留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

川东北普光地区下三叠统飞仙关组岩溶段的地质意义

梁欣阳 付德奎 张宁 高秋灵 张雄华 陈建

梁欣阳, 付德奎, 张宁, 高秋灵, 张雄华, 陈建. 川东北普光地区下三叠统飞仙关组岩溶段的地质意义[J]. 地质科技通报, 2022, 41(5): 386-394. doi: 10.19509/j.cnki.dzkq.2022.0164
引用本文: 梁欣阳, 付德奎, 张宁, 高秋灵, 张雄华, 陈建. 川东北普光地区下三叠统飞仙关组岩溶段的地质意义[J]. 地质科技通报, 2022, 41(5): 386-394. doi: 10.19509/j.cnki.dzkq.2022.0164
Liang Xinyang, Fu Dekui, Zhang Ning, Gao Qiuling, Zhang Xionghua, Chen Jian. Geological significance of karst section of Lower Triassic Feixianguan Formation in Puguang area, Northeast Sichuan[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 386-394. doi: 10.19509/j.cnki.dzkq.2022.0164
Citation: Liang Xinyang, Fu Dekui, Zhang Ning, Gao Qiuling, Zhang Xionghua, Chen Jian. Geological significance of karst section of Lower Triassic Feixianguan Formation in Puguang area, Northeast Sichuan[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 386-394. doi: 10.19509/j.cnki.dzkq.2022.0164

川东北普光地区下三叠统飞仙关组岩溶段的地质意义

doi: 10.19509/j.cnki.dzkq.2022.0164
基金项目: 

中国石油化工股份有限公司中原油田普光分公司项目"普光地区海相层序地层特征及控制因素研究" 31301845-20-ZC0613-0026

详细信息
    作者简介:

    梁欣阳(1996—),男,现正攻读地质学专业硕士学位,主要从事地质学研究工作。E-mail:li314721619@163.com

    通讯作者:

    张宁(1965—),女,教授,主要从事牙形石生物地层学、沉积学及碳酸盐岩微相等相关方面的研究。E-mail:344812098@qq.com

  • 中图分类号: P642.25

Geological significance of karst section of Lower Triassic Feixianguan Formation in Puguang area, Northeast Sichuan

  • 摘要:

    川东北地区飞仙关组发育碳酸盐岩储层, 是普光气田天然气的主要产出层位。在飞仙关组四段的划分中, 前人研究对飞一段与飞二段间是否存在不整合面这一问题有较大争议。对普光地区现有的4口钻井开展了岩心观察, 在飞一-飞二段中部发现了岩溶角砾段, 且在该段上下发现了一定的岩性分界面。飞一段底部为细晶白云岩, 而飞一段顶部至飞二段开始发育鲕粒及模铸孔。采取PG104-1井岩心样品并进行了碳氧同位素测试, 其碳同位素值普遍正偏, 而氧同位素值均大于-5‰, 指示相关流体为大气淡水流体, 说明岩溶角砾段底部经历了一定时间的暴露, 沉积间断发育。综合界面上下出现的碳氧同位素差异, 模铸孔的出现及消失以及测井曲线的变化等因素, 认为飞一段与飞二段的界限可以由因准同生岩溶而发育的岩溶角砾段划分并表征。

     

  • 图 1  普光气田及探井地理位置

    Figure 1.  Geographical location of Puguang Gas Field and exploration wells

    图 2  PG304-1井飞仙关组地层柱状图(图中橙色矩形表示角砾发育位置)

    Figure 2.  Stratigraphic column of Feixianguan Formation of Well PG304-1

    图 3  岩溶段发育示意图

    Figure 3.  Sketch of karst section

    图 4  岩溶段岩心及薄片照片

    a.大规模溶孔, PG102-1井,5 624.5 m;b.岩溶角砾,PG302-1井,5 337 m;c.后生方解石晶体充填,PG304-1井,5 544.2 m;d.沟槽状溶孔,PG104-1井,5 718 m;e.鲕粒中的模铸孔,PG104-1井,5 719 m;f.变晶残余鲕粒,红色铸体,PG302-1,5 330 m:g.变晶残余鲕粒, 含模铸孔, 红色铸体, PG302-1井,5 368 m;h.角砾间填隙有机质和基质,PG304-1井,5 532 m;i.角砾间填隙有机质和基质,PG304-1井, 5 545 m

    Figure 4.  Photos of cores and slices of karst section

    图 5  碳、氧同位素交会图

    Figure 5.  Cross plot of carbon and oxygen isotopes

    图 6  PG104-1井飞一-飞二段界限柱状图(图中橙色矩形表示模铸孔发育范围,红横线代表飞一、二段的分界线)

    Figure 6.  Bar graph of the boundary of T1f1 and T1f2 in Well PG104-1

    图 7  野外露头与岩心上发育的岩溶角砾段

    a,b.崩塌的岩溶角砾岩,四川省宣汉县土家新寨;c.岩溶角砾段,PG104-1井,深度5 719.30 m;d.具大量溶孔的岩溶角砾段,PG104-1井,深度5 720.50 m

    Figure 7.  Karst breccia section outcropping in the field and the cores

    图 8  四川盆地东北部PG104-1井鲕粒白云岩铸体薄片照片

    a.鲕模铸孔, 开始出现示顶底构造, 下部暗色的为渗流粉砂(黄色箭头指示),上部为亮晶方解石或无充填(白色箭头指示),5 707 m;b.富含具示底构造的鲕模铸孔(箭头指示意义同上),5 718 m;c.鲕模铸孔含量减少,5 720 m;d.粒间溶孔,几乎没有模铸孔,5 722 m

    Figure 8.  Photos of slice of oolite dolomite casting body of Well PG104-1 in Northeast Sichuan Basin

    表  1  PG104-1井碳、氧同位素值及Z

    Table  1.   Carbon and oxygen isotopes and Z value of Well PG104-1

    井号 盒号 δ13C/‰ δ18O/‰ Z 13C内精度 18O内精度
    104-1 14 2.22 -3.39 130.161 846 3 0.009 912 954 0.035 939
    20 2.07 -3.66 129.710 056 8 0.032 282 606 0.035 972
    28 1.80 -4.63 128.676 834 9 0.026 793 034 0.036 636
    32 1.90 -4.70 128.851 398 4 0.023 880 955 0.005 718
    34 1.93 -4.15 129.197 900 6 0.031 981 245 0.032 285
    36 1.93 -3.67 129.420 870 1 0.026 785 568 0.028 077
    38 2.02 -3.27 129.797 660 9 0.034 662 179 0.036 560
    40 1.78 -4.47 128.723 326 1 0.024 669 144 0.048 083
    44 1.89 -4.38 128.996 090 0 0.027 868 740 0.019 500
    48 2.01 -4.94 128.950 678 2 0.023 007 970 0.018 239
    50 1.97 -4.57 129.051 854 1 0.019 681 633 0.042 326
    56 2.00 -4.42 129.193 908 1 0.029 371 188 0.016 216
    58 1.85 -4.48 128.846 230 7 0.012 339 638 0.025 500
    60 2.34 -3.22 130.488 780 5 0.032 259 366 0.026 676
    62 1.98 -4.85 128.930 568 8 0.014 829 026 0.024 339
    64 1.87 -4.71 128.774 386 2 0.024 287 171 0.027 528
    66 1.96 -4.75 128.945 819 8 0.030 611 545 0.019 813
    70 1.85 -4.45 128.8 811 159 0.021 642 551 0.008 050
    72 1.86 -4.27 128.973 923 7 0.018 413 763 0.026 985
    80 2.04 -3.27 129.847 228 8 0.017 862 437 0.027 983
    82 2.20 -2.97 130.334 468 0 0.021 924 112 0.035 646
    86 1.92 -4.42 129.033 282 6 0.026 703 308 0.021 995
    均值 1.97 -4.16 129.26
    注:Z为无量纲盐度表征值
    下载: 导出CSV

    表  2  古岩溶分类特征与判别指标

    Table  2.   Classification characteristics and judgment indexes of paleokarst

    岩溶类别 岩溶流体 作用对象 δ13C值/‰ δ18O值/‰
    准同生岩溶 (含CO2)大气淡水流体 未固结成岩碳酸盐沉积物 -1~2 -10~-5
    风化岩溶 大气淡水流体 已经固结成岩、完成矿物稳定化转变后碳酸盐岩 -10~3 绝大多数小于-5,一般在-10左右
    深埋岩溶 有机酸或热硫酸盐流体 深埋地下数十米处的碳酸盐岩 -2~2 -8~-6
    下载: 导出CSV
  • [1] 马永生. 中国海相油气田勘探实例之六四川盆地普光大气田的发现与勘探[J]. 海相油气地质, 2006, 11(2): 35-40. doi: 10.3969/j.issn.1672-9854.2006.02.006

    Ma Y S. Cases of discovery and exploration of marine fields in China (Part 6): Puguang Gas Field in Sichuan Basin[J]. Marine Origin Petroleum Geology, 2006, 11(2): 35-40(in Chinese with English abstract). doi: 10.3969/j.issn.1672-9854.2006.02.006
    [2] Ma Y S, Guo T L, Zhao X F, et al. The formation mechanism of high-quality dolomite reservoir in the deep of Puguang Gas Field[J]. Science in China, 2008, 51(S1): 53-64. doi: 10.1007/s11430-008-5008-y
    [3] 马永生, 蔡勋育, 郭旭升, 等. 普光气田的发现[J]. 中国工程科学, 2010, 12(10): 14-23. doi: 10.3969/j.issn.1009-1742.2010.10.003

    Ma Y S, Cai X Y, Guo X S, et al. The discovery of Puguang Gas Field[J]. Chinese Engineering Science, 2010, 12 (10): 14-23(in Chinese with English abstract). doi: 10.3969/j.issn.1009-1742.2010.10.003
    [4] Ma Y S, He D F, Cai X Y, et al. Distribution and fundamental science questions for petroleum geology of marine carbonate in China[J]. Acta Petrologica Sinica, 2017, 33(4): 1007-1020.
    [5] 王利霞, 赵真, 陈建, 等. 普光气田层序格架地质特征[J]. 石化技术, 2015, 22(2): 71. doi: 10.3969/j.issn.1006-0235.2015.02.044

    Wang L X, Zhao Z, Chen J, et al. Geological characteristics of sequence framework of Puguang Gasfield[J]. Petrochemical Technology, 2015, 22(2): 71(in Chinese with English abstract). doi: 10.3969/j.issn.1006-0235.2015.02.044
    [6] Xie Q, Wang Z, Ouyang Y, et al. Sequence stratigraphy and sedimentary facies of Feixianguan Formation in the Kaijiang-Liangping area of Sichuan Basin, China[J]. Open Journal of Geology, 2020, 10(6): 641-660. doi: 10.4236/ojg.2020.106029
    [7] 周路, 任本兵, 吴勇, 等. 四川盆地北部地区飞仙关组鲕粒滩地震响应特征与分布预测[J]. 地质科学, 2016, 51(2): 425-447.

    Zhou L, Ren B B, Wu Y, et al. Seismic response characteristics and distribution prediction of oolitic beach of Feixianguan Formation in northern Sichuan Basin[J]. Geoscience, 2016, 51(2): 425-447(in Chinese with English abstract).
    [8] 黄可可, 黄思静, 胡作维, 等. 四川盆地宣汉渡口和重庆北碚下三叠统海相碳酸盐碳同位素组成与演化[J]. 古地理学报, 2016, 18(1): 101-114.

    Huang K K, Huang S J, Hu Z W, et al. Carbon isotopic composition and evolution of Lower Triassic marine carbonates in Xuanhan ferry, Sichuan Basin and Beibei, Chongqing[J]. Journal of Paleogeography, 2016, 18 (1): 101-114(in Chinese with English abstract).
    [9] 张春宇, 管树巍, 吴林, 等. 塔西北地区下寒武统碳酸盐岩地球化学特征及其古环境意义: 以舒探1井为例[J]. 地质科技通报, 2021, 40(5): 99-111. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202105013.htm

    Zhang C Y, Guan S W, Wu L, et al. Geochemical characteristics and its paleo-environmental significance of Lower Cambrian carbonate in the northwestern Tarim Basin: A case study from Well Shutan-1[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 99-111(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202105013.htm
    [10] 李长海, 赵伦, 刘波, 等. 碳酸盐岩裂缝研究进展及发展趋势[J]. 地质科技通报, 2021, 40(4): 31-48. doi: 10.19509/j.cnki.dzkq.2021.0403

    Li C H, Zhao L, Liu B, et al. Research status and development trend of fractures in carbonate reservoir[J]Bulletin of Geological Science and Technology, 2021, 40(4): 31-48(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0403
    [11] Song H, Tong J, Algeo T J, et al. Large vertical δ13CDIC gradients in Early Triassic seas of the South China craton: Implications for oceanographic changes related to Siberian Traps volcanism[J]. Global and Planetary Change, 2013, 105: 7-20. doi: 10.1016/j.gloplacha.2012.10.023
    [12] 杨文莉, 仲钰天, 辛浩, 等. 安徽巢湖凤凰山晚古生代大冰期沉积特征与碳同位素变化[J]. 地层学杂志, 2021, 45(1): 38-48. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ202101005.htm

    Yang W L, Zhong Y T, Xin H, et al. Sedimentary characteristics and carbon isotope changes during the late Paleozoic great glacial period in Fenghuangshan, Chaohu, Anhui[J]. Journal of Stratigraphy, 2021, 45 (1): 38-48(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ202101005.htm
    [13] 刘安, 陈林, 陈孝红, 等. 湘中坳陷泥盆系碳氧同位素特征及其古环境意义[J]. 地球科学, 2021, 46(4): 1269-1281. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202104008.htm

    Liu A, Chen L, Chen X H, et al. Carbon and oxygen isotopic characteristics and paleoenvironmental significance of Devonian in Xiangzhong Depression[J]. Earth Science, 2021, 46 (4): 1269-1281(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202104008.htm
    [14] Machel H G. Concepts and models of dolomitization: A critical reappraisal[J]. Geological Society of London Special Publications, 2004, 235(1): 7-63.
    [15] Bishop J W, Osleger D A, Montanez I P, et al. Meteoric diagenesis and fluid-rock interaction in the Middle Permian Capitan backreef: Yates Formation, Slaughter Canyon, New Mexico[J]. AAPG Bulletin, 2014, 98(8): 1495-1519.
    [16] Qie W K, Zhang X H, Du Y S, et al. Lower Carboniferous carbon isotope stratigraphy in South China: Implications for the late Paleozoic glaciation[J]. Science China(Earth Science), 2011, 54(1): 84-92.
    [17] Kump L R, Arthur M A. Interpreting carbon-isotope excursions: Carbonates and organic matter[J]. Chemical Geology, 1999, 161(1/3): 181-198.
    [18] Mabrouk A, Belayouni H, Arvis I, et al. Strontium, δ18O and δ13C as palaeo-indicators of unconformities: Case of the Aleg and Abiod formations (Upper Cretaceous) in the Miskar Field, southeastern Tunisia[J]. Geochemical Journal, 2007, 40(4): 405-424.
    [19] 储雪蕾, 张同钢, 张启锐, 等. 蓟县元古界碳酸盐岩的碳同位素变化[J]. 中国科学: 地球科学, 2003, 33(10): 951-959. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200310004.htm

    Chu X L, Zhang T G, Zhang Q R, et al. Carbon isotope changes of Proterozoic carbonate rocks in Jixian[J]. Science in China: Earth Science, 2003, 33(10): 951-959(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200310004.htm
    [20] 曲长胜, 邱隆伟, 杨勇强, 等. 吉木萨尔凹陷芦草沟组碳酸盐岩碳氧同位素特征及其古湖泊学意义[J]. 地质学报, 2017, 91(3): 605-616.

    Qu C S, Qiu L W, Yang Y, et al. Carbon and oxygen isotopic characteristics of carbonate rocks of Lucaogou Formation in Jimusar Sag and its paleolimnological significance[J]. Journal of Geology, 2017, 91(3): 605-616(in Chinese with English abstract).
    [21] Kaufman A J, Knoll A H. Neoproterozoic variations in the C-isotopic composition of seawater: Stratigraphic and biogeochemical implications[J]. Precambrian Research, 1995, 73(1/4): 27-49.
    [22] Adefris D, Nton M E, Boboye O A, et al. Petrography and stable oxygen and carbon isotopic composition of the Antalo limestone, Mekelle Basin, Northern Ethiopia: Implications for marine environment and deep-burial diagenesis[J]. Carbonates and Evaporites, 2020, 35(4): 1-17.
    [23] 蒋融. 中国古岩溶环境与成因特征综述[J]. 石化技术, 2017, 24(5): 113-114, 104.

    Jiang R. Overview of paleokarst environment and genetic characteristics in China[J]. Petrochemical Technology, 2017, 24 (5): 113-114, 104(in Chinese with English abstract).
    [24] 陈景山, 李忠, 王振宇, 等. 塔里木盆地奥陶系碳酸盐岩古岩溶作用与储层分布[J]. 沉积学报, 2007, 25(6): 858-868. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200706007.htm

    Chen J S, Li Z, Wang Z Y, et al. Paleokarst and reservoir distribution of Ordovician carbonate rocks in Tarim Basin[J]. Journal of Sedimentation, 2007, 25 (6): 858-868(in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200706007.htm
    [25] 于洋. 普光气田三叠系飞仙关组深埋优质白云岩储层成因机理[D]. 成都: 西南石油大学, 2015.

    Yu Y. Genetic mechanism of deep buried high-quality dolomite reservoir of Triassic Feixianguan Formation in Puguang Gasfield[D]. Chengdu: Southwest Petroleum University, 2015(in Chinese with English abstract).
    [26] 张庆玉, 秦凤蕊, 陈永权, 等. 塔里木盆地麦盖提斜坡群古三维区奥陶系碳酸盐岩古岩溶储层特征[J]. 地质科技情报, 2016, 35(3): 186-192.

    Zhang Q Y, Qin F R, Chen Y Q, et al. Characteristics of Ordovician carbonate paleokarst reservoir in paleo3d area of Maigaiti Slope Group, Tarim Basin[J]. Geological Science and Technology Information, 2016, 35(3): 186-192(in Chinese with English abstract).
    [27] 张亚美, 黄文辉, 丁文龙, 等. 塔里木盆地玉北地区奥陶系碳酸盐岩成岩演化[J]. 地质科技情报, 2014, 33(5): 34-42. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201405005.htm

    Zhang Y M, Huang W H, Ding W L, et al. Diagenetic evolution of Ordovician carbonate rocks in Yubei area of Tarim Basin[J]. Geological Science and Technology Information, 2014, 33 (5): 34-42(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201405005.htm
    [28] James N P, Choquette P W. Paleokarst[M]. New York: Springer, 1988.
    [29] 张秀莲. 碳酸盐岩中氧、碳稳定同位素与古盐度、古水温的关系[J]. 沉积学报, 1985, 3(4): 20-33. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB198504001.htm

    Zhang X L. Relationship between carbon and oxygen stable isotopes of in carbonate rocks and paleosalinity and paleotemperature of seawater[J]. Acta Sedimentologica Sinica, 1985, 3(4): 20-33(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB198504001.htm
    [30] Huang X, Aretz M, Zhang X H, et al. Pennsylvanian-Early Permian palaeokarst development on the Yangtze Platform, South China, and implications for the regional sea-level history[J]. Geological Journal, 2017, 53(4): 1241-1262.
    [31] Zuo J X. Carbon isotope composition of the Lower Triassic marine carbonates, Lower Yangtze Region, South China[J]. Science in China: Earth Sciences, 2006, 4(3): 225-241.
    [32] Paula-Santos G M, Campanha G, Faleiros F M, et al. Carbon isotope variations of high magnitude recorded in carbonate rocks from the Stenian-Tonian Lajeado Group, Southeast Brazil[J]. Journal of South American Earth Sciences, 2021, 109(1/4): 103268.
    [33] 王双. 花溪燕楼早三叠世印度期生物复苏过程中的古海洋环境研究[D]. 贵阳: 贵州大学, 2018.

    Wang S. Study on paleomarine environment during Early Triassic Indosinian biological recovery in Yanlou, Huaxi[D]. Guiyang: Guizhou University, 2018(in Chinese with English abstract).
    [34] Viezer J, Hoefs J. The nature of 18O/16O and 13C/12C secular trends in sedimentary carbonate rocks[J]. Geochimica et Cosmochimica Acta, 1976, 40: 133-149.
    [35] Sibley D F. Climatic control of dolomitization, Seroe Domi Formation (Pliocene), Bonaire, N.A. [C]//Zenger D H, Dunham J B, Ethington R L. Concepts and models of dolomitization. Beijing: Society for Sedimentary Geology, 1980.
    [36] Tucker M E, Wright V P. Carbonate sedimentology[M]. New Jersey: Wiley-Blackwell Press, 1990.
    [37] 贾振远, 蔡忠贤. 碳酸盐岩古风化壳储集层(体)研究[J]. 地质科技情报, 2004, 23(4): 94-104. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200404019.htm

    Jia Z Y, Cai Z X. Study on carbonate paleoweathering crust reservoir (body)[J]. Geological Science and Technology Information, 2004, 23(4): 94-104(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200404019.htm
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  500
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-01
  • 网络出版日期:  2022-11-10

目录

    /

    返回文章
    返回