留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铜同位素及其在环境污染示踪中的应用进展

韩嫣 胡雅婷 王倩 石明辉 周炼

韩嫣, 胡雅婷, 王倩, 石明辉, 周炼. 铜同位素及其在环境污染示踪中的应用进展[J]. 地质科技通报, 2023, 42(1): 378-387. doi: 10.19509/j.cnki.dzkq.2022.0178
引用本文: 韩嫣, 胡雅婷, 王倩, 石明辉, 周炼. 铜同位素及其在环境污染示踪中的应用进展[J]. 地质科技通报, 2023, 42(1): 378-387. doi: 10.19509/j.cnki.dzkq.2022.0178
Han Yan, Hu Yating, Wang Qian, Shi Minghui, Zhou Lian. Progress of copper isotope and its application in environmental pollution tracing[J]. Bulletin of Geological Science and Technology, 2023, 42(1): 378-387. doi: 10.19509/j.cnki.dzkq.2022.0178
Citation: Han Yan, Hu Yating, Wang Qian, Shi Minghui, Zhou Lian. Progress of copper isotope and its application in environmental pollution tracing[J]. Bulletin of Geological Science and Technology, 2023, 42(1): 378-387. doi: 10.19509/j.cnki.dzkq.2022.0178

铜同位素及其在环境污染示踪中的应用进展

doi: 10.19509/j.cnki.dzkq.2022.0178
基金项目: 

国家重点研发计划 2018YFC1802701

国家自然科学基金项目 41473007

国家自然科学基金项目 41673013

详细信息
    作者简介:

    韩嫣(1998—),女, 现正攻读地质学专业博士学位,主要从事环境同位素地球化学研究工作。E-mail: 2696197385@qq.com

    通讯作者:

    周炼(1964—),男, 教授,博士生导师,主要从事同位素地球化学方面的研究工作。E-mail: lianzhou@cug.cdu.cn

  • 中图分类号: X143

Progress of copper isotope and its application in environmental pollution tracing

  • 摘要:

    近年来,环境问题一直都是社会关注的热点,如大气、土壤和沉积物中的重金属污染问题已成为社会关注的热点。要解决环境重金属污染,关键是要确定其污染源和污染途径,本研究选取了3种典型的污染,即河流污染、冶炼厂地污染及大气颗粒物污染,选择同位素示踪技术作为研究方法,并且以铜作为示踪指标,对铜元素的基本性质,以及铜同位素在地球化学过程中的分馏,不同类型样品的处理、消解以及同位素分离纯化方法,同位素测试技术、示踪技术、端元模型进行了汇总,以及对现已发表的成果中上述3种典型重金属污染的端元(自然输入源和人为输入源),受污染途径、污染程度的研究进行了概括和总结。Cu同位素在环境污染溯源方面尚处于起步阶段,因此还需要进一步研究表生过程中Cu同位素的分馏机理,为认识重金属污染源与汇迁移过程中的机理提供重要的信息。未来的研究中,可进一步运用多种同位素相结合的方法,扩展多元同位素指纹数据库;而且同位素模型是对重金属污染源及污染贡献率进行正确评价的重要研究内容,还需构建新的多同位素多元污染模型来解决更为复杂的污染源。

     

  • 图 1  珠江流域SPM δ65Cu与EFCu关系[27](从铜富集度和同位素组成推断出潜在的端元)

    Figure 1.  Relationship between δ65Cu and EFCu in SPM from the Pearl River Basin

    图 2  不同地区不同样品的δ65Cu NIST 976值(数据来源于文献[31, 55-56])

    Figure 2.  δ65Cu NIST 976 values of samples from several regions

    图 3  伦敦和巴塞罗那大气颗粒物中δ65Cu NIST976值(数据来源于文献[30, 58])

    Figure 3.  δ65CuNIST976 of atmospheric particulate matter from London and Barcelona

    表  1  不同类型样品的消解方法

    Table  1.   Different types of sample digestion methods

    样品类型 前处理 消解
    悬浮、下沉颗粒物[27-28] 冲洗,干燥 (1)取适量样品置于溶样弹中;
    (2)加入二次蒸馏硝酸和超纯氢氟酸混合物(土壤样品需加入二次蒸馏盐酸,植物样品需加入二次蒸馏盐酸和30%双氧水)在120~200 ℃下进行消化分解;
    (3)消化后的溶液蒸干,重新溶解在二次蒸馏硝酸或盐酸中蒸干,重复2次;再次溶解于后续柱分离所需的酸介质中,并蒸干
    气溶胶[29-30]
    土壤[31-32] 干燥,研磨均质化
    植物[31] 冲洗,干燥,研磨均质化
    矿渣[31]
    [28, 32-33] 过滤 (1)取适量体积水蒸干;
    (2)重新溶解于后续柱分离所需的酸介质中,并蒸干
    下载: 导出CSV
  • [1] 王泽洲, 刘盛遨, 李丹丹, 等. 铜同位素地球化学及研究新进展[J]. 地学前缘, 2015, 22(5): 72-83. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201505008.htm

    Wang Z Z, Liu S A, Li D D, et al. Geochemical characteristics of copper isotopes[J]. Earth Science Frontiers, 2015, 22(5): 72-83(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201505008.htm
    [2] Hoefs J. Stable isotope geochemistry[M]. Switzerland: Springer International Publishing, 2018.
    [3] 引玉. 铜的地球化学性质、含量和共生元素[J]. 地质与勘探, 1975, 11(3): 20-27. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT197503004.htm

    Yin Y. The geochemical properties, contents and coherent elements of copper[J]. Geology and Exploration, 1975, 11(3): 20-27 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT197503004.htm
    [4] 王新富, 李波. 铜同位素组成在铜矿床中的变化规律[J]. 地质科技情报, 2018, 37(3): 159-168. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201803021.htm

    Wang X F, Li B. Variation of Cu isotopic composition in copper deposits[J]. Geological Science and Technology Information. 2018, 37(3): 159-168(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201803021.htm
    [5] 王娜. 土壤重金属铜污染现状分析[J]. 土壤科学, 2019, 3(7): 181-185. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202102009.htm

    Wang N. Analysis on the status of heavy metal copper pollution in soil[J]. Hans Journal of Soil Science, 2019, 3(7): 181-185(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202102009.htm
    [6] 张俊. 红壤水稻土重金属铜对水稻生长影响及风险评价[D]. 南昌: 南昌工程学院, 2019.

    Zhang J. Effects of heavy metal copper on rice growth and its risk assessment in red paddy soil[D]. Nanchang: Nanchang Institute of Technology, 2019(in Chinese with English abstract).
    [7] 王跃, 朱祥坤. 铜同位素在矿床学中的应用: 认识与进展[J]. 吉林大学学报: 地球科学版, 2010, 40(4): 739-751. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201004004.htm

    Wang Y, Zhu X K. Application of copper isotopes in mineral deposits: A review[J]. Journal of Jilin University: Earth Science Edition, 2010, 40(4): 739-751(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201004004.htm
    [8] 毛军. 浅析中高剂量铜元素对生猪养殖的影响[J]. 农家致富顾问, 2019(10): 116.

    Mao J. Effects of high and medium doses of copper on pig breeding[J]. Rural Wealth Consultant, 2019(10): 116(in Chinese).
    [9] 杨果平. 饲料中微量元素添加过量的危害及其合理应用[J]. 四川畜牧兽医, 2019, 46(8): 46-47. https://www.cnki.com.cn/Article/CJFDTOTAL-SCXS201908020.htm

    Yang G P. A study on the effects of dietary microelements on food quality[J]. Sichuan Animal & Veterinary Sciences, 2019, 46(8): 46-47 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SCXS201908020.htm
    [10] 季立才. 微量元素铜与人体健康[J]. 自然杂志, 1991, 14(5): 375-378. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ199105012.htm

    Ji L C. Microelement copper and human health[J]. Chinese Journal of Nature, 1991, 14(5): 375-378 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ199105012.htm
    [11] 李青仁, 王月梅. 微量元素铜与人体健康[J]. 微量元素与健康研究, 2007, 24(3): 61-63. https://www.cnki.com.cn/Article/CJFDTOTAL-WYJK200703026.htm

    Li Q R, Wang Y M. Microelement copper and human health[J]. Studies of Trace Elements and Health, 2007, 24(3): 61-63 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-WYJK200703026.htm
    [12] 陈淑如, 崇雨田, 李新华. 遗传性铜代谢异常的致病机制及临床诊断[J]. 临床肝胆病杂志, 2019, 35(8): 1667-1672. doi: 10.3969/j.issn.1001-5256.2019.08.003

    Chen S R, Chong Y T, Li X H. The role of copper metabolism in the pathogenesis and clinical diagnosis of copper metabolism[J]. Journal of Clinical Hepatology, 2019, 35(8): 1667-1672(in Chinese with English abstract). doi: 10.3969/j.issn.1001-5256.2019.08.003
    [13] William R S, Thomas J M. Edward J C, et al. Absolute isotopic abundance ratio and the atomic weight of a reference sample of copper[J]. Journal of Research of the National Bureau of Standards, Section A: Physics and Chemistry, 1964, 68(6): 589.
    [14] 葛军, 陈衍景, 邵宏翔. 铜同位素地球化学研究及其在矿床学应用的评述和讨论[J]. 地质与勘探, 2004, 40(3): 6-11. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT200403002.htm

    Ge J, Chen Y J, Shao H X. Progress in study of copper isotope and its application in metallogeny: A review[J]. Geology and Exploration, 2004, 40(3): 6-11(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT200403002.htm
    [15] 何德锋, 钟宏, 朱维光. 铜同位素的分馏机制及其在矿床学研究中的应用[J]. 岩石矿物学杂志, 2007, 26(4): 345-350. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200704009.htm

    He D F, Zhong H, Zhu W G. The copper isotope fractional mechanism and its application to ore deposit study[J]. Acta Petrologica et Mineralogica, 2007, 26(4): 345-350(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200704009.htm
    [16] Wang L, Jin Y, Weiss D J, et al. Possible application of stable isotope compositions for the identification of metal sources in soil[J]. Journal of Hazardous Materials. 2021, 407: 124812.
    [17] Wiederhold J G. Metal stable isotope signatures as tracers in environmental geochemistry[J]. Environmental Science & Technology, 2015, 49(5): 2606-2624.
    [18] Zhao Y, Xue C, Liu S A, et al. Redox reactions control Cu and Fe isotope fractionation in a magmatic Ni-Cu mineralization system[J]. Geochimica et Cosmochimica Acta, 2019, 249: 42-58.
    [19] Alvarez C C, Quitté G, Schott J, et al. Experimental determination of Ni isotope fractionation during Ni adsorption from an aqueous fluid onto calcite surfaces[J]. Geochimica et Cosmochimica Acta, 2020, 273: 26-36.
    [20] Sherman D M, Little S H. Isotopic disequilibrium of Cu in marine ferromanganese crusts: Evidence from ab initio predictions of Cu isotope fractionation on sorption tobirnessite[J]. Earth and Planetary Science Letters, 2020, 549: 116540.
    [21] Ryan B M, Kirby J K, Degryse F, et al. Copper isotope fractionation during equilibration with natural and synthetic ligands[J]. Environmental Science & Technology, 2014, 48(15): 8620-8626.
    [22] Coutaud M, Méheut M, Viers J, et al. Copper isotope fractionation during excretion from a phototrophic biofilm[J]. Chemical Geology, 2019, 513: 88-100.
    [23] Araujo D F, Onzevera E P, Briant N, et al. Differences in copper isotope fractionation between mussels(Regulators) and oysters (Hyperaccumulators): Insights from a Ten-Year biomonitoring study[J]. Environmental Science & Technology, 2020, 55(1): 324-330.
    [24] Li S Z, Zhu X K, Wu L H, et al. Cu isotopic compositions in Elsholtzia splendens: Influence of soil condition and growth period on Cu isotopic fractionation in plant tissue[J]. Chemical Geology, 2016, 444: 49-58.
    [25] Weinstein C, Moynier F, Wang K, et al. Isotopic fractionation of Cu in plants[J]. Chemical Geology, 2011, 286(3/4): 266-271.
    [26] 王倩, 侯清华, 张婷, 等. 铜同位素测定方法研究进展[J]. 矿物岩石地球化学通报, 2016, 35(3): 497-506. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201603019.htm

    Wang Q, Hou Q H, Zhang T, et al. Progress in the determination of copper isotopes[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(3): 497-506(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201603019.htm
    [27] Zeng J, Han G. Preliminary copper isotope study on particulate matter in Zhujiang River, southwest China: Application for source identification[J]. Ecotoxicology and Environmental Safety, 2020, 196: 110663.
    [28] Takano S, Liao W H, Tian H A, et al. Sources of particulate Ni and Cu in the water column of the northern South China Sea: Evidence from elemental and isotope ratios in aerosols and sinking particles[J]. Marine Chemistry, 2020, 219: 103751.
    [29] Schleicher N J, Weiss D J, Dong S, et al. A global assessment of copper, zinc, and lead isotopes in mineral dust sources and aerosols[J]. Frontiers in Earth Science, 2020, 8: 167.
    [30] Dong S, Ochoa Gonzalez R, Harrison R M, et al. Isotopic signatures in atmospheric particulate matter suggest important contributions from recycled gasoline for lead and non-exhaust traffic sources for copper and zinc in aerosols in London, United Kingdom[J]. Atmospheric Environment, 2017, 165: 88-98.
    [31] Bohdan K Í, Adéla Í, Vojtěch E, et al. Variability of the copper isotopic composition in soil and grass affected by mining and smelting in Tsumeb, Namibia[J]. Chemical Geology, 2018, 493: 121-135.
    [32] Su J, Mathur R, Brumm G, et al. Tracing copper migration in the Tongling area through copper isotope values in soils and waters[J]. International Journal of Environmental Research & Public Health, 2018, 15(12): 2661.
    [33] Yang S C, Hawco N J, Gonzalez P P, et al. A new purification method for Ni and Cu stable isotopes in seawater provides evidence for widespread Ni isotope fractionation by phytoplankton in the North Pacific[J]. Chemical Geology, 2020, 547(3/4): 119662.
    [34] Moynier F, Vance D, Fujii T, et al. The isotope geochemistry of zinc and copper[M]. Reviews in Mineralogy and Geochemistry, 2017, 82(1): 543-600.
    [35] Maréchal C N, Télouk P, Albarède F. Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry[J]. Chemical Geology, 1999, 156(1/4): 251-273.
    [36] 郝春莉. 铜锌铁同位素示踪技术在生物和环境领域中的应用[J]. 化学工程与装备, 2016(9): 262-264. https://www.cnki.com.cn/Article/CJFDTOTAL-FJHG201609086.htm

    Hao C L. Application of copper, zinc and iron isotope tracer technology in biological and environmental fields[J]. Chemical Engineering & Equipment, 2016(9): 262-264(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-FJHG201609086.htm
    [37] 张晓静, 胡清源, 朱风鹏, 等. 电感耦合等离子体质谱在同位素分析中的研究进展[J]. 分析试验室, 2008, 27(12): 389-394. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY2008S2115.htm

    Zhang X J, Hu Q Y, Zhu F P, et al. Research progress of isotope analysis by inductively coupled plasma mass spectrometry[J]. Chinese Journal of Analysis Laboratory, 2008, 27(12): 389-394(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY2008S2115.htm
    [38] Hou Q H, Zhou L, Gao S, et al. Use of Ga for mass bias correction for the accurate determination of copper isotope ratio in the NIST SRM 3114 Cu standard and geological samples by MC-ICPMS[J]. Journal of Analytical Atomic Spectrometry, 2016, 31(1): 280-287.
    [39] Larner F, Rehk Mper M, Coles B J, et al. A new separation procedure for Cu prior to stable isotope analysis by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2011, 26(8): 1627-1632.
    [40] Wang Q, Zhou L, Little S H, et al. The geochemical behavior of Cu and its isotopes in the Yangtze River[J]. Science of the Total Environment, 2020, 728: 138428.
    [41] 曹人升, 范明毅, 黄先飞, 等. 同位素示踪法在大气颗粒物重金属污染溯源中的应用进展[J]. 环境污染与防治, 2017, 39(2): 212-216. https://www.cnki.com.cn/Article/CJFDTOTAL-HJWR201702021.htm

    Cao R S, Fan M Y, Huang X F, et al. Application of isotope tracer method in the traceability of heavy metal pollution in atmospheric particles[J]. Environmental Pollution & Control, 2017, 39(2): 212-216(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HJWR201702021.htm
    [42] 郑志侠. 大气颗粒物中重金属污染研究进展[J]. 现代农业科技, 2013(3): 241-243. https://www.cnki.com.cn/Article/CJFDTOTAL-ANHE201303168.htm

    Zheng Z X. Research progress of heavy metal pollution in atmospheric particulate matter[J]. Modern Agricultural Science and Technology, 2013(3): 241-243(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ANHE201303168.htm
    [43] 于瑞莲, 胡恭任, 袁星, 等. 同位素示踪技术在沉积物重金属污染溯源中的应用[J]. 地球与环境, 2008, 36(3): 245-250. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ200803009.htm

    Yu R L, Hu G R, Yuan X, et al. Application of isotope tracer technique in traceability of heavy metal contamination in sediments[J]. Earth and Environment, 2008, 36(3): 245-250(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ200803009.htm
    [44] 孙玮玮, 毕春娟, 陈振楼, 等. 稳定性同位素示踪技术在环境领域的应用初探[J]. 环境科学与技术, 2009, 32(9): 88-92. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS200909023.htm

    Sun W W, Bi C J, Chen Z L, et al. Application of stable isotope tracer technique in environmental field[J]. Environmental Science & Technology, 2009, 32(9): 88-92(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS200909023.htm
    [45] 龚杰, 孙紫童, 冯璐, 等. 武汉市东西湖区主要湖泊表层沉积物重金属污染特征与生态风险评价[J]. 地质科技通报, 2021, 40(3): 204-210. doi: 10.19509/j.cnki.dzkq.2021.0313

    Gong J, Sun Z T, Feng L, et al. Pollution characteristics and ecological risk assessment of heavy metals in surface sediments of main lakes in Dongxihu district, Wuhan[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 204-210(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0313
    [46] 王攀, 靳孟贵, 路东臣, 等. 永城市浅层地下水污染分布特征及来源识别[J]. 地质科技通报, 2022, 41(1): 260-268. doi: 10.19509/j.cnki.dzkq.2021.0136

    Wang P, Jin M G, Lu D C, et al. Distribution characteristics and source identification of shallow groundwater pollution in Yongcheng City[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 260-268(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0136
    [47] 周旭华. 城市污染河流水污染控制技术研究[J]. 低碳世界, 2021, 11(2): 36-37. https://www.cnki.com.cn/Article/CJFDTOTAL-DTSJ202102018.htm

    Zhou X H. Water pollution control technology of urban polluted river[J]. Low Carbon World, 2021, 11(2): 36-37(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DTSJ202102018.htm
    [48] Fekiacova Z, Cornu S, Pichat S. Tracing contamination sources in soils with Cu and Zn isotopic ratios[J]. Science of the Total Environment, 2015, 517: 96-105.
    [49] Vance D, Archer C, Bermin J, et al. The copper isotope geochemistry of rivers and the oceans[J]. Earth and Planetary Science Letters, 2008, 274(1/2): 204-213.
    [50] Kimball B E, Mathur R, Dohnalkova A C, et al. Copper isotope fractionation in acid mine drainage[J]. Geochimica et Cosmochimica Acta, 2009, 73(5): 1247-1263.
    [51] 刘文辉, 马腾, 李俊琦, 等. 资江河口区农田土壤重金属污染评价及来源分析[J]. 地质科技通报, 2021, 40(2): 138-146. doi: 10.19509/j.cnki.dzkq.2021.0212

    Liu W H, Ma T, Li J Q, et al. Pollution assessment and source analysis of heavy metals in agricultural soil around Zijiang River estuary[J]. Bulletin of Geological Science and Technology, 2021, 40(2): 138-146(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0212
    [52] 李传飞, 刘登璐, 赵平, 等. 某区域内矿区土壤重金属污染与生态风险评价[J]. 四川环境, 2021, 40(2): 141-148. https://www.cnki.com.cn/Article/CJFDTOTAL-SCHJ202102021.htm

    Li C F, Liu D L, Zhao P, et al. Evaluation of soil heavy metal pollution and ecological risk in a mining area[J]. Sichuan Environment, 2021, 40(2): 141-148(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SCHJ202102021.htm
    [53] 严梅. 金属矿区重金属污染评价分析[J]. 中国资源综合利用, 2021, 39(4): 148-150. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWZS202104044.htm

    Yan M. Evaluation and analysis of heavy metal pollution in metal mining areas[J]. China Resources Comprehensive Utilization, 2021, 39(4): 148-150(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZWZS202104044.htm
    [54] Schilling K, Basu A, Kaplan A, et al. Metal distribution, bioavailability and isotope variations in polluted soils from Lower Swansea Valley, UK[J]. Environmental Geochemistry and Health, 2021, 43: 2899-2912.
    [55] Mihaljeviĉ M, Baieta R, Ettler V, et al. Tracing the metal dynamics in semi-arid soils near mine tailings using stable Cu and Pb isotopes[J]. Chemical Geology, 2019, 515: 61-76.
    [56] Šillerová H, Chrastnỳ V, Vitková M, et al. Stable isotope tracing of Ni and Cu pollution in North-East Norway: Potentials and drawbacks[J]. Environmental Pollution, 2017, 228: 149-157.
    [57] 苏鹏, 陆达伟, 杨学志, 等. 非传统稳定同位素在大气颗粒物溯源中的应用[J]. 中国科学: 化学, 2018, 48(10): 1163-1170. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK201810003.htm

    Su P, Lu D W, Yang X Z, et al. Application of non-traditional stable isotopes in source tracing of airborne particulate matter[J]. Scientia Sinica: Chimica, 2018, 48(10): 1163-1170(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK201810003.htm
    [58] 汪玉洁, 涂振权, 周理, 等. 大气颗粒物重金属元素分析技术研究进展[J]. 光谱学与光谱分析, 2015, 35(4): 1030-1032. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201504038.htm

    Wang Y J, Tu Z Q, Z L, et al. Research progress in analytical technology for heavy metals in atmospheric particles[J]. Spectroscopy and Apectral Analysis, 2015, 35(4): 1030-1032(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201504038.htm
    [59] Ochoa-González R, Strekopytov S, Amato F, et al. New insights from zinc and copper isotopic compositions into the sources of atmospheric particulate matter from two major European cities[J]. Environmental Science and Technology, 2016, 50(18): 9816-9824.
  • 加载中
图(3) / 表(1)
计量
  • 文章访问数:  607
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-16

目录

    /

    返回文章
    返回