留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

连续排水边界下成层陆域吹填地基一维固结解析解

张云鹏 王宗琴 宗梦繁 吴文兵 王立兴

张云鹏, 王宗琴, 宗梦繁, 吴文兵, 王立兴. 连续排水边界下成层陆域吹填地基一维固结解析解[J]. 地质科技通报, 2023, 42(3): 38-45. doi: 10.19509/j.cnki.dzkq.2022.0171
引用本文: 张云鹏, 王宗琴, 宗梦繁, 吴文兵, 王立兴. 连续排水边界下成层陆域吹填地基一维固结解析解[J]. 地质科技通报, 2023, 42(3): 38-45. doi: 10.19509/j.cnki.dzkq.2022.0171
Zhang Yunpeng, Wang Zongqin, Zong Mengfan, Wu Wenbing, Wang Lixing. Analytical solution for one-dimensional consolidation in layered filled soil based on continuous boundary conditions[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 38-45. doi: 10.19509/j.cnki.dzkq.2022.0171
Citation: Zhang Yunpeng, Wang Zongqin, Zong Mengfan, Wu Wenbing, Wang Lixing. Analytical solution for one-dimensional consolidation in layered filled soil based on continuous boundary conditions[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 38-45. doi: 10.19509/j.cnki.dzkq.2022.0171

连续排水边界下成层陆域吹填地基一维固结解析解

doi: 10.19509/j.cnki.dzkq.2022.0171
基金项目: 

国家自然科学基金项目 52178371

浙江省杰出科学基金项目 LR21E080005

详细信息
    作者简介:

    张云鹏(1995—),男,现正攻读地质工程专业博士学位,主要从事土体固结理论与桩基动力学方面的研究工作。E-mail: zypsky@cug.edu.cn

    通讯作者:

    吴文兵(1988—),男,教授,博士生导师,主要从事土体固结理论与桩基动力学方面的研究与教学工作。E-mail:zjuwwb1126@163.com

  • 中图分类号: TU41

Analytical solution for one-dimensional consolidation in layered filled soil based on continuous boundary conditions

  • 摘要:

    新近吹填地基的固结效应十分显著,地基土内超静孔隙水压力的消散将引起地表的整体沉降,对吹填地基上基础工程的稳定性产生不利影响。基于连续排水边界,综合考虑吹填土的自重和下伏原状海床的成层特性,建立了吹填土自重驱动下的吹填地基-原状海床一维固结方程,并基于本征函数法推导了孔隙水压力响应、固结度等的解析解。通过边界条件和模型的退化,验证了解答的正确性。利用该解答讨论了吹填土自重、成层地基模量、时间因数、地表附加荷载等时空条件对吹填地基固结沉降的影响。研究结果表明:①吹填土自重是吹填地基固结的驱动因素,在实际工程中不可忽略;②土体渗透系数对超静孔隙水压力的影响较为复杂,某一层土的渗透性改变后,对其上覆和下伏土层的超静孔隙水压力将产生相反的影响;③土层的体积压缩系数对超静孔隙水压力的影响十分显著,且深部土体的体积压缩系数影响更大;④地表堆载等引起的附加荷载会减缓超静孔隙水压力的消散。

     

  • 图 1  首个填海造陆机场——大连金州湾国际机场[1]

    Figure 1.  First sea reclamation airport: Dalian Jinzhou Bay International Airport

    图 2  成层陆域吹填地基数学模型

    kvimvi分别为第i层土的渗透系数和体积压缩系数;Hhi分别表示地基总厚度和第i层土的厚度;zi为第i层地基距离土体表面的厚度;γ′为吹填土的有效重度;σ(x)为x处土体的有效应力分布;x为土体距离土体表面的深度

    Figure 2.  Mathematical model of layered soil in reclamation area

    图 3  连续排水边界退化后超静孔隙水压力和土体沉降曲线

    Figure 3.  Excess pore water pressure and soil settlement curve after degradation of continuous drainage boundary

    图 4  不同吹填土有效重度(γ′)的超静孔隙水压力(a)和土体沉降(b)曲线(α, a, b均为无量纲参数; q为均布荷载;γ′为有效重度;Tv为时间因数;图 5

    Figure 4.  Influence of effective weight of filled soil: excess pore water pressure (a) and soil settlement (b)

    图 5  不同吹填土厚度(h1)的超静孔隙水压力(a)和土体沉降(b)曲线

    Figure 5.  Influence of height of filled soil: excess pore water pressure (a) and soil settlement (b)

    图 6  不同渗透系数(kvi)时超静孔隙水压力曲线

    Figure 6.  Influence of permeability on excess pore water pressure

    图 7  不同渗透系数(kvi)和时间因数(Tv)时超静孔隙水压力曲线

    Figure 7.  Influence of permeability and time factor on excess pore water pressure

    图 8  不同压缩系数(mvi)时超静孔隙水压力曲线

    Figure 8.  Influence of compressibility on excess water pressure

    图 9  不同时间因数(Tv)时超静孔隙水压力曲线

    Figure 9.  Influence of surcharge loads on excess pore water pressure

    图 10  不同界面参数(α)时平均固结度(Us)曲线

    Figure 10.  Influence of interface parameters on average degree of consolidation

    图 11  不同均布荷载(q0)下超静孔隙水压力曲线

    Figure 11.  Influence of surcharge loads on excess pore water pressure

  • [1] 游乐无限. 大连金州湾国际机场将为我国首个填海造陆机场和世界最大海上机场[EB/OL]. (2020-06-16)[2022-04-20]. https://baijiahao.baidu.com/s?id=1669651860739964373&wfr=spider&for=p).
    [2] 杨顺安, 张瑛玲, 刘虎中, 等. 深圳地区吹填淤泥的工程特征[J]. 地质科技情报, 1997, 16(1): 87-91. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ701.015.htm

    Yang S A, Zhang Y L, Liu H Z, et al. Engineering characteristics of blow-filled soft clay in Shenzhen area[J]. Geological Science and Technology Information, 1997, 16(1): 87-91(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ701.015.htm
    [3] 李静, 张亚年, 梁杏, 等. 江苏滨海平原弱透水层封存的古咸水及其运移过程[J]. 地质科技通报, 2022, 41(1): 90-98. doi: 10.19509/j.cnki.dzkq.2021.0158

    Li J, Zhang Y N, Liang X, et al. Paleo-salt porewater trapped in the clayey aquitard and its transport processes in Jiangsu coastal plain[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 90-98(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0158
    [4] 赵帆程, 苗发盛, 吴益平, 等. 不同环剪条件下三峡库区童家坪滑坡滑带土强度特性[J]. 地质科技通报, 2022, 41(2): 315-324. doi: 10.19509/j.cnki.dzkq.2022.0045

    Zhao F C, Miao F S, Wu Y P, et al. Strength characteristics of slip zone soils of the Tongjiaping landslide in the Three Gorges Reservoir area under different ring shear conditions[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 315-324 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0045
    [5] Xu G Z, Gao Y F, Hong Z S, et al. Sedimentation behavior of four dredged slurries in China[J]. Marine Georesources and Geotechnology, 2012, 30(2): 143-156. doi: 10.1080/1064119X.2011.602382
    [6] 张楠, 朱伟, 王亮, 等. 吹填泥浆中土颗粒沉降-固结规律研究[J]. 岩土力学, 2013, 34(6): 1681-1686. doi: 10.16285/j.rsm.2013.06.011

    Zhang N, Zhu W, Wang L, et al. Study of sedimentation and consolidation of soil particles in dredged slurry[J]. Rock and Soil Mechanics, 2013, 34(6): 1681-1686(in Chinese with English abstract). doi: 10.16285/j.rsm.2013.06.011
    [7] Sridharan A, Prakash K. Self weight consolidation: Compressibility behavior of segregated and homogeneous finegrained sediments[J]. Marine Georesources and Geotechnology, 2003, 21(2): 73-80. doi: 10.1080/716100484
    [8] 张先伟, 杨爱武, 孔令伟, 等. 天津滨海吹填泥浆的自重沉降固结特性研究[J]. 岩土工程学报, 2016, 38(5): 769-776. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201605001.htm

    Zhang X W, Yang A W, Kong L W, et al. Self-weight sedimentation and consolidation characteristics of hydraulic-dredged slurry in Tianjin Binhai district[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 769-776(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201605001.htm
    [9] Terzaghi K. Erdbaumechanik auf bodenphysikalischer grundlage[M]. Vienna: Leipzig Deuticke, 1925: 175-176.
    [10] 余子烨, 翟国君, 梅国雄, 等. 循环荷载作用下连续排水边界双层土一维固结[J]. 华中科技大学学报: 自然科学版, 2021, 49(1): 99-105. https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG202101017.htm

    Yu Z Y, Zhai G J, Mei G X, et al. One-dimensional consolidation of double-layered soft with continuous drainage boundaries under cyclic loading[J]. Huazhong University of Science and Technology: Natural Science Edition, 2021, 49(1): 99-105(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG202101017.htm
    [11] 宗梦繁, 吴文兵, 梅国雄, 等. 连续排水边界条件下土体一维流变固结解析解[J]. 工程力学, 2019, 36(9): 79-88. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201909011.htm

    Zong M F, Wu W B, Mei G X, et al. An analytical solution for one-dimensional nonlinear consolidation of soils with continuous drainage boundary[J]. Engineering Mechanics, 2019, 36(9): 79-88(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201909011.htm
    [12] 田乙, 吴文兵, 蒋国盛, 等. 连续排水边界下分数阶黏弹性饱和土体一维固结分析[J]. 岩土力学, 2019, 40(8): 3054-3061, 3070. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201908022.htm

    Tian Y, Wu W B, Jiang G S, et al. One-dimensional consolidation of viscoelastic saturated soils with fractional order derivative based on continuous drainage boundary[J]. Rock and Soil Mechanics, 2019, 40(8): 3054-3061, 3070(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201908022.htm
    [13] 夏长青, 胡安峰, 崔军, 等. 饱和软土成层地基一维非线性固结解析解[J]. 岩土力学, 2018, 39(8): 2858-2864. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201808019.htm

    Xia C Q, Hu A F, Cui J, et al. Analytical solutions for one-dimensional nonlinear consolidation of saturated soft layered soils[J]. Rock and Soil Mechanics, 2018, 39(8): 2858-2864 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201808019.htm
    [14] Wang L, Xu Y F, Xia X H, et al. Semi-analytical solutions to two-dimensional plane strain consolidation for unsaturated soil[J]. Computers and Geotechnics, 2018, 101: 100-113. http://www.sciencedirect.com/science/article/pii/S0266352X20304493
    [15] Gray H. Simultaneous consolidation of contiguous layers of unlike compressible soils[J]. Transactions of the American Society of Civil Engineering, 1945, 37(4): 426-431. http://ci.nii.ac.jp/naid/10009265155
    [16] Xie K H, Xie X Y, Gao X. Theory of one dimensional consolidation of two-layered soil with partially drained boundaries[J]. Computers and Geotechnics, 1999, 24(4): 265-278. http://www.onacademic.com/detail/journal_1000034183581710_6fc7.html
    [17] Yin D S, Li Y Q, Wu H, et al. Fractional description of mechanical property evolution of soft soils during creep[J]. Water Science and Engineering, 2013, 6(4): 446-455. http://core.ac.uk/download/pdf/81937300.pdf
    [18] Wang L, Sun D A, Li P C, et al. Semi-analytical solution for one-dimensional consolidation of fractional derivative viscoelastic saturated soils[J]. Computers and Geotechnics, 2017, 83: 30-39. http://www.onacademic.com/detail/journal_1000039683431310_f03b.html
    [19] 梅国雄, 夏君, 梅岭. 基于不对称连续排水边界的太沙基一维固结方程及其解答[J]. 岩土工程学报, 2011, 33(1): 28-31. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201101006.htm

    Mei G X, Xia J, Mei L. Terzaghi's one-dimensional consolidation equation and its solution based on asymmetric continuous drainage boundary[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(1): 28-31(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201101006.htm
    [20] Mei G X, Chen Q M. Solution of Terzaghi one-dimensional consolidation equation with general boundary conditions[J]. Journal of Central South University: Science and Technology, 2013, 20(8): 2239-2244. http://d.wanfangdata.com.cn/Periodical/zngydxxb-e201308021
    [21] Liu J C, Lei G H. One-dimensional consolidation of layered soils with exponentially time-growing drainage boundaries[J]. Computers and Geotechnics, 2013, 54: 202-209. http://www.onacademic.com/detail/journal_1000036151499710_328c.html
    [22] Yang X Y, Zong M F, Tian Y, et al. One-dimensional consolidation of layered soils under ramp load based on continuous drainage boundary[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2021, 45(6): 738-752.
    [23] 冯健雪, 陈征, 李勇义, 等. 连续排水边界条件下考虑自重的地基一维固结分析[J]. 工程力学, 2019, 36(5): 184-191. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201905019.htm

    Feng J X, Chen Z, Li Y Y, et al. Study on one-dimensional consolidation considering self-weight under continuous drainage boundary conditions[J]. Engineering Mechanics, 2019, 36(5): 184-191(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201905019.htm
    [24] Zong M F, Yang X Y, Wu W B. One-dimensional consolidation analysis considering ono-Darcian flow and self-weight based on continuous drainage boundary[C]//Anon. The 7th International Conference on Environmental Science and Civil Engineering. [S. l.]: [s. n.]: 2021.
    [25] 杨怡青, 李传勋. 自重固结下的吹填场地桩基负摩阻力解析解[J]. 江苏大学学报: 自然科学版, 2021, 42(1): 111-117, 124. https://www.cnki.com.cn/Article/CJFDTOTAL-JSLG202101017.htm

    Yang Y Q, Li C X. Analytical solution for negative frictional force of pile foundations in dredging site with consideration of self-weight consolidation[J]. Journal of Jiangsu University: Natural Science Edition, 2021, 42(1): 111-117, 124(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JSLG202101017.htm
  • 加载中
图(11)
计量
  • 文章访问数:  775
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-24

目录

    /

    返回文章
    返回