留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大汶河流域中上游地区岩溶地下水水化学特征及其控制因素分析

高宗军 万志澎 贺可强 维克多·库金 刘久潭

高宗军, 万志澎, 贺可强, 维克多·库金, 刘久潭. 大汶河流域中上游地区岩溶地下水水化学特征及其控制因素分析[J]. 地质科技通报, 2022, 41(5): 264-272. doi: 10.19509/j.cnki.dzkq.2022.0186
引用本文: 高宗军, 万志澎, 贺可强, 维克多·库金, 刘久潭. 大汶河流域中上游地区岩溶地下水水化学特征及其控制因素分析[J]. 地质科技通报, 2022, 41(5): 264-272. doi: 10.19509/j.cnki.dzkq.2022.0186
Gao Zongjun, Wan Zhipeng, He Keqiang, Victor Kuzin, Liu Jiutan. Hydrochemical characteristics and controlling factors of karst groundwater in middle and upper reaches of Dawen River basin[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 264-272. doi: 10.19509/j.cnki.dzkq.2022.0186
Citation: Gao Zongjun, Wan Zhipeng, He Keqiang, Victor Kuzin, Liu Jiutan. Hydrochemical characteristics and controlling factors of karst groundwater in middle and upper reaches of Dawen River basin[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 264-272. doi: 10.19509/j.cnki.dzkq.2022.0186

大汶河流域中上游地区岩溶地下水水化学特征及其控制因素分析

doi: 10.19509/j.cnki.dzkq.2022.0186
基金项目: 

山东省地下水水源地调查评价项目 SDZS-2016-GTT02

山东省自然科学基金项目 ZR2020MD109

详细信息
    作者简介:

    高宗军(1964—), 男, 教授, 博士生导师, 主要从事水、工、环地质方面的研究工作。E-mail: gaozongjun@126.com

    刘久潭(1991—), 男, 讲师, 主要从事水、工、环地质方面的研究工作。E-mail: 740058441@qq.com

  • 中图分类号: P641.134

Hydrochemical characteristics and controlling factors of karst groundwater in middle and upper reaches of Dawen River basin

  • 摘要:

    为查明大汶河流域中上游地区岩溶地下水水化学特征和离子来源, 基于2018年枯、丰两期采集的岩溶地下水样品水化学数据, 综合运用数理统计、相关性分析、Piper图、Gibbs图以及离子比值等方法, 对大汶河流域中上游地区岩溶地下水水化学特征及其控制因素进行了分析。结果表明,大汶河流域中上游地区枯、丰水期岩溶地下水的pH均值分别为7.6和7.5, 整体表现为弱碱性。岩溶地下水中Ca2+为占优势的阳离子, HCO3-和SO42-为主要阴离子。枯、丰期岩溶地下水中ρ(TDS)均值分别为645.4, 648.4 mg/L。按照TDS划分, 大汶河流域中上游地区岩溶地下水均属于淡水或微咸水;枯、丰水期岩溶地下水水化学类型均以HCO3·SO4-Ca为主。岩石风化作用是控制区内岩溶地下水水化学特征的主要控制因素, 碳酸盐岩和硅酸盐岩矿物的溶解是地下水主要离子的重要来源。同时, 大汶河流域中上游地区岩溶地下水还受到了比较明显的人为输入影响, 地下水中NO3-主要来自于农业生产活动。该研究成果为水资源利用提供了指导作用。

     

  • 图 1  研究区水文地质图及采样点位置

    Q.第四系;E.古近系;O.奥陶系;∈.寒武系;Art.太古界

    Figure 1.  Hydrogeological map and sampling points in the study area

    图 2  地下水Piper三线图

    Figure 2.  Piper diagram of groundwater

    图 3  Gibbs水化学图

    Figure 3.  Gibbs hydrochemistry diagram

    图 4  地下水Mg2+/Na+、HCO3-/Na+与Ca2+/Na+比值

    Figure 4.  Ratio of Mg2+/Na+ to HCO3-/Na+ and Ca2+/Na+ elements in groundwater

    图 5  地下水中主要离子比值关系

    Figure 5.  Ratio relationship of main ions in groundwater

    图 6  岩溶地下水中NO3-/Na+与Cl-/Na+关系(a)及Cl-/NO3-与SO42-/NO3- (b)关系趋势图

    Figure 6.  Relationship between the ratio of NO3-/Na+ and Cl-/Na+ (a), Cl-/NO3- and SO42-/NO3- (b) in karst groundwater

    图 7  区域土地利用类型图

    Figure 7.  Map of regional land use types

    表  1  地下水水化学统计结果

    Table  1.   Statistical results of groundwater hydrochemistry

    时间 项目 K+ Na+ Ca2+ Mg2+ Cl- SO42- HCO3- NO3- TH TDS pH
    ρB/(mg·L-1)
    丰水期 平均值 1.3 23.4 151.2 25.7 60.6 142.5 287 87.1 483.4 648.4 7.5
    最小值 0.26 3.7 49.7 1.5 8.5 18.3 74 8.6 153.6 228 6.9
    最大值 8.3 90.9 348.3 52.5 274.8 468.8 587 272.9 1051 1 495 8
    标准差 1.35 19.6 55.9 9.74 46.1 97.5 85.6 54.5 164.6 255.5 0.18
    变异系数 1.04 0.84 0.37 0.38 0.76 0.68 0.30 0.63 0.34 0.39 0.02
    枯水期 平均值 1.5 34.6 143 26.8 71 138.1 268 84.8 467.4 645.4 7.6
    最小值 0.34 6.6 47.1 5.4 12.76 31.7 73 25 139.6 275 7.1
    最大值 7.09 134.1 397.8 59.4 317 649.4 502 359.1 1196 1610 8.1
    标准差 1.28 27.1 65.9 10 63.6 103.2 68.4 58 194.9 291.2 0.22
    变异系数 0.85 0.78 0.46 0.37 0.90 0.75 0.26 0.68 0.42 0.45 0.03
    下载: 导出CSV

    表  2  地下水主要化学组分相关关系矩阵

    Table  2.   Correlation coefficients between major ions in groundwater

    项目 丰水期
    K+ Na+ Ca+ Mg2+ Cl- SO42- HCO3- NO3- TH TDS
    K+ 1
    Na+ 0.356** 1
    Ca+ 0.383** 0.696** 1
    Mg2+ 0.261* 0.373** 0.538** 1
    Cl- 0.544** 0.737** 0.772** 0.454** 1
    SO42- 0.445** 0.658** 0.801** 0.686** 0.642** 1
    HCO3- -0.064 0.431** 0.603** 0.375** 0.234 0.287* 1
    NO3- 0.307* 0.430** 0.593** 0.239 0.492** 0.285* 0.183 1
    TH 0.388** 0.681** 0.979** 0.700** 0.765** 0.846** 0.602** 0.561** 1
    TDS 0.456** 0.798** 0.966** 0.643** 0.818** 0.861** 0.530** 0.623** 0.976** 1
    项目 枯水期
    K+ Na+ Ca+ Mg2+ Cl- SO42- HCO3- NO3- TH TDS
    K+ 1
    Na+ 0.573** 1
    Ca+ 0.25 0.630** 1
    Mg2+ 0.313* 0.538** 0.678** 1
    Cl- 0.494** 0.857** 0.795** 0.621** 1
    SO42- 0.292* 0.623** 0.862** 0.759** 0.694** 1
    HCO3- -0.03 0.400** 0.545** 0.438** 0.267* 0.388** 1
    NO3- 0.287* 0.322* 0.623** 0.381** 0.495** 0.300* 0.15 1
    TH 0.278* 0.646** 0.988** 0.784** 0.803** 0.889** 0.553** 0.607** 1
    TDS 0.395** 0.776** 0.968** 0.765** 0.874** 0.882** 0.511** 0.620** 0.979** 1
    *表示在0.05水平上显著相关;**表示在0.01水平上显著相关
    下载: 导出CSV
  • [1] Li P Y, Qian H. Water resources research to support a sustainable China[J]. International Journal of Water Resources Development, 2018, 34(3): 327-336. doi: 10.1080/07900627.2018.1452723
    [2] 刘文悦, 高宗军, 徐源, 等. 济南市岩溶地下水化学特征及基于模糊评价法的水质评价[J/OL]. 中国岩溶: 1-17[2022-07-29]. http://kns.cnki.net/kcms/detail/45.1157.P.20220411.1928.005.html.

    Liu W Y, Gao Z J, Xu Yuan, et al. Hydrochemical characteristics and water quality evaluation of karst groundwater in Jinan City[J/OL]. Carsologica Sinica: 1-17[2022-07-29]http://kns.cnki.net/kcms/detail/45.1157.P.20220411.1928.005.html. (in Chinese with English abstract).
    [3] 刘伟江, 袁祥美, 张雅, 等. 贵阳市岩溶地下水水化学特征及演化过程分析[J]. 地质科技情报, 2018, 37(6): 245-251 https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201806031.htm

    Liu W J, Yuan X M, Zhang Y, et al. Hydrochemical characteristics and evolution of karst groundwater in Guiyang City[J]. Geological Science and Technology Information, 2018, 37(6): 245-251(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201806031.htm
    [4] Chemseddine F, Dalila B, Fethi B. Characterization of the main karst aquifers of the Tezbent Plateau, Tebessa Region, Northeast of Algeria, based on hydrogeochemical and isotopic data[J]. Environmental Earth Sciences, 2015, 74(1): 241-250. doi: 10.1007/s12665-015-4480-x
    [5] 高旭波, 王万洲, 侯保俊, 等. 中国北方岩溶地下水污染分析[J]. 中国岩溶, 2020, 39(3): 287-298. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202003001.htm

    Gao X B, Wang W Z, Hou B J, et al. Analysis of karst groundwater pollution in northern China[J]. Carsologica Sinica, 2020, 39(3): 287-298(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202003001.htm
    [6] 冯建国, 赫明浩, 李贵恒, 等. 泰莱盆地孔隙水水化学特征及其控制因素分析[J]. 环境化学, 2019, 38(11): 2594-2600. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201911021.htm

    Feng J G, He M H, Li G H, et al. Analysis of hydrochemical characteristics and controlling factors of porewater in the Tailai Basin[J]. Environmental Chemistry, 2019, 38(11): 2594-2600(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201911021.htm
    [7] 李贵恒, 冯建国, 鲁统民, 等. 泰莱盆地地下水水化学特征及水质评价[J]. 水电能源科学, 2019, 37(4): 52-55, 121. https://www.cnki.com.cn/Article/CJFDTOTAL-SDNY201904014.htm

    Li G H, Feng J G, Lu T M, et al. Hydrochemical characteristics and water quality assessment of groundwater in Tailai Basin[J]. Water Resources and Power, 2019, 37(4): 52-55, 121(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SDNY201904014.htm
    [8] 杨海博, 朱文峰, 周良, 等. 肥城盆地区域地下水化学特征及水质评价[J]. 山东国土资源, 2020, 36(2): 50-55. https://www.cnki.com.cn/Article/CJFDTOTAL-SDDI202002008.htm

    Yang H B, Zhu W F, Zhou L, et al. Evaluation on chemical characteristics and water quality of groundwater in Feicheng Basin[J]. Shandong Land and Resources, 2020, 36(2): 50-55(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SDDI202002008.htm
    [9] 刘元晴, 周乐, 马雪梅, 等. 莱芜盆地地下水开发利用中的环境地质问题及成因[J]. 干旱区资源与环境, 2020, 34(11): 118-124.

    Liu Y Q, Zhou L, Ma X M, et al. Evaluation on chemical characteristics and water quality of groundwater in Feicheng Basin[J]. Journal of Arid Land Resources and Environment, 2020, 34(11): 118-124(in Chinese with English abstract).
    [10] Piper A M. A graphic procedure in the geochemical interpretation of water-analyses[J]. Transactions American Geophysical Union, 1944, 25(6): 914-923. doi: 10.1029/TR025i006p00914
    [11] Ren C B, Zhang Q Q. Groundwater chemical characteristics and controlling factors in a region of northern China with intensive human activity[J]. International Journal of Environmental Research and Public Health, 2020, 17(23): 9126. https://ideas.repec.org/a/gam/jijerp/v17y2020i23p9126-d458255.html
    [12] Zhou P P, Wang Z M, Zhang J Y, et al. Study on the hydrochemical characteristics of groundwater along the Taklimakan Desert Highway[J]. Environmental Earth Sciences, 2016, 75(20): 1378. doi: 10.1007/s12665-016-6204-2
    [13] 梁杏, 张婧玮, 蓝坤, 等. 江汉平原地下水化学特征及水流系统分析[J]. 地质科技通报, 2020, 39(1): 21-33. doi: 10.19509/j.cnki.dzkq.2020.0103

    Liang X, Zhang J W, Lan K, et al. Hydrochemical characteristics of groundwater and analysis of groundwater flow systems in Jianghan Plain[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 21-33(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0103
    [14] Gibbsr R J. Mechanisms controlling world water chemistry[J]. Science, 1970, 170: 1088-1090.
    [15] Liu J T, Gao Z J, Wang Z Y. et al. Hydrogeochemical processes and suitability assessment of groundwater in the Jiaodong Peninsula, China[J]. Environmental Monitoring and Assessment, 2020, 192(6): 384.
    [16] Gaillardet J, Dupré B, Louvat P, et al. Global silicate weathering and CO2, consumption rates deduced from the chemistry of large rivers[J]. Chemical Geology, 1999, 159(1): 3-30. https://www.sciencedirect.com/science/article/pii/S0009254199000315
    [17] Arunprakash M, Giridharan L, Krishnamurthy R R. et al. Impact of urbanization in groundwater of South Chennai City, Tamil Nadu, India[J]. Environmental Earth Sciences, 2014, 71(2): 947-957. doi: 10.1007/s12665-013-2496-7
    [18] 江欣悦, 李静, 郭林, 等. 豫北平原浅层地下水化学特征与成因机制[J]. 地质科技通报, 2021, 40(5): 290-300. doi: 10.19509/j.cnki.dzkq.2021.0511

    Jiang X Y, Li J, Guo L, et al. Chemical characteristics and formation mechanism of shallow groundwater in the northern Henan Plain[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 290-300(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0511
    [19] Jalali M. Chemical characteristics of groundwater in parts of mountainous region, Alvand, Hamadan, Iran[J]. Environmental Geology, 2008, 51(3): 433-446. doi: 10.1007/s00254-006-0338-6
    [20] Gao Z, Liu J, Xu X, et al. Temporal variations of spring water in karst areas: A case study of Jinan spring area, northern China[J]. Water, 2020, 12(4): 1009.
    [21] Zhu G F, Su Y H, Huang C L, et al. Hydrogeochemical processes in the groundwater environment of Heihe River Basin, Northwest China[J]. Environmental Earth Sciences, 2010, 60(1): 139-153. doi: 10.1007/s12665-009-0175-5
    [22] 李舒, 杨佳雪, 李小倩, 等. 地下水化学组成的时空聚类分析与多级嵌套水流系统识别[J]. 地质科技通报, 2022, 41(1): 309-318. doi: 10.19509/j.cnki.dzkq.2022.0028

    Li S, Yang J X, Li X Q, et al. Lumped cluster analysis for understanding spatial and temporal patterns of groundwater geochemistry and hierarchically nested flow systems[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 309-318(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0028
    [23] 黄艳雯, 杜尧, 徐宇, 等. 洞庭湖平原西部地区浅层承压水中铵氮的来源与富集机理[J]. 地质科技通报, 2020, 39(6): 165-174. doi: 10.19509/j.cnki.dzkq.2020.0618

    Huang Y W, Du Y, Xu Y, et al. Source and enrichment mechanism of ammonium in shallow confined aquifer inthe west of Dongting Plain. [J]. Bulletin of Geological Science and Technology, 2020, 39(6): 165-174(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0618
    [24] Fan B L, Zhao Z Q, Tao F X, et al. Characteristics of carbonate, evaporite and silicate weathering in Huanghe River basin: A comparison among the upstream, midstream and downstream[J]. Journal of Asian Earth Sciences, 2014, 96: 17- 26. https://www.sciencedirect.com/science/article/pii/S1367912014003964
    [25] 赵江涛, 周金龙, 曾妍妍, 等. 新疆焉耆盆地平原区地下水质量评价与污染成因探讨[J]. 地球与环境, 2015, 43(6): 628-636. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201506005.htm

    Zhao J T, Zhou J L, Zeng Y Y, et al. Assessment of groundwater quality and pollution causes discussion for the plain area of Yanqi Basin, Xinjiang Autonomous Region, China[J]. Earth and Environment, 2015, 43(6): 628-636(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201506005.htm
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  572
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-08
  • 网络出版日期:  2022-11-10

目录

    /

    返回文章
    返回