gas pressure on acoustic properties of sandstone with different pore structure[J]. Science, Technology and Engineering, 2020, 20(6): 2192-2201(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202006012.htm [22] Siggins A F, Dewhurst D N. Saturation, pore pressure and effective stress from sandstone acoustic properties[J]. Geophysical Research Letters, 2003, 30(2): 61-79. [23] Brandt B H, Calif L H. A study of the speed of sound in porous granular media[J]. Journal of Applied Mechanics, 1955, 22(4): 479-486. [24] Todd T, Simmons G. Effect of pore pressure on the velocity of compressional waves in low-porosity rocks[J]. Journal of Geophysical Research (1896-1977), 1972, 77(20): 3731-3743. [25] 马中高. Biot系数和岩石弹性模量的实验研究[J]. 石油与天然气地质, 2008, 29(1): 135-140. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200801023.htmMa Z G. Experimental investigation into Biot's coefficient and rock elastic modulus[J]. Oil & Gas Geology, 2008, 29(1): 135-140(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200801023.htm [26] 夏宏泉, 彭梦, 宋二超. 岩石各向异性Biot系数的获取方法及应用[J]. 测井技术, 2019, 43(5): 478-483. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS201905008.htmXia H Q, Peng M, Song E C. Calculation method and application of rock anisotropic Biot coefficient[J]. Well Logging Technology, 2019, 43(5): 478-483(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS201905008.htm