留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

上斜坡区筇竹寺组沉积环境及其页岩气勘探潜力:以四川盆地威远地区威207井为例

梁霄 马韶光 李郭琴 夏国勇 刘若林 倪根生 张梦琳 寇一龙 袁翠平 陈佳

梁霄, 马韶光, 李郭琴, 夏国勇, 刘若林, 倪根生, 张梦琳, 寇一龙, 袁翠平, 陈佳. 上斜坡区筇竹寺组沉积环境及其页岩气勘探潜力:以四川盆地威远地区威207井为例[J]. 地质科技通报, 2022, 41(5): 68-82. doi: 10.19509/j.cnki.dzkq.2022.0159
引用本文: 梁霄, 马韶光, 李郭琴, 夏国勇, 刘若林, 倪根生, 张梦琳, 寇一龙, 袁翠平, 陈佳. 上斜坡区筇竹寺组沉积环境及其页岩气勘探潜力:以四川盆地威远地区威207井为例[J]. 地质科技通报, 2022, 41(5): 68-82. doi: 10.19509/j.cnki.dzkq.2022.0159
Liang Xiao, Ma Shaoguang, Li Guoqin, Xia Guoyong, Liu Ruolin, Ni Gensheng, Zhang Menglin, Kou Yilong, Yuan Cuiping, Chen Jia. Sedimentary environment and shale gas exploration potential of Qiongzhusi Formation in the upslope area: A case study on Well W-207, Weiyuan area, Sichuan Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 68-82. doi: 10.19509/j.cnki.dzkq.2022.0159
Citation: Liang Xiao, Ma Shaoguang, Li Guoqin, Xia Guoyong, Liu Ruolin, Ni Gensheng, Zhang Menglin, Kou Yilong, Yuan Cuiping, Chen Jia. Sedimentary environment and shale gas exploration potential of Qiongzhusi Formation in the upslope area: A case study on Well W-207, Weiyuan area, Sichuan Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 68-82. doi: 10.19509/j.cnki.dzkq.2022.0159

上斜坡区筇竹寺组沉积环境及其页岩气勘探潜力:以四川盆地威远地区威207井为例

doi: 10.19509/j.cnki.dzkq.2022.0159
基金项目: 

国家自然科学基金项目 41572119

详细信息
    作者简介:

    梁霄(1991—), 男, 工程师, 主要从事构造地质及油气地质研究工作。E-mail: liangx_dyy@cnpc.com.cn

  • 中图分类号: P618.13

Sedimentary environment and shale gas exploration potential of Qiongzhusi Formation in the upslope area: A case study on Well W-207, Weiyuan area, Sichuan Basin

  • 摘要:

    为深入分析早寒武世(541~509 Ma)海洋化学状态、有机质富集机制,积极评价四川盆地西南部下寒武统筇竹寺组页岩气资源潜力,基于四川盆地威远地区威207井筇竹寺组岩石学、地球化学、主微量元素、孔隙结构与吸附特征,对寒武纪早期上斜坡区古海洋环境、有机质富集控制因素及页岩含气潜力进行了探讨。沉积旋回显示筇竹寺组细粒沉积期发育多个海平面升降控制下深水-浅水陆棚交互转换旋回,但以浅水陆棚相为主,发育典型斜坡浊积体(扇)、重力流沉积。以威远地区为代表的上斜坡区未长期处于深水区,富有机质黑色泥页岩沉积厚度受限。有机地球化学测试结果显示,威207井筇竹寺组有机质以Ⅰ型干酪根为主,热演化程度高,残余烃较少,生烃能力偏低。氧化还原参数指示地处上斜坡的威远地区寒武纪初期海洋环境处于中等限制程度,仅存在一定程度的上升流,海水经历了“缺氧-氧化-缺氧-次氧化-氧化”的转变过程,致使上斜坡区古海洋生产力水平整体较低,由下至上呈明显下降趋势。微观孔隙结构与氮气吸附曲线指示筇竹寺组储层以复杂的、无规则狭缝型孔为主,甲烷吸附量和w(TOC)呈正相关性,但与温度呈负相关性,表明筇竹寺组现今普遍面临的高压高温条件不适于甲烷吸附。上述证据指示上斜坡区筇竹寺组页岩气地质条件较复杂,勘探风险较高,建议资源评价方向应往以深水陆棚相沉积为主的拉张槽区转变。

     

  • 图 1  上扬子地区早寒武世早期构造古地理图(据文献[32, 34]修改)

    Figure 1.  Early Cambrian tectonic paleogeographic map of the Upper Yangtze region

    图 2  扬子-冈瓦纳早古生代聚合动力学模型(据文献[33, 35]修改)

    Figure 2.  Early Paleozoic Yangtze-Gondwana aggregation dynamics model

    图 3  威207井筇竹寺组岩石学特征

    Figure 3.  Petrological characteristics of Qiongzhusi Formation, Well W-207

    图 4  威207井筇竹寺组岩石热解、w(TOC)协和特征图

    Figure 4.  Characteristic map of S1+S2 vs TOC in Qiongzhusi Formation, Well W-207

    图 5  威207井筇竹寺组沉积古海洋环境的氧化还原条件特征

    Figure 5.  Characteristics of redox conditions in the paleo-ocean environment (redox parameters) in Qiongzhusi Formation, Well W-207

    图 6  威207井筇竹寺组沉积环境的古生产力特征

    Figure 6.  Characteristics of paleoproductivity of sedimentary environment in Qiongzhusi Formation, Well W-207

    图 7  上斜坡区筇竹寺组沉积古海洋模式

    Figure 7.  Sedimentary paleo-ocean model of Qiongzhusi Formation in the upslope area

    图 8  威207井筇竹寺组微观孔隙结构特征

    a.W207-41,3 026.19 m,长石粒内溶蚀孔发育;b.W207-34,3 103.15 m,长石粒内溶蚀孔发育;c.W207-29, 3 142.57 m, 长石粒内溶蚀孔发育;d.W207-20,3 181.4 m,黄铁矿集合体晶间孔发育;e.W207-31,3130.65 m,气泡状有机质孔隙发育;f.W207-23,3 161.69 m,不规则状有机质孔隙发育;g.W207-16,3 189.12 m,气泡状有机质孔隙发育;h.W207-9,3230.18 m,不规则有机质孔、微裂缝发育;i.W207-1,3 242.29 m,骨架矿物粒间溶蚀孔隙发育

    Figure 8.  Microscopic pore structure characteristics of Qiongzhusi Formatioin, Well W-207

    图 9  威207井筇竹寺组孔径分布特征

    Figure 9.  Pore diameter distribution characteristics of Qiongzhusi Formation, Well W-207

    图 10  威207井筇竹寺组含气吸附特征

    Figure 10.  Gas-bearing adsorption characteristics of Qiongzhusi Formation, Well W-207

    图 11  威207井筇竹寺组甲烷吸附特征

    a.60℃高压甲烷吸附曲线(过剩吸附量);b.60℃高压甲烷吸附曲线(绝对吸附量);c.变温吸附曲线(过剩吸附量);d.变温吸附曲线(绝对吸附量)

    Figure 11.  Methane adsorption characteristics of Qiongzhusi Formation, Well W-207

    表  1  威207井筇竹寺组有机地球化学参数

    Table  1.   Organic geochemical parameters of Qiongzhusi Formation, Well W-207

    样品 深度/m w(TOC)/% δ13Corg /‰ S1/(mg·g-1) S2/(mg·g-1) S3/(mg·g-1) Tmax/℃ HI OI
    W207-44 3 000.59 0.39 -30.94 0.02 0.05 0.04 329 10 8
    W207-43 3 010.55 0.65 -30.72 0.01 0.04 0.05 608 6 7
    W207-42 3 015.03 0.70 -30.65 0.02 0.05 0.06 317 6 7
    W207-41 3 026.19 0.68 -30.44 0.01 0.03 0.07 610 4 10
    W207-40 3 035.38 0.81 -30.55 0.01 0.03 0.07 611 3 7
    W207-39 3 043.95 1.28 -30.57 0.01 0.04 0.09 611 3 6
    W207-38 3 055.91 0.30 -30.82 0.02 0.05 0.07 342 14 19
    W207-37 3 062.45 0.30 -30.80 0.02 0.03 0.05 609 8 12
    W207-36 3 080.51 0.38 -31.15 0.02 0.05 0.09 441 11 19
    W207-35 3 088.35 0.61 -31.66 0.02 0.05 0.08 320 6 10
    W207-34 3 103.15 0.76 -31.84 0.01 0.03 0.10 332 3 9
    W207-33 3 110.67 1.08 -31.87 0.02 0.06 0.03 350 4 2
    W207-32 3 115.74 1.30 -31.83 0.02 0.05 0.08 327 3 6
    W207-31 3 130.65 2.94 -31.56 0.02 0.03 0.10 611 1 3
    W207-30 3 138.43 1.20 -31.57 0.01 0.03 0.08 612 2 5
    W207-29 3 142.57 1.14 -32.07 0.02 0.05 0.14 375 4 10
    W207-28 3 147.64 1.60 -32.01 0.02 0.05 0.08 612 3 5
    W207-27 3 149.58 1.17 -32.05 0.02 0.05 0.09 352 3 6
    W207-26 3 151.99 1.02 -31.91 0.02 0.04 0.12 334 3 10
    W207-25 3 157.82 0.71 -31.83 0.01 0.04 0.14 611 4 15
    W207-24 3 159.56 1.27 -31.96 0.02 0.05 0.10 332 3 7
    W207-23 3 161.69 1.49 -32.35 0.02 0.05 0.07 316 3 4
    W207-22 3 177.64 0.18 -31.42 0.01 0.05 0.20 375 21 83
    W207-21 3 179.10 0.79 -33.27 0.01 0.04 0.05 612 4 5
    W207-20 3 181.40 0.95 -33.48 0.02 0.05 0.05 332 4 4
    W207-19 3 184.63 1.17 -33.77 0.01 0.04 0.05 612 3 3
    W207-18 3 186.42 0.34 -32.80 0.02 0.05 0.20 351 11 45
    W207-17 3 187.41 1.14 -33.89 0.02 0.06 0.03 612 4 2
    W207-16 3 189.12 0.74 -33.79 0.02 0.05 0.03 612 5 3
    W207-15 3 221.05 1.94 -32.79 0.02 0.06 0.05 611 3 2
    W207-14 3 222.01 2.94 -32.91 0.02 0.06 0.09 372 2 3
    W207-13 3 224.51 2.41 -32.60 0.05 0.07 0.24 365 1 5
    W207-12 3 226.01 2.87 -32.86 0.02 0.06 0.06 612 2 2
    W207-11 3 226.94 2.27 -33.03 0.02 0.06 0.06 612 2 2
    W207-10 3 228.38 1.72 -33.42 0.02 0.06 0.07 612 3 3
    W207-09 3 230.18 1.12 -33.56 0.02 0.09 0.06 437 6 4
    W207-08 3 230.82 0.27 -32.94 0.01 0.06 0.19 612 17 53
    W207-07 3 233.63 1.54 -34.29 0.02 0.06 0.05 365 3 3
    W207-06 3 235.14 1.50 -34.38 0.02 0.08 0.06 375 4 3
    W207-05 3 237.58 1.92 -34.43 0.02 0.09 0.07 612 4 3
    W207-04 3 238.27 1.57 -34.47 0 0 0.06 479 0 3
    W207-03 3 240.11 1.78 -34.59 0 0 0.15 293 0 7
    W207-02 3 241.19 3.31 -34.95 0 0 0.07 479 0 2
    W207-01 3 242.29 3.41 -34.81 0.02 0.04 0.10 361 1 2
    注:HI为氢指数;QI为氧指数
    下载: 导出CSV

    表  2  威207井第竹寺组主微量元素分析结果

    Table  2.   Analysis data of major and trace elements in Qiongzhusi Formation, Well W-207

    样品 SiO2 Al Fe P Mn
    wB/10-2 %
    Zn V Ba Mo Ni Cu Cr Co Th U MoEF UEF VEF Babio Ni/Co V/Cr V/V+Ni P/Al U/Th
    wB/% wB/10-6
    W207-44 62.95 6.67 3.12 0.11 4.07 187.00 184.00 1 519.00 10.30 63.73 46.48 68.60 16.00 7.74 8.81 15.43 4.27 1.84 1085.80 3.97 2.68 0.74 1.67 0.89
    W207-43 57.02 8.18 4.34 0.10 4.69 151.00 197.00 1 581.00 6.67 56.84 49.68 97.40 19.40 10.80 6.71 8.16 2.65 1.61 1049.55 2.94 2.02 0.78 1.17 0.67
    W207-42 55.72 8.20 4.39 0.11 4.62 219.00 263.00 1 945.00 7.69 68.67 69.66 103.00 20.50 11.00 8.90 9.39 3.50 2.14 1412.31 3.36 2.55 0.79 1.30 1.20
    W207-41 53.88 8.06 4.21 0.14 5.98 123.00 267.00 1 254.00 5.82 65.47 32.45 94.50 17.90 12.90 7.50 7.23 3.00 2.21 730.11 3.65 2.83 0.80 1.76 0.68
    W207-40 55.93 8.68 4.41 0.13 4.82 141.00 257.00 1 356.00 5.59 71.24 40.53 99.20 19.20 13.00 7.32 6.45 2.72 1.97 791.94 3.71 2.59 0.78 1.52 0.72
    W207-39 56.40 8.46 3.92 0.20 4.28 237.00 304.00 1 365.00 9.78 81.54 40.88 103.00 17.70 11.50 11.90 11.58 4.53 2.40 815.73 4.61 2.94 0.79 2.40 1.09
    W207-38 67.72 6.72 2.45 0.13 4.14 76.40 98.40 859.00 2.48 31.85 23.15 74.70 10.00 11.20 4.54 3.70 2.18 0.98 422.33 3.18 1.32 0.76 1.97 0.39
    W207-37 67.07 6.56 2.58 0.11 4.69 44.90 95.80 878.00 3.92 30.30 22.44 69.70 10.20 10.60 4.66 5.99 2.30 0.97 452.10 2.96 1.37 0.76 1.68 0.94
    W207-36 66.75 6.93 2.71 0.12 4.21 98.40 94.40 945.00 4.07 33.40 21.30 75.70 10.90 11.60 5.75 5.87 2.68 0.91 494.99 3.06 1.25 0.74 1.76 0.53
    W207-35 65.14 7.26 3.19 0.11 3.73 112.00 114.00 1 200.00 8.31 48.83 30.06 83.30 12.80 10.80 7.74 11.46 3.44 1.05 728.39 3.80 1.37 0.70 1.55 0.74
    W207-34 61.32 7.53 4.02 0.09 4.01 96.50 155.00 1 376.00 15.90 65.44 46.93 96.90 15.60 11.80 12.90 21.11 5.52 1.37 886.75 4.18 1.59 0.70 1.23 1.14
    W207-33 65.04 7.13 3.12 0.11 3.19 74.70 201.00 1 228.00 17.00 74.41 34.22 86.50 13.60 11.90 17.10 23.84 7.74 1.88 764.57 5.49 2.33 0.73 1.60 1.56
    W207-32 62.75 7.47 3.51 0.13 2.99 142.00 455.00 1 158.00 15.60 111.05 35.39 99.50 15.80 12.00 15.70 20.90 6.80 4.06 672.98 7.05 4.57 0.80 1.73 1.90
    W207-31 61.23 7.11 3.67 0.13 3.33 101.00 114.00 1 101.00 27.30 61.19 33.22 84.00 15.30 12.90 23.80 38.39 10.80 1.07 638.92 4.01 1.36 0.65 1.78 2.75
    W207-30 58.30 6.72 4.43 0.09 5.98 44.30 100.00 955.00 15.20 49.71 40.23 80.70 14.80 11.50 8.40 22.63 4.04 1.00 518.47 3.35 1.25 0.67 1.29 0.76
    W207-29 60.03 6.44 3.70 0.10 5.50 127.00 91.70 927.00 17.50 62.30 34.74 69.00 14.90 11.30 9.29 27.23 4.65 0.95 508.42 4.19 1.33 0.60 1.59 0.78
    W207-28 61.96 7.40 3.82 0.11 3.06 92.20 137.00 1 007.00 13.40 69.42 35.52 88.00 17.40 12.30 9.78 18.13 4.27 1.24 526.21 3.99 1.56 0.66 1.46 0.76
    W207-27 61.87 7.36 3.77 0.11 3.67 141.00 200.00 987.00 12.90 77.41 37.03 88.90 16.90 12.40 9.71 17.54 4.26 1.81 508.99 4.58 2.25 0.72 1.54 1.33
    W207-26 59.80 6.76 3.43 0.10 6.45 118.00 143.00 888.00 9.90 61.62 30.91 79.00 15.50 10.80 6.03 14.65 2.88 1.41 448.75 3.98 1.81 0.70 1.41 0.52
    W207-25 46.31 5.71 3.16 0.07 21.32 49.50 89.20 743.00 8.96 37.59 27.37 70.70 14.20 9.93 5.91 15.69 3.34 1.04 371.88 2.65 1.26 0.70 1.20 0.50
    W207-24 61.75 7.07 3.76 0.10 4.07 53.30 107.00 906.00 9.84 39.32 34.87 84.10 15.80 12.00 6.55 13.92 2.99 1.01 446.46 2.49 1.28 0.73 1.38 0.58
    W207-23 61.68 7.23 4.20 0.10 3.12 54.10 110.00 943.00 26.10 51.64 41.70 84.10 16.40 11.50 10.30 36.16 4.61 1.02 473.35 3.15 1.31 0.68 1.34 1.24
    W207-22 66.27 5.26 1.56 0.11 7.47 27.80 58.30 1 070.00 1.16 14.49 13.71 49.40 5.31 8.33 2.37 2.21 1.46 0.74 728.29 2.73 1.18 0.80 2.12 0.21
    W207-21 62.47 7.48 4.17 0.10 2.72 57.00 187.00 2 418.00 17.70 80.21 39.75 89.70 17.40 11.40 11.90 23.72 5.13 1.67 1931.88 4.61 2.09 0.70 1.30 0.99
    W207-20 60.46 7.57 4.41 0.10 4.55 150.00 172.00 984.00 24.60 107.93 44.32 91.30 18.40 11.80 25.40 32.52 10.84 1.51 492.37 5.87 1.88 0.61 1.36 2.56
    W207-19 62.85 7.49 3.96 0.10 2.99 190.00 793.00 954.00 22.50 101.50 43.35 98.40 17.50 11.50 16.80 30.02 7.24 7.06 467.26 5.79 8.07 0.89 1.37 1.56
    W207-18 45.21 5.21 4.38 0.09 27.98 48.30 191.00 689.00 9.34 60.94 24.08 69.70 14.00 7.31 7.99 17.95 4.95 2.45 350.83 4.36 2.75 0.76 1.70 0.64
    W207-17 62.11 7.63 4.08 0.11 2.78 152.00 727.00 918.00 21.50 95.29 40.59 98.90 17.50 12.90 16.70 28.24 7.08 6.36 422.62 5.45 7.35 0.88 1.49 1.35
    W207-16 59.62 8.13 4.94 0.11 2.85 103.00 557.00 960.00 17.20 115.25 45.72 112.00 20.80 11.90 15.20 21.13 6.03 4.57 432.09 5.54 4.96 0.83 1.40 1.35
    W207-15 61.67 7.62 3.73 0.12 2.58 52.40 125.00 1 159.00 29.50 64.15 42.58 86.50 16.30 11.10 14.90 38.80 6.33 1.09 664.00 3.93 1.44 0.66 1.55 1.29
    W207-14 59.53 6.80 3.93 0.11 3.53 299.00 895.00 1 121.00 24.60 154.28 52.58 91.60 15.40 8.64 15.80 36.22 7.50 8.78 679.28 10.01 9.76 0.85 1.56 1.22
    W207-13 55.89 5.76 3.35 0.10 5.16 110.00 169.00 1 035.00 35.50 122.48 42.91 64.50 14.70 8.27 24.20 61.77 13.56 1.96 660.96 8.34 2.63 0.58 1.80 2.01
    W207-12 60.87 7.17 4.04 0.09 2.38 42.10 131.00 1 183.00 33.50 76.70 56.23 85.00 18.40 11.00 17.20 46.79 7.74 1.22 716.96 4.17 1.54 0.63 1.30 1.44
    W207-11 58.94 7.42 3.68 0.09 3.26 47.80 123.00 1 221.00 25.30 80.31 41.39 85.40 17.30 11.30 12.10 34.20 5.27 1.10 739.21 4.65 1.44 0.61 1.25 1.03
    W207-10 59.52 6.99 3.30 0.09 3.67 48.20 109.00 1 167.00 25.50 89.35 38.97 85.00 21.30 10.50 8.42 36.51 3.89 1.04 712.72 4.19 1.28 0.55 1.28 0.78
    W207-09 60.49 7.18 3.35 0.08 3.12 49.70 123.00 1 201.00 22.30 79.68 44.48 81.40 19.60 10.80 9.88 31.10 4.44 1.14 734.69 4.07 1.51 0.61 1.18 0.85
    W207-08 56.21 4.61 1.45 0.07 7.47 20.30 42.70 1 035.00 1.99 20.48 10.89 31.90 6.20 4.93 3.92 4.32 2.75 0.62 735.62 3.30 1.34 0.68 1.57 0.37
    W207-07 58.08 6.97 5.13 0.09 2.58 120.00 205.00 1 347.00 38.30 126.69 59.49 88.70 16.70 11.70 24.00 54.98 11.11 1.96 894.30 7.58 2.31 0.62 1.24 2.15
    W207-06 58.82 7.18 4.61 0.09 2.38 132.00 226.00 1 448.00 29.90 82.03 58.62 88.90 16.80 10.90 22.10 41.66 9.92 2.10 981.75 4.90 2.54 0.73 1.22 1.93
    W207-05 62.54 7.11 3.27 0.11 2.31 115.00 985.00 1 445.00 20.10 104.55 53.87 98.80 16.60 10.20 19.10 28.27 8.69 9.24 982.98 6.30 9.97 0.90 1.49 1.47
    W207-04 63.01 6.93 3.04 0.08 2.38 881.00 1245.00 1 550.00 20.00 98.46 88.11 119.00 15.10 11.00 13.50 28.85 6.31 11.99 1100.02 6.53 10.46 0.93 1.22 1.05
    W207-03 43.28 4.67 3.00 0.06 12.97 31.60 213.00 1 317.00 24.60 53.78 37.51 60.90 11.30 7.40 16.90 52.71 11.66 3.04 1013.84 4.75 3.49 0.80 1.38 1.53
    W207-02 59.96 6.79 3.43 0.08 2.65 586.00 923.00 1 627.00 60.10 183.09 59.43 91.00 20.70 10.10 30.00 88.59 14.28 9.07 1186.20 8.87 10.14 0.83 1.21 2.77
    W207-01 61.15 6.47 2.98 0.09 2.92 86.20 967.00 1 972.00 55.00 209.46 45.40 85.90 17.90 9.87 27.70 85.05 13.81 9.97 1551.74 11.69 11.26 0.82 1.44 3.58
    PAAS 62.80 10.01 5.05 0.07 7.47 85.00 150.00 650.00 1.00 55.00 50.00 110.00 23.00 14.60 3.10 / / / /
    下载: 导出CSV
  • [1] 孙玮, 刘树根, 冉波, 等. 四川盆地及周缘地区牛蹄塘组页岩气概况及前景评价[J]. 成都理工大学学报: 自然科学版, 2012, 39(2): 170-175. doi: 10.3969/j.issn.1671-9727.2012.02.009

    Sun W, Liu S G, Ran B, et al. General situation and prospect evaluation of the shale gas in Niutitang Formation of Sichuan Basin and its surrounding areas[J]. Journal of Chengdu University of Technology: Science & Technology Edition, 2012, 39(2): 170-175(in Chinese with English abstract). doi: 10.3969/j.issn.1671-9727.2012.02.009
    [2] 黄金亮, 邹才能, 李建忠, 等. 川南下寒武统筇竹寺组页岩气形成条件及资源潜力[J]. 石油勘探与开发, 2012, 39(1): 69-75. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201201009.htm

    Huang J L, Zou C N, Li J Z, et al. Shale gas generation and potential of the Lower Cambrian Qiongzhusi Formation in southern Sichuan Basin, China[J]. Petroleum Exploration and Development, 2012, 39(1): 69-75(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201201009.htm
    [3] 胡琳, 朱炎铭, 陈尚斌, 等. 中上扬子地区下寒武统筇竹寺组页岩气资源潜力分析[J]. 煤炭学报, 2012, 37(11): 1871-1877. doi: 10.13225/j.cnki.jccs.2012.11.003

    Hu L, Zhu Y M, Chen S B, et al. Resource potential analysis of shale gas in Lower Cambrian Qiongzhusi Formation in middle & upper Yangtze region[J]. Journal of China Coal Society, 2012, 37(11): 1871-1877(in Chinese with English abstract). doi: 10.13225/j.cnki.jccs.2012.11.003
    [4] 梁霄, 李香华, 徐剑良, 等. 从优质烃源岩到储层: 构造-沉积分异格局下的四川盆地中西部下寒武统页岩气勘探前景[J]. 天然气工业, 2021, 41(5): 30-41. doi: 10.3787/j.issn.1000-0976.2021.05.004

    Liang X, Li X H, Xu J L, et al. Exploration prospects of Lower Cambrian shale gas in the central-western Sichuan Basin under the pattern of tectonic-depositional differentiation: From high-quality source rocks to reservoirs[J]. Natural Gas Industry, 2021, 41(5): 30-41(in Chinese with English abstract). doi: 10.3787/j.issn.1000-0976.2021.05.004
    [5] 苗凤彬, 彭中勤, 汪宗欣, 等. 雪峰隆起西缘下寒武统牛蹄塘组页岩裂缝发育特征及其主控因素[J]. 地质科技通报, 2020, 39(2): 31-42. doi: 10.19509/j.cnki.dzkq.2020.0204

    Miao F B, Peng Z Q, Wang Z X, et al. Development characteristics and major controlling factors of shale fractures in the Lower Cambrian Niutitang Formation, western margin of Xuefeng Uplift[J]. Bulletin of Geological Science and Technology, 2020, 39(2): 31-42(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0204
    [6] Zhu B, Jiang S Y, Pi D H, et al. Trace elements characteristics of black shales from the Ediacaran Doushantuo Formation, Hubei Province, South China: Implications for redox and open vs. restricted basin conditions[J]. Journal of Earth Science, 2018, 29(2): 342-352. doi: 10.1007/s12583-017-0907-5
    [7] Xiao S H, Zhang Y, Knoll A H, et al. Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite[J]. Nature, 1998, 391: 553-558. doi: 10.1038/35318
    [8] Zhu M, Gehling J G, Xiao S, et al. Eight-armed Ediacara fossil preserved in contrasting taphonomic windows from China and Australia[J]. Geology, 2008, 36(11): 867-870. doi: 10.1130/G25203A.1
    [9] Raven M R, Keil R G, Webb S M. Microbial sulfate reduction and organic sulfur formation in sinking marine particles[J]. Science, 2021, 371: 178-181. doi: 10.1126/science.abc6035
    [10] Logan G A, Hayes J M, Hieshima G B, et al. Terminal Proterozoic reorganization of biogeochemical cycles[J]. Nature, 1995, 376: 53-56. doi: 10.1038/376053a0
    [11] Scott C, Lyons T W, Kker A B, et al. Tracing the stepwise oxygenation of the Proterozoic ocean[J]. Nature, 2008, 452: 456-459. doi: 10.1038/nature06811
    [12] Chang C, Hu W, Fu Q, et al. Characterization of trace elements and carbon isotopes across the Ediacaran-Cambrian boundary in Anhui Province, South China: Implications for stratigraphy and paleoenvironment reconstruction[J]. Journal of Asian Earth Science, 2016, 125: 58-70. doi: 10.1016/j.jseaes.2016.05.014
    [13] Jin C, Li C, Algeo T J, et al. Controls on organic matter accumulation on the Early Cambrian western Yangtze Platform, South China[J]. Marine and Petroleum Geology, 2020, 111: 75-87. doi: 10.1016/j.marpetgeo.2019.08.005
    [14] Bush A M, Bambach R K, Daley G M. Changes in theoretical ecospace utilization in marine fossil assemblages between the Mid-Paleozoic and Late Cenozoic[J]. Paleobiology, 2007, 33(1): 76-97. doi: 10.1666/06013.1
    [15] Shu D, Isozaki Y, Zhang X L, et al. Birth and early evolution of metazoans[J]. Gondwana Research, 2014, 25(3): 884-895. doi: 10.1016/j.gr.2013.09.001
    [16] 赵坤, 李婷婷, 朱光有, 等. 下寒武统优质烃源岩的地球化学特征与形成机制: 以鄂西地区天柱山剖面为例[J]. 石油学报, 2020, 41(1): 13-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202001002.htm

    Zhao K, Li T T, Zhu G Y, et al. Geochemical characteristics and formation mechanism of high-quality Lower Cambrian source rocks: A case study of the Tianzhushan profile in western Hubei[J]. Acta Petrolei Sinica, 2020, 41(1): 13-26(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202001002.htm
    [17] 周国晓, 魏国齐, 胡国艺, 等. 四川盆地早寒武世裂陷槽西部页岩发育背景与有机质富集[J]. 天然气地球科学, 2020, 31(4): 498-506. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202004007.htm

    Zhou G X, Wei G Q, Hu G Y, et al. The development setting and the organic matter enrichment of the Lower Cambrian shales from the western rift trough in Sichuan Basin[J]. Natural Gas Geoscience, 2020, 31(4): 498-506(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202004007.htm
    [18] Zhang B, Yao S, Wignall P B, et al. Widespread coastal upwelling along the eastern Paleo-Tethys Margin (South China) during the Middle Permian (Guadalupian): Implications for organic matter accumulation[J]. Marine and Petroleum Geology, 2018, 97: 113-126. doi: 10.1016/j.marpetgeo.2018.06.025
    [19] Zhai L, Wu C, Ye Y, et al. Marine redox variations during the Ediacaran-Cambrian transition on the Yangtze Platform, South China[J]. Geological Journal, 2018, 53: 58-79.
    [20] Feng L, Li C, Huang J, et al. A sulfate control on marine mid-depth Euxinia on the Early Cambrian (Ca. 529-521Ma) Yangtze Platform, South China[J]. Precambrian Res., 2014, 246: 123-133. doi: 10.1016/j.precamres.2014.03.002
    [21] Guo Q, Strauss H, Zhu M, et al. High resolution organic carbon isotope stratigraphy from a slope to basinal setting on the Yangtze Platform, South China: Implications for the Ediacaran-Cambrian transition[J]. Precambrian Research, 2013, 225: 209-217. doi: 10.1016/j.precamres.2011.10.003
    [22] Wang S, Zou C, Dong D, et al. Multiple controls on the paleoenvironment of the Early Cambrian marine black shales in the Sichuan Basin, SW China: Geochemical and organic carbon isotopic evidence[J]. Marine and Petroleum Geology, 2015, 66: 660-672. doi: 10.1016/j.marpetgeo.2015.07.009
    [23] 范海经, 邓虎成, 伏美燕, 等. 四川盆地下寒武统筇竹寺组沉积特征及其对构造的响应[J]. 沉积学报, 2021, 39(4): 1004-1019. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202104018.htm

    Fan H J, Deng H C, Fu M Y, et al. Sedimentary characteristics of the Lower Cambrian Qiongzhusi Formation in the Sichuan Basin and its response to construction[J]. Acta Sedimentologica Sinica, 2021, 39(4): 1004-1019 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202104018.htm
    [24] 刘树根, 孙玮, 罗志立, 等. 兴凯地裂运动与四川盆地下组合油气勘探[J]. 成都理工大学学报: 自然科学版, 2013, 40(5): 511-520. doi: 10.3969/j.issn.1671-9727.2013.05.03

    Liu S G, Sun W, Luo Z L, et al. Xingkai taphrogenesis and petroleum exploration from Upper Sinian to Cambrian strata in Sichuan Basin, China[J]. Journal of Chengdu University of Technology: Science & Technology Edition, 2013, 40(5): 511-520(in Chinese with English abstract). doi: 10.3969/j.issn.1671-9727.2013.05.03
    [25] 侯明才, 邢凤存, 徐胜林, 等. 上扬子E-C转换期古地理格局及其地球动力学机制探讨[J]. 沉积学报, 2017, 35(5): 902-917. doi: 10.14027/j.cnki.cjxb.2017.05.004

    Hou M C, Xing F C, Xu S L, et al. Paleogeographic patterns of E-C transition period in the upper Yangtze and the geodynamic mechanism[J]. Acta Sedimentologica Sinica, 2017, 35(5): 902-917(in Chinese with English abstract). doi: 10.14027/j.cnki.cjxb.2017.05.004
    [26] Jiang G, Sohl L E, Christie-Blick N. Neoproterozoic stratigraphic comparison of the Lesser Himalaya (India) and Yangtze block (South China): Paleogeographic implications[J]. Geology, 2003, 31(10): 917-920. doi: 10.1130/G19790.1
    [27] Li Z X, Bogdanova S V, Collins A S, et al. Assembly, configuration, and break-up history of Rodinia: A synthesis[J]. Precambrian Research, 2008, 160(1/2): 179-210.
    [28] Li Z X, Evans D A D, Halverson G P. Neoproterozoic glaciations in a revised global paleogeography from the breakup of Rodinia to the assembly of Gondwana land[J]. Sedimentary Geology, 2013, 294: 219-232. doi: 10.1016/j.sedgeo.2013.05.016
    [29] Yao W H, Li Z X, Li W X, et al. Detrital provenance evolution of the Ediacaran-Silurian Nanhua foreland basin, South China[J]. Gondwana Research, 2015, 28(4): 1449-1465. doi: 10.1016/j.gr.2014.10.018
    [30] Chen Q, Sun M, Long X P, et al. Provenance study for the Paleozoic sedimentary rocks from the west Yangtze Block: Constraint on possible link of South China to the Gondwana supercontinent reconstruction[J]. Precambrian Research, 2018, 309: 271-289. doi: 10.1016/j.precamres.2017.01.022
    [31] Li C, Shi W, Cheng M, et al. The redox structure of Ediacaran and Early Cambrian oceans and its controls[J]. Science Bulletin, 2020, 65: 2141-2149. doi: 10.1016/j.scib.2020.09.023
    [32] Ding Y, Li Z W, Liu S G, et al. Sequence stratigraphy and tectono-depositional evolution of a Late Ediacaran epeiric platform in the upper Yangtze area, South China[J]. Precambrian Research, 2021, 354: 106077. doi: 10.1016/j.precamres.2020.106077
    [33] Wang R R, Xu Z Q, Santosh M, et al. Late Neoproterozoic magmatism in South Qinling, Central China: Geochemistry, zircon U-Pb-Lu-Hf isotopes and tectonic implications[J]. Tectonophysics, 2016, 683: 43-61. doi: 10.1016/j.tecto.2016.05.050
    [34] 李智武, 冉波, 肖斌, 等. 四川盆地北缘震旦纪-早寒武世隆-坳格局及其油气勘探意义[J]. 地学前缘, 2019, 26(1): 59-85. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201901008.htm

    Li Z W, Ran B, Xiao B, et al. Sinian to Early Cambrian uplift-depression framework along the northern margin of the Sichuan Basin, central China and its implications for hydrocarbon exploration[J]. Earth Science Frontiers, 2019, 26(1): 59-85(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201901008.htm
    [35] 王瀚. 上扬子北缘震旦纪-早寒武世沉积-构造格局及其油气地质意义[D]. 成都: 成都理工大学, 2020.

    Wang H. Sedimentary structural pattern and its significance of petroleum geology from Sinian to Early Cambrian in northern margin of Upper Yangtze[D]. Chengdu: Chengdu University of Technology, 2020 (in Chinese with English abstract).
    [36] 李承森. 生物进化的重大事件: 陆地植物的起源及其研究的新进展[J]. 中国科学基金, 1994 (4): 7. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJJ199404002.htm

    Li C S. Origin of lang plants is an important event of life evolution[J]. Bulletin of National Natural Science Foundation of China, 1994 (4): 7 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJJ199404002.htm
    [37] 夏国栋, 冉波, 刘树根, 等. 绵阳-长宁拉张槽北段麦地坪组烃源岩特征: 以绵竹清平剖面为例[J]. 成都理工大学学报: 自然科学版, 2018, 45(1): 14-26. doi: 10.3969/j.issn.1671-9727.2018.01.02

    Xia G D, Ran Bo, Liu S G, et al. Characteristics of hydrocarbon source rocks of the Lower Cambrian Maidiping Formation in northern Mianyang-Changning intracratonic sag, Sichuan, China[J]. Journal of Chengdu University of Technology: Science & Technology Edition, 2018, 45(1): 14-26. doi: 10.3969/j.issn.1671-9727.2018.01.02
    [38] 梁霄. 川西坳陷北段复杂地质构造背景下深层海相油气成藏过程研究[D]. 成都: 成都理工大学, 2022.

    Liang X. The deep marine hydrocarbon accumulation process under complex tectonic background in the northern segment of western Sichuan Depression[D]. Chengdu: Chengdu University of Technology, 2020(in Chinese with English abstract).
    [39] 张振苓, 邬立言, 脱奇, 等. 烃源岩热解分析参数Tmax异常值的还原[J]. 石油勘探与开发, 2007, 34(5): 580-584. doi: 10.3321/j.issn:1000-0747.2007.05.011

    Zhang Z L, Wu L Y, Tuo Qi, et al. Abnormal value recovery of maturity parameter Tmax for rock-eval[J]. Petroleum Exploration and Development, 2007, 34(5): 580-584(in Chinese with English abstract). doi: 10.3321/j.issn:1000-0747.2007.05.011
    [40] Goldberg T, Strauss H, Guo Q, et al. Reconstructing marine redox conditions for the Early Cambrian Yangtze Platform: Evidence from biogenic sulphur and organic carbon isotopes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254: 175-193. doi: 10.1016/j.palaeo.2007.03.015
    [41] Schoepfer S D, Shen J, Wei H, et al. Total organic carbon, organic phosphorus, and biogenic barium fluxes as proxies for paleomarine productivity[J]. Earth-Science Review, 2015, 149: 23-52. doi: 10.1016/j.earscirev.2014.08.017
    [42] Chen L, Zhong H, Hu R Z, et al. Composition of organic carbon isotope of Early Cambrian black shale in the Xiang-Qian area and its significances[J]. Journal of Mineralogy and Petrology, 2006, 26: 81-85.
    [43] Guo Q, Shields G A, Liu C, et al. Trace element chemostratigraphy of two Ediacaran-Cambrian successions in South China: Implications for organosedimentary metal enrichment and silicification in the Early Cambrian[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254: 194-216. doi: 10.1016/j.palaeo.2007.03.016
    [44] Och L M, Shields-Zhou G A, Poulton S W, et al. Redox changes in Early Cambrian black shales at Xiaotan section, Yunnan Province, South China[J]. Precambrian Research, 2013, 225: 166-189. doi: 10.1016/j.precamres.2011.10.005
    [45] Pi D, Liu C, Shields-Zhou G A, et al. Trace and rare earth element geochemistry of black shale and kerogen in the Early Cambrian Niutitang Formation in Guizhou Province, South China: Constraints for redox environments and origin of metal enrichments[J]. Precambrian Research, 2013, 225: 218-229.
    [46] Spangenberg J E, Bagnoud-Velásquez M, Boggiani P C, et al. Redox variations and bioproductivity in the Ediacaran: Evidence from inorganic and organic geochemistry of the Corumbá Group, Brazil[J]. Gondwana Research, 2014, 26: 1186-1207.
    [47] Taylor S R, Mclennan S M. The continental crust: Its composition and evolution[J]. The Journal of Geology, 1985, 94: 57-72.
    [48] Kraal P, Slomp C P, Forster A, et al. Phosphorus cycling from the margin to abyssal depths in the proto-Atlantic during oceanic anoxic event 2[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 295: 42-54.
    [49] Westermann S, Stein M, Matera V, et al. Rapid changes in the redox conditions of the western Tethys Ocean during the early Aptian oceanic anoxic event[J]. Geochimica et Cosmochimica Acta, 2013, 121: 467-486.
    [50] März C, Poulton S W, Beckmann B, et al. Redox sensitivity of P cycling during marine black shale formation: Dynamics of sulfidic and anoxic, non-sulfidic bottom waters[J]. Geochimica et Cosmochimica Acta, 2008, 72: 3703-3717.
    [51] Algeo T J, Ingall E. Sedimentary Corg: P ratios, paleocean ventilation, and Phanerozoic atmospheric pO2[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 256: 130-155.
    [52] Jones B, Manning D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111: 111-129.
    [53] Algeo T, Shen Y, Zhang T, et al. Association of 34S-depleted pyrite layers with negative carbonate δ13C excursions at the Permian-Triassic boundary: Evidence for upwelling of sulfidic deep-ocean water masses[J]. Geochemistry Geophysics Geosystems, 2008, 9(4): 5-6.
    [54] Zhang J, Fan T, Algeo T J, et al. Paleo-marine environments of the Early Cambrian Yangtze Platform[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 443: 66-79.
    [55] Shen J, Schoepfer S D, Feng Q, et al. Marine productivity changes during the end-Permian crisis and Early Triassic recovery[J]. Earth-Science Review, 2015, 149: 136-162.
    [56] Reinhard C T, Planavsky N J, Gill B C, et al. Evolution of the global phosphorus cycle[J]. Nature, 2016, 541: 386-389.
    [57] Stroobants N, Dehairs F, Goeyens L, et al. Barite formation in the southern ocean water column[J]. Marine Chemistry, 1991, 35: 411-421.
    [58] Breymann M, Emeis K, Suess E, et al. Water depth and diagenetic constraints on the use of barium as a palaeoproductivity indicator[J]. Geological Society, 1992, 64(1): 273-283.
    [59] 张烈辉, 唐洪明, 陈果, 等. 川南下志留统龙马溪组页岩吸附特征及控制因素[J]. 天然气工业, 2014, 34(12): 63-69. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201412012.htm

    Zhang L H, Tang H M, Chen G, et al. Adsorption capacity and controlling factors of the Lower Silurian Longmaxi shale play in southern Sichuan Basin[J]. Natural Gas Industry, 2014, 34(12): 63-69 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201412012.htm
    [60] 石学文, 周尚文, 田冲, 等. 川南地区海相深层页岩气吸附特征及控制因素[J]. 天然气地球科学, 2021, 32(11): 1735-1747. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202111014.htm

    Shi X W, Zhou S W, Tian C, et al. Methane adsorption characteristics and controlling factors of deep shale gas in southern Sichuan Basin, China[J]. Natural Gas Geoscience, 2021, 32(11): 1735-1747 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202111014.htm
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  560
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-15
  • 网络出版日期:  2022-11-10

目录

    /

    返回文章
    返回