留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

江汉平原地下水中有机质季节变化对氮反应迁移的影响

许洁 梁莹 张振超 姜雪 马瑞

许洁, 梁莹, 张振超, 姜雪, 马瑞. 江汉平原地下水中有机质季节变化对氮反应迁移的影响[J]. 地质科技通报, 2023, 42(4): 228-240. doi: 10.19509/j.cnki.dzkq.2022.0158
引用本文: 许洁, 梁莹, 张振超, 姜雪, 马瑞. 江汉平原地下水中有机质季节变化对氮反应迁移的影响[J]. 地质科技通报, 2023, 42(4): 228-240. doi: 10.19509/j.cnki.dzkq.2022.0158
Xu Jie, Liang Ying, Zhang Zhenchao, Jiang Xue, Ma Rui. Effects of seasonal variation in organic matter in groundwater on reactive nitrogen transport in the Jianghan Plain[J]. Bulletin of Geological Science and Technology, 2023, 42(4): 228-240. doi: 10.19509/j.cnki.dzkq.2022.0158
Citation: Xu Jie, Liang Ying, Zhang Zhenchao, Jiang Xue, Ma Rui. Effects of seasonal variation in organic matter in groundwater on reactive nitrogen transport in the Jianghan Plain[J]. Bulletin of Geological Science and Technology, 2023, 42(4): 228-240. doi: 10.19509/j.cnki.dzkq.2022.0158

江汉平原地下水中有机质季节变化对氮反应迁移的影响

doi: 10.19509/j.cnki.dzkq.2022.0158
基金项目: 

国家自然科学基金优秀青年基金项目 41722208

详细信息
    作者简介:

    许洁(1997—), 女, 现正攻读水文地质学硕士学位, 主要从事水文地球化学方向的研究工作。E-mail: 3296462565@qq.com

    通讯作者:

    马瑞(1979—), 女, 教授, 博士生导师, 主要从事水文地质学及水文地球化学的教学和科研工作。E-mail: rma@cug.edu.cn

  • 中图分类号: P641.3

Effects of seasonal variation in organic matter in groundwater on reactive nitrogen transport in the Jianghan Plain

  • 摘要:

    溶解性有机质(DOM)是地下水中生物地球化学过程的重要碳源。为阐明江汉平原地下水中DOM季节性变化对N迁移转化的影响, 选取江汉平原沙湖监测场作为研究区, 根据地下水、地表水长期水位和水化学监测数据, 进行水文地球化学分析, 联合三维荧光光谱和紫外可见光谱, 分析DOM季节性变化特征, 探究了水文条件影响下地下水中DOM季节变化在N迁移转化中的作用。研究结果表明: 研究区地下水和地表水中DOM包括3种组分: 陆源类腐殖酸(C1)、微生物源类色氨酸(C2)和微生物源类腐殖酸(C3)。枯水期微生物源类色氨酸组分输入增加, 丰水期陆源类腐殖酸组分输入增加。研究区地下水的强还原性和高溶解性有机碳(DOC)含量为硝酸盐的还原提供了条件, 低腐殖化、低分子量的C2组分在N迁移转化中优先被利用。枯水期, 地下水水位下降, 含水层偏氧化性, 不稳定的类蛋白组分快速降解释放NH4-N, 硝化反应、有机氮矿化速率较高, 反硝化、硝酸盐异化还原为氨(DNRA)反应速率较低; 丰水期, 地下水水位上升, 含水层偏还原性, 硝化作用受到抑制, 大量不易被降解的DOM存在使含水层中有机氮矿化速率降低, 反硝化和DNRA过程被促进。综上所述, 研究区DOM季节性变化是控制地下水中N反应迁移的重要因素。

     

  • 图 1  研究区概况和采样点位置(a)和水文地质剖面图(b) (根据文献[26]修改)

    Figure 1.  Overview of the study area and location of the sampling sites (a), and hydrogeological profile (b)

    图 2  研究区地下水与地表水水位季节变化及降雨量分布(降水量数据来源于湖北省水文水资源中心网站)

    Figure 2.  Seasonal variation in groundwater and surface water levels, and rainfall distribution in the study area

    图 3  研究区地下水与地表水δ2H和δ18O分布图

    Figure 3.  Distribution of δ2H and δ18O of groundwater and surface water in the study area

    图 4  研究区地下水和地表水δ2H和δ18O季节变化图

    Figure 4.  Seasonal variation in δ2H and δ18O of groundwater and surface water in the study area

    图 5  研究区地下水和地表水中ρ(DOC)与ρ(DIN)的季节性变化

    Figure 5.  Seasonal variation in DOC and DIN in groundwater and surface water in the study area

    图 6  研究区枯、丰水期地下水中ρ(DOC)与ρ(NH4-N)关系

    Figure 6.  Relationship between DOC and NH4-N in groundwater during dry and wet seasons in the study area

    图 7  EEM-PARAFAC得到的DOM组分及其荧光特征(载荷值无单位)

    Figure 7.  Spectral characteristics of DOM components determined by EEM-PARAFAC

    图 8  研究区枯、丰水期地下水和地表水中DOM各组分相对含量

    Figure 8.  Relative content of the DOM components in groundwater and surface water during dry and wet seasons in the study area

    图 9  研究区地表水和地下水δ13CDIC(a)与δ13CDOC(b)变化图

    Figure 9.  Variation in δ13CDIC (a) and δ13CDOC (b) in surface water and groundwater in the study area

    图 10  研究区地下水中δ13CDIC-δ13CDOCδ13CDIC关系图

    Figure 10.  Relationship between δ13CDIC-δ13CDOC and δ13CDIC in groundwater in the study area

    图 11  研究区地下水中NH4-N浓度与光谱参数的关系(光谱参数无单位)

    Figure 11.  Relationship between NH4-N concentration and spectral parameters in groundwater in the study area

    图 12  研究区地下水中不同形态N与DO和DOC关系

    Figure 12.  Relationship between different forms of N and DO and DOC in groundwater in the study area

    表  1  研究区地下水主要水化学指标统计

    Table  1.   Statistics of groundwater chemistry in the study area

    指标 井深/m 枯水期 丰水期
    最小值~最大值(平均值) 最小值~最大值(平均值)
    pH 10 7.06~7.82(7.42) 6.41~7.63(7.01)
    25 7.22~8.07(7.60) 6.52~7.90(7.17)
    50 6.98~7.88(7.53) 6.37~7.76(7.16)
    EC/(μS·cm-1) 10 215.40~1 178.00(863.44) 204.70~1 568.00(1 041.57)
    25 141.10~1 002.00(694.91) 150.90~1 366.00(835.55)
    50 175.50~883.00(616.97) 194.70~1 157.00(750.39)
    ORP/mV 10 -81.30~188.00(-18.50) -169.70~131.80(-60.49)
    25 -127.90~188.80(-5.94) -163.80~104.30(-53.74)
    50 -170.70~185.00(-15.18) -166.20~104.50(-60.21)
    DO 10 0.72~3.43(1.79) 0.05~2.93(0.84)
    25 0.69~5.48(2.24) 0.08~2.24(0.98)
    50 0.39~5.96(1.86) 0.22~1.97(0.83)
    DOC 10 2.42~11.09(5.48) 2.11~9.81(5.42)
    25 1.87~18.64(4.43) 2.37~23.73(4.56)
    50 1.85~7.33(3.50) 1.52~6.15(3.47)
    DIC ρB/(mg·L-1) 10 26.58~145.88(68.03) 30.22~258.53(132.33)
    25 18.17~106.62(60.87) 43.03~173.68(104.66)
    50 15.86~92.37(52.85) 23.18~183.03(90.22)
    Cl- 10 6.75~63.26(21.96) 6.08~72.66(23.28)
    25 4.49~30.43(8.65) 2.85~29.50(8.11)
    50 4.23~93.11(15.76) 2.95~57.86(15.94)
    SO42- 10 0.00~41.05(7.40) 0.00~41.96(7.02)
    25 0.11~56.29(9.34) 0.00~49.70(10.56)
    50 0.00~38.58(7.44) 0.00~36.85(8.90)
    S2- ρB/(μg·L-1) 10 1.00~54.00(16.59) 0.00~841.00(62.81)
    25 0.00~637.00(58.48) 0.00~67.00(14.63)
    50 0.00~772.00(75.44) 0.00~268.00(30.70)
    K+ 10 1.41~22.68(4.84) 0.85~18.14(3.23)
    25 1.36~63.37(8.24) 0.53~62.74(8.34)
    50 0.90~35.75(6.75) 0.82~35.28(5.95)
    Na+ 10 2.33~37.03(20.33) 2.24~39.07(21.59)
    25 1.42~35.47(18.96) 1.40~35.10(19.22)
    50 2.25~48.44(18.94) 2.27~54.33(19.52)
    Ca2+ 10 45.02~213.74(144.50) 38.91~251.47(158.37)
    25 31.39~187.15(124.58) 30.08~205.37(125.26)
    50 37.16~229.49(108.62) 37.12~208.88(109.97)
    Mg2+ 10 4.79~77.93(34.01) 4.01~79.32(35.83)
    25 2.31~33.01(23.11) 2.23~34.87(23.10)
    50 3.99~36.46(21.28) 4.00~34.67(21.27)
    HCO3- ρB/(mg·L-1) 10 167~1037(639) 119~1051(691)
    25 88~770(529) 98~742(539)
    50 123~782(463) 119~819(472)
    Fe 10 0.83~26.20(6.38) 0.00~15.40(5.89)
    25 0.07~12.20(4.09) 0.05~9.66(3.96)
    50 0.35~7.65(4.12) 0.41~8.30(3.48)
    Fe2+ 10 0.04~14.90(4.30) 0.00~9.55(4.09)
    25 0.00~8.95(3.02) 0.00~7.45(1.90)
    50 0.01~6.60(2.96) 0.00~5.05(1.82)
    NO3-N 10 0.00~1.83(0.36) 0.00~2.15(0.17)
    25 0.00~1.24(0.26) 0.00~3.46(0.68)
    50 0.00~0.82(0.12) 0.00~3.03(0.84)
    NO2-N 10 0.00~0.10(0.02) 0.00~0.09(0.01)
    25 0.00~0.06(0.01) 0.00~0.05(0.02)
    50 0.00~0.10(0.02) 0.00~0.04(0.02)
    NH4-N ρB/(mg·L-1) 10 0.19~9.35(3.39) 0.18~7.85(3.52)
    25 0.05~4.96(2.27) 0.04~4.78(2.14)
    50 0.04~5.45(2.49) 0.27~5.40(1.86)
    δ18O/‰ 10 -8.87~-5.65(-7.31) -12.35~-5.77(-7.49)
    25 -11.22~-5.20(-7.78) -9.53~-5.13(-7.26)
    50 -11.92~-4.46(-7.90) -11.56~-4.76(-7.52)
    δ2H/‰ 10 -53.11~-37.44(-44.61) -86.22~-32.98(-47.42)
    25 -74.07~-23.33(-46.81) -64.88~-25.46(-44.58)
    50 -79.77~-33.12(-49.06) -80.24~-24.29(-47.21)
    下载: 导出CSV
  • [1] Fellman J B, Hood E D, Amore D V, et al. Seasonal changes in the chemical quality and biodegradability of dissolved organic matter exported from soils to streams in coastal temperate rainforest watersheds[J]. Biogeochemistry, 2009, 95(2/3): 277-293.
    [2] Yamashita Y, Jaffé R, Maie N, et al. Assessing the dynamics of dissolved organic matter (DOM) in coastal environments by excitation emission matrix fluorescence and parallel factor analysis (EEM-PARAFAC)[J]. Limnology & Oceanography, 2008, 53(5): 1900-1908.
    [3] Catalán N, Obrador B, Alomar C, et al. Seasonality and landscape factors drive dissolved organic matter properties in Mediterranean ephemeral washes[J]. Biogeochemistry, 2013, 112(1/3): 261-274.
    [4] Larsen L G, Aiken G R, Harvey J W, et al. Using fluorescence spectroscopy to trace seasonal DOM dynamics, disturbance effects, and hydrologic transport in the Florida Everglades[J]. Journal of Geophysical Research Atmospheres, 2010, 115: G03001.
    [5] 何小松, 席北斗, 张鹏, 等. 地下水中溶解性有机物的季节变化特征及成因[J]. 中国环境科学, 2015, 35(3): 862-870. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201503039.htm

    He X S, Xi B D, Zhang P, et al. The seasonal distribution characteristics and its reasons of dissolved organic matter in groundwater[J]. Chinese Environmental Science, 2015, 35(3): 862-870 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201503039.htm
    [6] Raymond P A, Mcclelland J W, Holmes R M, et al. Flux and age of dissolved organic carbon exported to the Arctic Ocean: A carbon isotopic study of the five largest arctic rivers[J]. Global Biogeochemical Cycles, 2007, 21(4): GB4011.
    [7] Cai Y H, Guo L D, Wang X R, et al. Abundance, stable isotopic composition, and export fluxes of DOC, POC, and DIC from the Lower Mississippi River during 2006-2008[J]. Journal of Geophysical Research Biogeosciences, 2016, 120(11): 2273-2288.
    [8] Smith M A, Kominoski J S, Gaiser E E, et al. Stormwater runoff and tidal flooding transform dissolved organic matter composition and increase bioavailability in urban coastal ecosystems[J]. Journal of Geophysical Research Biogeosciences, 2021, 126(7): e2020JG006146.
    [9] Cárdenas C S, Gerea M, Garcia P E, et al. Interplay between climate and hydrogeomorphic features and their effect on the seasonal variation of dissolved organic matter in shallow temperate lakes of the Southern Andes (Patagonia, Argentina): A field study based on optical properties[J]. Ecohydrology, 2017, 10(7): e1872. doi: 10.1002/eco.1872
    [10] Yang Y J, Yuan X F, Deng Y M, et al. Seasonal dynamics of dissolved organic matter in high arsenic shallow groundwater systems[J]. Journal of Hydrology, 2020, 589: 125120. doi: 10.1016/j.jhydrol.2020.125120
    [11] Chen M, Maie N, Parish K, et al. Spatial and temporal variability of dissolved organic matter quantity and composition in an oligotrophic subtropical coastal wetland[J]. Biogeochemistry, 2013, 115(1/3): 167-183.
    [12] Mladenov N, Philippa H, Wolski P, et al. Dissolved organic matter accumulation, reactivity, and redox state in ground water of a recharge wetland[J]. Wetlands, 2008, 28(3): 747-759. doi: 10.1672/07-140.1
    [13] Xiong Y J, Du Y, Deng Y M, et al. Contrasting sources and fate of nitrogen compounds in different groundwater systems in the Central Yangtze River Basin[J]. Environmental Pollution, 2021, 290: 118119. doi: 10.1016/j.envpol.2021.118119
    [14] Donn M J, Barron O V. Biogeochemical processes in the groundwater discharge zone of urban streams[J]. Biogeochemistry, 2013, 115(1/3): 267-286.
    [15] 张董涛, 刘璐, 马腾, 等. 黏性土弱透水层氮形态的赋存特征及迁移转化: 以江汉平原沉湖沉积物为例[J]. 安全与环境工程, 2020, 27(3): 118-125. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ202003017.htm

    Zhang D T, Liu L, Ma T, et al. Occurrence, migration and transformation characteristics of nitrogen forms in clay aquitards[J]. Safety and Environmental Engineering, 2020, 27(3): 118-125(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ202003017.htm
    [16] Tye A M, Lapworth D J. Characterising changes in fluorescence properties of dissolved organic matter and links to N cycling in agricultural floodplains[J]. Agriculture, Ecosystems & Environment, 2016, 221: 245-257.
    [17] Bonin P. Anaerobic nitrate reduction to ammonium in two strains isolated from coastal marine sediment: A dissimilatory pathway[J]. Fems Microbiology Ecology, 1996, 19(1): 27-38. doi: 10.1111/j.1574-6941.1996.tb00195.x
    [18] Shvartsev S L, Liu H, Kamaletdinova L L. Ecological and geochemical conditions of the groundwater in the Jianghan Basin, Hubei Province, China[J]. Aqua Mundi, 2012, 47(6): 135-142.
    [19] Huang S B, Wang Y X, Cao L, et al. Multidimensional spectrofluorometry characterization of dissolved organic matter in arsenic-contaminated shallow groundwater[J]. Journal of Environmental Science and Health Part A Toxic/Hazardous Substances & Environmental Engineering, 2012, 47(10): 1446-1454.
    [20] Du Y, Ma T, Deng Y M, et al. Sources and fate of high levels of ammonium in surface water and shallow groundwater of the Jianghan Plain, Central China[J]. Environmental Science: Processes & Impacts, 2017, 19(2): 161-172. doi: 10.3969/j.issn.1673-1212.2017.02.038
    [21] Liang Y, Ma R, Wang Y X, et al. Hydrogeological controls on ammonium enrichment in shallow groundwater in the central Yangtze River Basin[J]. Science of the Total Environment, 2020, 741: 140350. doi: 10.1016/j.scitotenv.2020.140350
    [22] Sun L Q, Liang X, Jin M G, et al. Ammonium and nitrate sources and transformation mechanism in the Quaternary sediments of Jianghan Plain, China[J]. Science of the Total Environment, 2021, 774: 145131. doi: 10.1016/j.scitotenv.2021.145131
    [23] 沈帅, 马腾, 杜尧, 等. 江汉平原典型地区季节性水文条件影响下氮的动态变化规律[J]. 地球科学, 2017, 42(5): 674-684. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201705002.htm

    Shen S, Ma T, Du Y, et al. Dynamic variations of nitrogen in groundwater under influence of seasonal hydrological condition in typical area of Jianghan Plain[J]. Earth Science, 2017, 42(5): 674-684(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201705002.htm
    [24] 梁杏, 张婧玮, 蓝坤, 等. 江汉平原地下水化学特征及水流系统分析[J]. 地质科技通报, 2020, 39(1): 21-33. doi: 10.19509/j.cnki.dzkq.2020.0103

    Liang X, Zhang J W, Lan K, et al. Hydrochemical characteristics of groundwater and analysis of groundwater flow systems in Jianghan Plain[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 21-33(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0103
    [25] Gan Y Q, Zhao K, Deng Y M, et al. Groundwater flow and hydrogeochemical evolution in the Jianghan Plain, central China[J]. Hydrogeology Journal, 2018, 26(5): 1609-1623. doi: 10.1007/s10040-018-1778-2
    [26] 李红梅, 邓娅敏, 罗莉威, 等. 江汉平原高砷含水层沉积物地球化学特征[J]. 地质科技情报, 2015, 34(3): 178-184. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201503025.htm

    Li H M, Deng Y M, Luo L W, et al. Geochemical characteristics of sediments from high arsenic aquifers in Jianghan Plain[J]. Geological Science and Technology Information, 2015, 34(3): 178-184(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201503025.htm
    [27] 王妍妍, 黄爽兵, 赵龙, 等. 江汉平原沙湖地区浅层含水层第四纪沉积环境演化[J]. 地球科学, 2017, 42(5): 751-760. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201705010.htm

    Wang Y Y, Huang S B, Zhao L, et al. Evolution of Quaternary sedimentary environment in shallow aquifers, at Shahu area, Jianghan Plain[J]. Earth Science, 2017, 42(5): 751-760(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201705010.htm
    [28] 赵德君. 江汉平原地下水系统三维数值模拟[D]. 武汉: 中国地质大学(武汉), 2005.

    Zhao D J. The three-dimensional numerical simulation for groundwater system in Jianghan Plain[D]. Wuhan: China University of Geosciences(Wuhan), 2005(in Chinese with English abstract).
    [29] 甘义群, 王焰新, 段艳华, 等. 江汉平原高砷地下水监测场砷的动态变化特征分析[J]. 地学前缘, 2014, 21(4): 37-49. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201404006.htm

    Gan Y Q, Wang Y X, Duan Y H, et al. Dynamic changes of groundwater arsenic concentration in the monitoring field site, Jianghan Plain[J]. Earth Science Frontiers, 2014, 21(4): 37-49(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201404006.htm
    [30] Stedmon C A, Markager S. Resolving the variability in dissolved organic matter fluorescence in a temperate estuary and its catchment using PARAFAC analysis[J]. Limnology & Oceanography, 2005, 50(2): 686-697.
    [31] Mcknight D M, Boyer E W, Westerhoff P K, et al. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity[J]. Limnology & Oceanography, 2001, 46(1): 38-48.
    [32] Huguet A, Vacher L, Relexans S, et al. Properties of fluorescent dissolved organic matter in the gironde estuary[J]. Organic Geochemistry, 2008, 40(6): 706-719.
    [33] Zsolnay A, Baigar E, Jimenez M, et al. Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying[J]. Chemosphere, 1999, 38(1): 45-50. doi: 10.1016/S0045-6535(98)00166-0
    [34] Zhang Y L, Liu M L, Qin B Q, et al. Photochemical degradation of chromophoric-dissolved organic matter exposed to simulated UV-B and natural solar radiation[J]. Hydrobiologia, 2009, 627(1): 159-168. doi: 10.1007/s10750-009-9722-z
    [35] Fichot C G, Benner R. The spectral slope coefficient of chromophoric dissolved organic matter (S275-295) as a tracer of terrigenous dissolved organic carbon in river-influenced ocean margins[J]. Limnology and Oceanography, 2012, 57(5): 1453-1466. doi: 10.4319/lo.2012.57.5.1453
    [36] Hansen A M, Kraus T E C, Pellerin B A, et al. Optical properties of dissolved organic matter (DOM): Effects of biological and photolytic degradation[J]. Limnology and Oceanography, 2016, 61(3): 1015-1032.
    [37] Ma F, Wang G L, Sun H L, et al. Indication of hydrogen and oxygen stable isotopes on the characteristics and circulation patterns of medium-low temperature geothermal resources inthe Guanzhong Basin, China[J]. Journal of Groundwater Science and Engineering, 2022, 10(1): 70-86.
    [38] 赵家成, 魏宝华, 肖尚斌. 湖北宜昌地区大气降水中的稳定同位素特征[J]. 热带地理, 2009, 29(6): 526-531. https://www.cnki.com.cn/Article/CJFDTOTAL-RDDD200906006.htm

    Zhao J C, Wei B H, Xiao S B, et al. Stable isotope characteristics of atmospheric precipitation in Yichang, Hubei Province[J]. Tropical Geography, 2009, 29(6): 526-531 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-RDDD200906006.htm
    [39] 江欣悦, 李静, 郭林, 等. 豫北平原浅层地下水化学特征与成因机制[J]. 地质科技通报, 2021, 40(5): 290-300. doi: 10.19509/j.cnki.dzkq.2021.0511

    Jiang X Y, Li J, Guo L, et al. Chemical characteristics and genetic mechanism of shallow groundwater in Northern Henan Plain[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 290-300 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0511
    [40] 段艳华, 甘义群, 郭欣欣, 等. 江汉平原高砷地下水监测场水化学特征及砷富集影响因素分析[J]. 地质科技情报, 2014, 33(2): 140-147. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201402024.htm

    Duan Y H, Gan Y Q, Guo X X, et al. Analysis of hydrochemical characteristics and influencing factors of arsenic enrichment in high arsenic groundwater monitoring field in Jianghan Plain[J]. Geological Science and Technology Information, 2014, 33(2): 140-147(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201402024.htm
    [41] 于凯. 高砷地下水系统中有机质来源及其对砷动态变化的影响研究[D]. 武汉: 中国地质大学(武汉), 2016.

    Yu K. The sources and influences of dissolved organic matter on temporal variations of groundwater arsenic concentrations: A case study in Jianghan Plain[D]. Wuhan: China University of Geosciences(Wuhan), 2016(in Chinese with English abstract).
    [42] Liu X W, Wang H Y, Zhou J M, et al. Effect of N fertilization pattern on rice yield, N use efficiency and fertilizer-N fate in the Yangtze River Basin, China[J]. Plos One, 2016, 11(11): e0166002.
    [43] Gao Z P, Weng H C, Guo H M. Unraveling influences of nitrogen cycling on arsenic enrichment in groundwater from the Hetao Basin using geochemical and multi-isotopic approaches[J]. Journal of Hydrology, 2021, 595: 125981.
    [44] Coble P G. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy[J]. Marine Chemistry, 1996, 51(4): 325-346.
    [45] Fellman J B, Hood E, Spencer R. Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: A review[J]. Limnology & Oceanography, 2010, 55(6): 2452-2462.
    [46] Huang S B, Wang Y X, Ma T, et al. Linking groundwater dissolved organic matter to sedimentary organic matter from a fluvio-lacustrine aquifer at Jianghan Plain, China by EEM-PARAFAC and hydrochemical analyses[J]. Science of the Total Environment, 2015, 529: 131-139.
    [47] Singh S, Dash P, Silwal S, et al. Influence of land use and land cover on the spatial variability of dissolved organic matter in multiple aquatic environments[J]. Environmental Science and Pollution Research, 2017, 24(16): 14124-14141.
    [48] Cory R M, Mcknight D M. Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter[J]. Environmental Science & Technology, 2005, 39(21): 8142-8149.
    [49] Stedmon C A, Markager S, Bro R. Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy[J]. Marine Chemistry, 2003, 82(3/4): 239-254.
    [50] Wu F C, Evans R D, Dillon P J. Separation and characterization of NOM by high-performance liquid chromatography and on-line three-dimensional excitation emission matrix fluorescence detection[J]. Environmental Science & Technology, 2003, 37(16): 3687-3693.
    [51] Fellman J B, Hood E, Edwards R T, et al. Changes in the concentration, biodegradability, and fluorescent properties of dissolved organic matter during stormflows in coastal temperate watersheds[J]. Journal of Geophysical Research, 2009, 114: G01021.
    [52] Miadenov N, Zheng Y, Simone B, et al. Dissolved organic matter quality in a shallow aquifer of Bangladesh: Implications for arsenic mobility[J]. Environmental Science & Technology, 2015, 49(18): 10815-10824.
    [53] Hu H D, Xing X Y, Wang J F, et al. Characterization of dissolved organic matter in reclaimed wastewater supplying urban rivers with a special focus on dissolved organic nitrogen: A seasonal study[J]. Environmental Pollution, 2020, 265: 114959.
    [54] Lafrenière M, Lamoureux S. Seasonal dynamics of dissolved nitrogen exports from two high arctic watersheds, Melville Island, Canada[J]. Hydrology Research, 2008, 39(4): 323-335.
    [55] 袁晓芳, 邓娅敏, 杜尧, 等. 江汉平原高砷地下水稳定碳同位素特征及其指示意义[J]. 地质科技通报, 2020, 39(5): 156-163. doi: 10.19509/j.cnki.dzkq.2021.0008

    Yuan X F, Deng Y M, Du Y, et al. Characteristics of stable carbon isotopes and its implications on arsenic enrichmentin shallow groundwater of the Jianghan Plain[J]. Bulletin of Geological Science and Technology, 2020, 39(5): 156-163 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0008
    [56] Tranvik L J, Downing J A, Cotner J B, et al. Lakes and reservoirs as regulators of carbon cycling and climate[J]. Limnology and Oceanography, 2009, 54(6): 2298-2314.
    [57] Bernhardt E S, Likens G E. Dissolvedorganic carbon enrichment Alters nitrogen dynamics in a forest stream[J]. Ecology, 2002, 83(6): 1689-1700.
    [58] Zarnetske J P, Haggerty R, Wondzell S M, et al. Labile dissolved organic carbon supply limits hyporheic denitrification[J]. Journal of Geophysical Research: Biogeosciences, 2011, 116: G04036.
    [59] Harms-Ringdahl P. Identifying possible sources of ammonium ions and arsenic in groundwater in the Nam Du area, Vietnam[D]. Uppsala, Swedish: Swedish University of Agricultural Sciences, 2007.
    [60] 吴耀国. 地下水环境中反硝化作用[J]. 环境污染治理技术与设备, 2002, 3(3): 27-31. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ200203006.htm

    Wu Y G. Denitrification in groundwater systems[J]. Techniques and equipment for environmental pollution control, 2002, 3(3): 27-31(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ200203006.htm
    [61] Roland F A E, Darchambeau F, Borges A V, et al. Denitrification, anaerobic ammonium oxidation, and dissimilatory nitrate reduction to ammonium in an East African Great Lake (Lake Kivu)[J]. Limnology and Oceanography, 2018, 63(2): 687-701.
    [62] Rütting T, Boeckx P, Müller C, et al. Assessment of the importance of dissimilatory nitrate reduction to ammonium for the terrestrial nitrogen cycle[J]. Biogeosciences, 2011, 8(7): 1779-1791.
    [63] Buresh R J, Patrick W H. Nitratereduction to ammonium in anaerobic soil[J]. Soil Science Society of America Journal, 1978, 42(6): 913-918.
    [64] Hardison A K, Algar C K, Giblin A E, et al. Influence of organic carbon and nitrate loading on partitioning between dissimilatory nitrate reduction to ammonium (DNRA) and N2 production[J]. Geochimica et Cosmochimica Acta, 2015, 164: 146-160.
    [65] Porubsky W P, Weston N B, Joye S B. Benthic metabolism and the fate of dissolved inorganic nitrogen in intertidal sediments[J]. Estuarine, Coastal and Shelf Science, 2009, 83(4): 392-402.
    [66] Starr R C, Gillham R W. Denitrification andorganic carbon availability in two aquifers[J]. Ground Water, 2010, 31(6): 934-947.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  967
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-22
  • 录用日期:  2022-05-20
  • 修回日期:  2022-05-19

目录

    /

    返回文章
    返回