留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于μCT技术的白鹤滩库区致密砂岩孔-裂隙三维成像特征研究

孟杰 李长冬 闫盛熠 朱文宇 洪望兵 付国斌 黄德崴

孟杰, 李长冬, 闫盛熠, 朱文宇, 洪望兵, 付国斌, 黄德崴. 基于μCT技术的白鹤滩库区致密砂岩孔-裂隙三维成像特征研究[J]. 地质科技通报, 2023, 42(1): 20-28. doi: 10.19509/j.cnki.dzkq.2022.0183
引用本文: 孟杰, 李长冬, 闫盛熠, 朱文宇, 洪望兵, 付国斌, 黄德崴. 基于μCT技术的白鹤滩库区致密砂岩孔-裂隙三维成像特征研究[J]. 地质科技通报, 2023, 42(1): 20-28. doi: 10.19509/j.cnki.dzkq.2022.0183
Meng Jie, Li Changdong, Yan Shengyi, Zhu Wenyu, Hong Wangbing, Fu Guobin, Huang Dewei. 3D imaging characteristics of pore and fracture of tight sandstone in Baihetan reservoir area based on μCT technology[J]. Bulletin of Geological Science and Technology, 2023, 42(1): 20-28. doi: 10.19509/j.cnki.dzkq.2022.0183
Citation: Meng Jie, Li Changdong, Yan Shengyi, Zhu Wenyu, Hong Wangbing, Fu Guobin, Huang Dewei. 3D imaging characteristics of pore and fracture of tight sandstone in Baihetan reservoir area based on μCT technology[J]. Bulletin of Geological Science and Technology, 2023, 42(1): 20-28. doi: 10.19509/j.cnki.dzkq.2022.0183

基于μCT技术的白鹤滩库区致密砂岩孔-裂隙三维成像特征研究

doi: 10.19509/j.cnki.dzkq.2022.0183
基金项目: 

国家自然科学基金重大项目 42090054

国家自然科学基金优秀青年基金项目 41922055

详细信息
    作者简介:

    孟杰(1992-), 男, 现正攻读地质工程专业博士学位, 主要从事岩体多尺度演化研究。E-mail: 2201910220@cug.edu.cn

    通讯作者:

    李长冬(1981-), 男, 教授, 博士生导师, 主要从事工程地质和岩土工程教学与研究工作。E-mail: lichangdong@cug.edu.cn

  • 中图分类号: TU458

3D imaging characteristics of pore and fracture of tight sandstone in Baihetan reservoir area based on μCT technology

  • 摘要:

    微焦点X射线CT扫描(μCT)技术作为实现岩石内部孔-裂隙结构可视化最有效的方法之一, 仍需进一步探究其在致密砂岩孔-裂隙三维成像应用中的有效性。以白鹤滩水电站坝址区致密砂岩为例, 通过超高精度μCT技术与分割算法, 探究了不同扫描精度下试样的孔-裂隙三维成像特征, 并进一步结合扫描电子显微镜(SEM)测试分析了其对获取关键结构信息的影响。结果表明: 交互式阈值法和Top-hat组合的分割法可更精细化的提取致密砂岩孔-裂隙信息, 其中交互式阀值法适用于较大孔-裂隙提取, Top-hat法适用于微小裂隙提取; 致密砂岩结构中微小孔隙、微裂纹十分发育, 且孤立孔隙较多; 0.62μm相对于1.5μm的扫描分辨率呈现了更加清晰的孔隙网络模型, 但由于纳米级的测试范围受限, 关键结构信息特征可能被放大化; 当扫描分辨率大于2μm时, 关键微结构信息可能被忽略。因此, 在致密砂岩孔-裂隙三维特征研究中, 应采用较高的扫描精度并进行多区域信息采集, 以有效的揭示关键微结构特征, 这一基础性工作为进一步有效地揭示致密岩石结构演化信息提供了支撑。

     

  • 图 1  白鹤滩坝址区岩质边坡

    Figure 1.  Rock slope of Baihetan reservoir area

    图 2  白鹤滩坝址区取样点

    Figure 2.  Sample point of Baihetan dam site area

    图 3  白鹤滩坝址区小坝组砂岩矿物成分及质量分数

    Figure 3.  Mineral composition and mass percentage of Xiaoba Formation sandstone in Baihetan Dam site

    图 4  蔡斯Xradia-520-Versa 3D X射线显微镜扫描现场测试图

    Figure 4.  Field scan test image of Chase Xradia-520-Versa 3D X-ray microscope

    图 5  SEM现场测试图

    Figure 5.  Field test of SEM

    图 6  原始灰度图像的预处理

    Figure 6.  Pre-processing of original gray image

    图 7  孔隙提取方法原理[23-24]

    Figure 7.  Principle of pore extraction method

    图 8  不同方法的孔隙分割效果图

    Figure 8.  Effect drawing of pore segmentation with different methods

    图 9  不同分辨率图像与孔隙提取

    Figure 9.  Different resolution images and pore extraction

    图 10  三维孔隙结构特征

    Figure 10.  Three-dimensional pore structure characteristics

    图 11  孔-裂隙球棍生成示意图

    Figure 11.  Hole-slit ball-stick generation diagram

    图 12  不同试样球棍模型图

    Figure 12.  Ball-stick model drawing of different samples

    图 13  干湿作用后致密岩石的微结构SEM图像

    Figure 13.  SEM image of microstructure of tight rock after wetting and drying cycles

  • [1] 李长冬, 龙晶晶, 姜茜慧, 等. 水库滑坡成因机制研究进展与展望[J]. 地质科技通报, 2020, 39(1): 67-77. doi: 10.19509/j.cnki.dzkq.2020.0108

    Li C D, Long J J, Jiang X H, et al. Advance and prospect of formation mechanism for reservoir landslides[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 67-77 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0108
    [2] Yao W M, Li C D, Zhan H B, et al. Multiscale study of physical and mechanical properties of sandstone in three gorges reservoir region subjected to cyclic wetting-drying of Yangtze River water[J]. Rock Mechanics and Rock Engineering, 2020, 53(5): 2215-2231. doi: 10.1007/s00603-019-02037-7
    [3] Zhao Y, Ren S, Jiang D, et al. Influence of wetting-drying cycles on the pore structure andmechanical properties of mudstone from Simian Mountain[J]. Construction and Building Materials, 2018, 191(10): 923-931.
    [4] Wang C, Pei W, Zhang M, et al. Multi-scale experimental investigations on the deterioration mechanism of sandstone under wetting-drying cycles[J]. Rock Mechanics and Rock Engineering, 2020, 54: 429-441.
    [5] Cai X, Zhou Z, Tan L, et al. Fracture behavior and damage mechanisms of sandstone subjected to wetting-drying cycles[J]. Engineering Fracture Mechanics, 2020, 234: 107109. doi: 10.1016/j.engfracmech.2020.107109
    [6] 金爱兵, 王树亮, 魏余栋, 等. 不同冷却条件对高温砂岩物理力学性质的影响[J]. 岩土力学, 2020, 41(11): 3531-3539, 3603. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202011004.htm

    Jin A B, Wang S L, Wei Y D, et al. Effect of different cooling conditions on physical and mechanical properties of high-temperature sandstone[J]. Rock and Soil Mechanics, 2020, 41(11): 3531-3539, 3603 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202011004.htm
    [7] 缪澄宇, 杨柳, 许永震, 等. 基于核磁共振监测的砂岩强度软化实验及微观机制研究[J]. 岩石力学与工程学报, 2021, 40(11): 2189-2198. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202111003.htm

    Miao C Y, Yang L, Xu Y Z, et al. Experimental study on strength softening behaviors and micro-mechanisms of sandstone based on nuclear magnetic resonance[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(11): 2189-2198(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202111003.htm
    [8] 朱江鸿, 韩淑娴, 童艳梅, 等. 干湿循环对不同密度砂岩强度劣化的影响[J]. 华南理工大学学报: 自然科学版, 2019, 47(3): 126-134. https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG201903017.htm

    Zhu J H, Han S X, Tong Y M, et al. Effect of Dry-wet cycles on the deterioration of sandstone with various initial dry densities[J]. Journal of South China University of Technology: Natural Science Edition, 2019, 47(3): 126-134(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG201903017.htm
    [9] 邓华锋, 支永艳, 段玲玲, 等. 水-岩作用下砂岩力学特性及微细观结构损伤演化[J]. 岩土力学, 2019, 40(9): 3447-3456. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201909017.htm

    Deng H F, Zhi Y Y, Duan L L, et al. Mechanical properties of sandstone and damage evolution of microstructure under water-rock interaction[J]. Rock and Soil Mechanics, 2019, 40(9): 3447-3456(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201909017.htm
    [10] 王瑞飞, 张祺, 邵晓岩, 等. 多尺度CT成像技术识别超低渗透砂岩储层纳米级孔喉[J]. 地球物理学进展, 2020, 35(1): 188-196. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202001025.htm

    Wang R F, Zhang Q, Shao X Y, et al. Identification of ultra-low permeability sandstone reservoir nano pore-throat by multi-scale CT imaging technique[J]. Progress in Geophysics, 2020, 35(1): 188-196(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202001025.htm
    [11] 王帅, 许莹, 张艳博, 等. 基于CT扫描的砂岩主次裂纹扩展特征及影响因素研究[J]. 岩土工程学报, 2022, 44(4): 702-711. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202204013.htm

    Wang S, Xu Y, Zhang Y B, et al. Characteristics and influencing factors for propagation of primary and secondary cracks in sandstone based on CT scan[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 702-711(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202204013.htm
    [12] 赵华伟, 宁正福, 段太忠, 等. 基于微米CT扫描成像实验及格子Boltzmann模拟方法的致密砂岩孔隙结构表征[J]. 东北石油大学学报, 2019, 43(5): 1-10, 119. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY201905002.htm

    Zhao H W, Ning Z F, Duan T Z, et al. Pore structure characterization of tight sandstones by X-ray computed tomography experiment combined with Lattice Boltzmann Method[J]. Journal of Northeast Petroleum University, 2019, 43(5): 1-10, 119(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY201905002.htm
    [13] 王莹莹, 徐金明, 黄继忠. 基于CT影像的砂岩文物结构特征分析[J]. 中国地质灾害与防治学报, 2020, 31(1): 127-134. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH202001023.htm

    Wang Y Y, Xu J M, Huang J Z. Analysis on structural features of sandstones relics using digital image technology based on CT images[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(1): 127-134(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH202001023.htm
    [14] 杨峰, 王昊, 黄波, 等. 基于CT扫描的致密砂岩渗流特征及应力敏感性研究[J]. 地质力学学报, 2019, 25(4): 475-482. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201904003.htm

    Yang F, Wang H, Huang B, et al. Study on the stress sensitivity and seepage characteristics of tight sandstone based on ct scanning[J]. Journal of Geomechanics, 2019, 25(4): 475-482(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201904003.htm
    [15] 刘向君, 熊健, 梁利喜, 等. 基于微CT技术的致密砂岩孔隙结构特征及其对流体流动的影响[J]. 地球物理学进展, 2017, 32(3): 1019-1028. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201703010.htm

    Liu X J, Xiong J, Liang L X, et al. Study on the characteristics of pore structure of tight sand based on micro-CT scanning and its influence on fluid flow[J]. Progress in Geophysics, 2017, 32(3): 1019-1028(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201703010.htm
    [16] 王瑞飞, 张祺, 邵晓岩, 等. 多尺度CT成像技术识别超低渗透砂岩储层纳米级孔喉[J]. 地球物理学进展, 2020, 35(1): 188-196. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202001025.htm

    Wang R F, Zhang Q, Shao X Y, et al. Identification of ultra-low permeability sandstone reservoir nano pore-throat by multi-scale CT imaging technique[J]. Progress in Geophysics, 2020, 35(1): 188-196(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202001025.htm
    [17] 秦洋, 姚素平, 萧汉敏. 致密砂岩储层孔-喉连通性研究: 以鄂尔多斯盆地长7储层为例[J]. 南京大学学报: 自然科学, 2020, 56(3): 338-353. https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ202003004.htm

    Qin Y, Yao S P, Xiao H M. An investigation into pore-throat connectivity in tight sandstone reservoir: A case of the Chang 7 Reservoir in Ordos Basin[J]. Journal of Nanjing University: Natural Science, 2020, 56(3): 338-353(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ202003004.htm
    [18] Hsieh J. 计算机断层成像技术[M]. 张朝宗, 译. 北京: 科学出版社, 2006.

    Hsieh J. Computed tomography[M]. Translated by Zhang C Z. Beijing: Science Press, 2006(in Chinese).
    [19] Yu B, Fan W, Fan J H, et al. X-ray micro-computed tomography(μ-CT) for 3D characterization of particle kinematics representing water-induced loess micro-fabric collapse[J]. Engineering Geology, 2020, 279: 105895.
    [20] 庄天戈. CT原理与算法[M]. 上海: 上海交通大学出版社, 1992.

    Zhuang T G. Principles and algorithms of CT[M]. Shanghai: Shanghai Jiaotong University Press, 1992(in Chinese).
    [21] Sonkan M, Hlavac V, Boyle R. 图像处理、分析与机器视觉[M]. 兴海军, 艾海舟, 译. 北京: 清华大学出版社出版, 2016.

    Sonkan M, Hlavac V, Boyle R. Image processing, analysis and machine vision[M]. Translated by Xing H J, Ai H Z. Beijing: Tsinghua University Press, 2016(in Chinese).
    [22] 吕帮民. 煤基多孔碳的孔隙三维表征及渗透研究[D]. 江苏徐州: 中国矿业大学, 2019.

    Lü B M. Research on Three-dimensional characterization and permeation of coal-based porous carbon[D]. Xuzhou Jiangsu: China University of Mining and Technology, 2019(in Chinese with English abstract).
    [23] Xu Q, Zhao C, Li X. A strong background daytime star image processing method using improved morphology Top-Hat filter and pipeline filter[C]//Anon. Twelfth International Conference on Graphics and Image Processing, 2020, Xi'an, China. 2021: 117201R.
    [24] Kong D, Fonseca J. Quantification of the morphology of shelly carbonate sands using 3D images[J]. Geotechnique, 2018, 68(3): 249-261.
    [25] Otsu N. A thresholding selection method from grayscale histogram[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62-66.
    [26] Wei T, Fan W, Yuan W, et al. Three-dimensional pore network characterization of loess and paleosol stratigraphy from South Jingyang Plateau, China[J]. Environmental Earth Sciences, 2019, 78(11).
    [27] Liu X, Jin M, Li D, et al. Strength deterioration of a Shaly sandstone under dry-wet cycles: A case study from the Three Gorges Reservoir in China[J]. Bulletin of Engineering Geology & the Environment, 2017, 77: 1607-1621.
    [28] 王腾飞, 李远耀, 徐勇, 等. 基于声发射试验的红层砂岩损伤演化特性分析[J]. 地质科技情报, 2019, 38(4): 247-254. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201904026.htm

    Wang T F, Li Y Y, Xu Y, et al. Damage evolution analysis of red sandstone based on acoustic emission test[J]. Geological Science and Technology Information, 2019, 38(4): 247-254(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201904026.htm
    [29] 杨龙, 史小勇, 陈钱, 等. 循环荷载作用下片麻岩劣化损伤机理与规律试验[J]. 地质科技通报, 2020, 39(5): 55-60. doi: 10.19509/j.cnki.dzkq.2020.0517

    Yang L, Shi X Y, Chen Q, et al. Mechanism and laws of deterioration and damage of gneisses under cyclic loading[J]. Bulletin of Geological Science and Technology, 2020, 39(5): 55-60(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0517
  • 加载中
图(13)
计量
  • 文章访问数:  659
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-19

目录

    /

    返回文章
    返回