Activity characteristics of Langshan Branch Fault in Jartai Structural Belt, Hetao Basin and its control on hydrocarbon accumulation
-
摘要:
狼山分支断层是控制河套盆地吉兰泰构造带的主要断层,多口油气高产井油气成藏均与该断层形成演化关系密切。应用三维地震资料及钻井资料对狼山分支断层几何学特征、运动特征进行剖析,根据断距、断层产状变化,将狼山分支断层分为北、中、南3段;以反转断层理论为基础,明确断层反转类型及期次;采用地层趋势法建模,钻井声波时差点控校正法计算断层上下盘地层原始厚度,恢复断层古断距,总结出正断层、逆断层及负反转3类生长断层的6种不同的计算方法,分别定量计算不同沉积时期断层各段的活动速率。对断层北、中、南3段断层活动特征开展定量评价,根据平衡剖面对比及活动速率分析,认为狼山分支断层经历4个演化阶段,发育初期为3条倾向、走向不同的"孤立"断层;早白垩世李三沟组沉积时期分段逆冲,断层北段与中段"软连接";固阳组沉积时期各段逆断层均反转为正断层;古近纪至新近纪强烈伸展,断层北段与中段"硬连接"为1条断层;新近纪晚期至第四纪局部走滑扭动,断层3段正式连锁成为现今的连通大断层。断层在不同历史时期的活动对于上下盘沉积体系发育、圈闭形成与演化以及油气的运聚与成藏均有明显的控制作用。
Abstract:Langshan Branch Fault is the dominant fault controlling Jartai Structural Belt in Hetao Basin and the hydrocarbon accumulation of many high-capacity oil-gas wells has close evolutional relationship with the formation of the fault. The geometric characteristics and motion characteristics of Langshan Branch Fault were analyzed based on 3D seismic data and well-drilling data. According to the changes in fault displacement, and occurrence of the fault, Langshan Branch Fault was divided into three sections: north section, middle section and south section. Based on reverse fault theory, the inversion types and stages of the fault were made clear. A model was established with the method of formation tendency. and the drilling well sound wave time-difference point-control correction method was adopted to calculate the original thickness of the stratum of the hanging wall and the footwall and recover the ancient fault displacement of the fault, 6 different calculation methods were summarized for three kinds of growth faults including the normal fault, the reverse fault and the negative inversion to quantify and calculate the activity rate of each fault section in different depositional stages. The quantitative evaluation of the activity characteristics of the faults at north section, middle section and south section was carried out. Based on the comparison of the balanced cross-sections and analysis of the activity rate, it was deemed that Langshan Branch Fault experienced four evolution stages. There were three "isolated" faults with different trends and strikes in the early stage of development. In the depositional stage of the Lisangou Formation in the Early Cretaceous, the sectionalized thrusting existed and the north section and the middle section of the fault were flexibly connected. In the depositional stage of Guyang Formation, all thrust faults in the sections were reversed into the normal faults. It was strongly extended from the Paleogene to the Neogene, and the northern section and the middle section of the fault were hard-connected as a whole fault. From Late Neogene to the Quaternary, the fault underwent the local strike-slip twist, and these three sections of the fault were formally linked into the present connected fault. The activity of this fault in different historical stages obviously controlled the development of the sedimentary system of both the hanging wall and the footwall, the formation and evolution of traps, and the migration and accumulation of oil and gas.
-
图 1 河套盆地临河坳陷构造位置图(a)、吉兰泰构造带构造纲要图(b)和地层综合柱状图(c)
1. 杂色砾岩; 2. 棕色砂砾岩; 3. 灰色砂砾岩; 4. 砂砾岩; 5. 棕黄色砂砾岩; 6. 灰色砂岩; 7. 灰色粉砂岩; 8. 棕红色泥质砂岩; 9. 灰色泥岩; 10. 棕红色泥岩; 11. 紫红色泥岩; 12. 灰色片麻岩; 13. 油气显示
Figure 1. Structural location map of Linhe Depression, Hetao Basin (a), structure outline map of Jartai Structral Belt (b), and comprehensive bar graph of the stratum (c)
图 2 吉兰泰三维区测线T5310(a)、T5097(b)、T4856(c)、T4676(d)地震解释剖面图(剖面位置见图 1b)及断面埋深三维立体图(e)
Ar. 乌拉山群;K1l. 李沟组;K1g. 固阳组;E2l. 临河组;N1w. 五原组;N2wl. 乌兰图克组
Figure 2. Survey line of Jartai 3D area Trace 5310 (a), Trace 5097 (b), Trace 4856 (c), Trace 4676 (d) seismic interpretatin profile(see Fig. 1-b for the location of the profile) and three dimensional diagram of bunied depth of the section (e)
图 8 沿狼山分支断层走向剖面与其对应位置固阳组沉积时期断层活动速率图(剖面位置见图 1中E-E′)
Figure 8. Profile of the strike along Langshan Branch Fault activity rate diagram along the strike of Langshan Branch Fault and its corresponding position in Guyang Formation during the depositional stage
表 1 吉兰泰地区已钻井剥蚀厚度恢复结果
Table 1. Recovered results of the denudation thickness of the drilled well in Jartai area
井名 JH5 JHZK5 JH1-2 JH2x JH3x JH40 JH36x 剥蚀厚度/m 580 1 060 920 610 180 750 220 -
[1] 吕延防, 付广, 付晓飞, 等. 断层对油气的输导与封堵作用研究[M]. 北京: 石油工业出版社, 2013: 73-90.Lü Y F, Fu G, Fu X F, et al. Study on the transmission and seal effect of faults on oil and gas[M]. Beijing : Petroleum Industry Press, 2013: 73-90 (in Chinese with English abstract). [2] 王向东, 王任, 石万忠, 等. 中国东部典型裂谷盆地构造活动特征及演化: 以松辽盆地孤店断陷为例[J]. 地质科技通报, 2022, 41(3): 85-95. doi: 10.19509/j.cnki.dzkq.2022.0089Wang X D, Wang R, Shi W Z, et al. Tectonic characteristics and evolution of typical rift basins in eastern China: A case study in the Gudian area, Songliao Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 85-95(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0089 [3] 张晓庆, 任健, 刘一鸣, 等. 渤海湾盆地埕北断层新生代分段特征及其对凹陷演化的控制[J]. 地球科学, 2019, 44(12): 4264-4274. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201912036.htmZhang X Q, Ren J, Liu Y M, et al. Segmentation characteristic and its effect on sag evolution in Cenozoic of Chengbei fault, Bohai Bay Basin[J]. Earth Science, 2019, 44(12): 4264-4274 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201912036.htm [4] 张以明, 张锐锋, 王少春, 等. 河套盆地临河坳陷油气勘探重要发现的实践与认识[J]. 中国石油勘探, 2018, 23(5): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201805001.htmZhang Y M, Zhang R F, Wang S C, et al. Practice and understanding of great discovery in oil and gas exploration in Linhe Depression of Hetao Basin[J]. China Petroleum Exploration, 2018, 23(5): 1-11 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201805001.htm [5] 张锐锋, 何海清, 陈树光, 等. 河套盆地临河坳陷石油地质新认识与重大发现[J]. 中国石油勘探, 2020, 25(6): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202006001.htmZhang R F, He H Q, Chen S G, et al. New understandings of petroleum geology and great discovery in the Linhe Depression, Hetao Basin[J]. China Petroleum Exploration, 2020, 25(6): 1-12 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202006001.htm [6] 张锐锋, 于福生, 刘喜恒, 等. 河套盆地临河坳陷及其周边地区中-新生代成盆演化特征[J]. 石油与天然气地质, 2020, 41(6): 1139-1150. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202006004.htmZhang R F, Yu F S, Liu X H, et al. Evolutionary characteristics of Linhe Depression and its surrounding areas in Hetao Basin from the Mesozoic to Cenozoic[J]. Oil & Gas Geology, 2020, 41(6): 1139-1150 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202006004.htm [7] 罗丽荣, 李剑锋, 赵占良, 等. 河套盆地临河坳陷新生界油源对比及其勘探意义[J]. 中国石油勘探, 2019, 24(3): 323-330. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201903005.htmLuo L R, Li J F, Zhao Z L, et al. Cenozoic oil-source correlation and exploration significance in Linhe Depression, the Hetao Basin[J]. China Petroleum Exploration, 2019, 24(3): 323-330 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201903005.htm [8] 郭忠铭, 于忠平. 河套弧形地堑系构造特征和演化机制及其油气勘探[J]. 石油勘探与开发, 1990, 17(3): 11-19. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK199003002.htmGuo Z M, Yu Z P. Structural characteristics, mechanism of evolution and petroleum prospecting of Hetao graben system[J]. Petroleum Exploration and Development, 1990, 17(3): 11-19 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK199003002.htm [9] 施炜, 胡健民, 陈虹. 鄂尔多斯地块周缘新生代构造[C]//佚名. 中国地球科学联合学术年会, 2018: 290-292.Shi W, Hu J M, Chen H. Cenozoic structures on the periphery of Ordos Block[C]//Anon. Annual Conference of China Earth Science Association, 2018: 290-292. [10] 王会来, 孙瑞娜, 张锐锋, 等. 河套盆地厚层砂砾岩油藏特征及成藏主控因素: 以临河坳陷吉华2X油藏为例[J]. 现代地质, 2021, 35(3): 861-882. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202103028.htmWang H L, Sun R N, Zhang R F, et al. Controlling factors of thick glutenite reservoir accumulation in Hetao Basin: A case study of Jihua-2x reservoir, Linhe Sag[J]. Geoscience, 2021, 35(3): 861-882 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202103028.htm [11] Magara K. Thickness of removed sedimentary rocks, paleopore pressure, and paleotemperature, southwestern part of western Canada Basin[J]. AAPG Bulletin, 1976, 60(4): 554-565 (in Chinese with English abstract). [12] 刘玉瑞. 声波时差法计算地层剥蚀量问题的斧正[J]. 复杂油气藏, 2015, 8(2): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-FZYQ201502002.htmLiu Y R. Correction of erosion thickness of strata calculated by acoustic time difference[J]. Complex Hydrocarbon Reservoirs, 2015, 8(2): 1-6 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-FZYQ201502002.htm [13] 吴涛, 吴采西, 戚艳平, 等. 准噶尔盆地地层剥蚀厚度定量恢复方法研究与应用: 以克拉玛依油田八区二叠系下乌尔禾组为例[J]. 古地理学报, 2015, 17(1): 81-90. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201501009.htmWu T, Wu C X, Qi Y P, et al. Quantitative resumption method of stratum denudation thickness and its application in Junggar Basin: A case study on the Permian Lower Urho Formation in Block 8 of Karamay Oilfield[J]. Journal of Palaeogeography, 2015, 17(1): 81-90 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201501009.htm [14] 孔金平. 地震厚度趋势法在乐乡关地垒剥蚀量恢复中的应用[J]. 江汉石油职工大学学报, 2016, 29(4): 18-20. https://www.cnki.com.cn/Article/CJFDTOTAL-JSZD201604008.htmKong J P. Application of seismic thickness trend method in recovery of horst denudation quantity in Lexiangguan[J]. Journal of Jianghan Petroleum University of Staff and Workers, 2016, 29(4): 18-20 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JSZD201604008.htm [15] 陈瑞银, 罗晓容, 陈占坤, 等. 鄂尔多斯盆地埋藏演化史恢复[J]. 石油学报, 2006, 26(2): 43-47. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200602008.htmChen R Y, Luo X R, Chen Z K, et al. Restoration of burial evolution history in Ordos Basin[J]. Acta Petrolei Sinica, 2006, 26(2): 43-47 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200602008.htm [16] 秦春雨, 王华, 姜平, 等. 涠西南凹陷边界断层演化及其对地层充填的控制[J]. 中国矿业大学学报, 2020, 49(2): 318-327. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202002013.htmQin C Y, Wang H, Jiang P, et al. Boundary fault evolution of Weixinan Sag and its effect on strata filling[J]. Journal of China University of Mining & Technology, 2020, 49(2): 318-327 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202002013.htm [17] 郭增虎, 王鹏, 张敬东, 等. 渤海湾盆地束鹿凹陷新河断层特征及其对成藏影响[J]. 石油地球物理勘探, 2018, 53(增刊1): 293-302. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ2018S1046.htmGuo Z H, Wang P, Zhang J D, et al. Character of Xinhe fault in Shulu Sag of Bohai Bay Basin and its effect of oil and gas accumulation[J]. Oil Geophysical Prospecting, 2018, 53(S1): 293-302 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ2018S1046.htm [18] 王洪宇, 付晓飞, 王海学, 等. 渤海湾盆地歧口凹陷断裂活动定量分析和评价对油气成藏的控制作用研究[J]. 地质学报, 2020, 91(10): 3062-3073. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202010018.htmWang H Y, Fu X F, Wang H X, et al. Research on the controlling effect of quantitative analysis and evaluation of fault activity on oil and gas accumulation in Qikou Sag of Bohai Bay Basin[J]. Acta Geologica Sinica, 2020, 91(10): 3062-3073 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202010018.htm [19] 褚榕, 刘海涛, 王海学, 等. 不同类型断层控制油气垂向富集的差异: 以渤海湾盆地歧口凹陷歧南斜坡区为例[J]. 石油学报, 2019, 40(8): 928-940. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201908004.htmChu R, Liu H T, Wang H X, et al. Differences of vertical hydrocarbon enrichment controlled by different types of faults: A case study of Qinan slope of Qikou Depression, Bohai Bay Basin[J]. Acta Petrolei Sinica, 2019, 40(8): 928-940 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201908004.htm [20] 杨东升, 赵志刚, 徐建永, 等. 古近系陡坡扇构造-岩性复合圈闭识别与储层刻画技术及应用[J]. 特种油气藏, 2020, 27(5): 38-44. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202005006.htmYang D S, Zhao Z G, Xu J Y, et al. Technology and application of structural-lithologic trap identification and reservoir characterization of Paleogene steep slope fans[J]. Special Oil and Gas Reservoirs, 2020, 27(5): 38-44 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202005006.htm [21] 杨克基, 漆家福, 余一欣, 等. 渤海湾地区断层相关褶皱及其油气地质意义[J]. 石油地球物理勘探, 2016, 51(3): 625-636. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201603027.htmYang K J, Qi J F, Yu Y X, et al. Fault-related folds and their petroleum geological significance in Bohai Bay area[J]. Oil Geophysical Prospecting, 2016, 51(3): 625-636 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201603027.htm [22] 沈华, 刘震, 史原鹏, 等. 河套盆地临河坳陷油气成藏过程解剖及勘探潜力分析[J]. 现代地质, 2021, 35(4): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202103029.htmShen H, Liu Z, Shi Y P, et al. Hydrocarbon accumulation process and exploration potential in Linhe Depression, Hetao Basin[J]. Geoscience, 2021, 35(4): 1-12 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202103029.htm [23] 胡玉双, 张伟健, 王贵友. 塔南凹陷反向断层形成机制及其在油气成藏中的作用[J]. 地质科技情报, 2019, 38(5): 90-96, 104. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201905009.htmHu Y S, Zhang W J, Wang G Y. Formation mechanism of reverse fault in Tanan Depression and its role in hydrocarbon accumulation[J]. Geological Science and Technology Information, 2019, 38(5): 90-96, 104 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201905009.htm [24] 王志伟. 新北油田右旋走滑应力场内断层封堵性及其对成藏的控制作用[J]. 地质科技情报, 2019, 38(4): 145-152. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201904015.htmWang Z W. Analysis of fault sealing in the right hand strike-slip stress field of the Xinbei Oilfield and its controlling effect on the reservoir[J]. Geological Science and Technology Information, 2019, 38(4): 145-152 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201904015.htm [25] 付晓飞, 宋宪强, 王海学, 等. 裂陷盆地断层圈闭含油气有效性综合评价: 以渤海湾盆地歧口凹陷为例[J]. 石油勘探与开发, 2021, 48(4): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202104002.htmFu X F, Song X Q, Wang H X, et al. Comprehensive evaluation on hydrocarbon-bearing validity of fault-bound traps in a rift basin: A case study of the Qikou Sag in the Bohai Bay Basin, China[J]. Petroleum Exploration and Development, 2021, 4(4): 1-10 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202104002.htm