留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进的Vensim模型模拟岩溶泉水文过程

常勇 齐尧勇 刘玲

常勇, 齐尧勇, 刘玲. 基于改进的Vensim模型模拟岩溶泉水文过程[J]. 地质科技通报, 2022, 41(5): 301-307. doi: 10.19509/j.cnki.dzkq.2022.0188
引用本文: 常勇, 齐尧勇, 刘玲. 基于改进的Vensim模型模拟岩溶泉水文过程[J]. 地质科技通报, 2022, 41(5): 301-307. doi: 10.19509/j.cnki.dzkq.2022.0188
Chang Yong, Qi Yaoyong, Liu Ling. Modelling the hydrological process of the karst spring using a revised Vensim model[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 301-307. doi: 10.19509/j.cnki.dzkq.2022.0188
Citation: Chang Yong, Qi Yaoyong, Liu Ling. Modelling the hydrological process of the karst spring using a revised Vensim model[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 301-307. doi: 10.19509/j.cnki.dzkq.2022.0188

基于改进的Vensim模型模拟岩溶泉水文过程

doi: 10.19509/j.cnki.dzkq.2022.0188
基金项目: 

中央高校基本科研业务费专项资金 B220201020

岩溶动力学重点实验室开放课题 KDL & Guangxi202201

详细信息
    作者简介:

    常勇(1987—),男,副研究员,主要从事岩溶水文地质、岩溶水文模型方面的研究工作。E-mail: wwwkr@163.com

  • 中图分类号: P641.134

Modelling the hydrological process of the karst spring using a revised Vensim model

  • 摘要:

    经典的Vensim模型采用2个平行线性水箱来模拟岩溶水文系统中的慢速流和快速流, 很难模拟岩溶水文系统内的非线性水文过程。提出一种改进的R-Vensim模型, 将Vensim中的一个水箱改为非线性水箱, 同时进一步考虑不同水文条件下降雨分配系数的变化, 用于模拟岩溶含水层中存在的非线性水文过程。2个模型被用于模拟丫吉试验场的S31岩溶泉, 模拟结果表明R-Vensim能更好地模拟不同降雨条件下岩溶泉水文动态过程, 而Vensim总是低估暴雨下的流量峰值和高估低强度降雨下的流量峰值。研究区岩溶水文系统中慢速流呈现强烈的非线性, 而快速流更接近于线性过程, 2个模拟时段内78.5%和68.4%的泉流量来源于非线性水箱。研究结果表明模型中考虑非线性水文过程对于岩溶泉流量尤其低流量过程的精准模拟十分重要。

     

  • 图 1  Vensim模型结构

    PE.有效补给量;x.降雨分配系数;H1.慢速流水箱内的水位;H2.快速流水箱内的水位;K1, K2.2个水箱的出流系数;S.蒸散发水箱内的水位;Smax.蒸散发水箱内的最大容量;P.降雨量;ET.实际蒸发量

    Figure 1.  Structure of Vensim model

    图 2  丫吉试验场泉域分布图

    Figure 2.  Catchments of different springs at the Yaji experimental site

    图 3  Vensim和R-Vensim模型在校正期对岩溶泉流量过程的模拟结果

    Figure 3.  Simulation results of the karst spring by Vensim and R-Vensim in the calibration period

    图 4  Vensim和R-Vensim模型在验证期对岩溶泉流量过程的模拟结果

    Figure 4.  Simulation results of the karst spring by Vensim and R-Vensim in the validation period

    图 5  校正期R-Venism模型中非线性水箱出口流量占泉流量比例(Qnl为非线性水箱出口流量, Q为泉流量模拟值)

    Figure 5.  Proportion of outflow of the nonlinear reservoir to the simulated spring discharge in R-Vensim during the calibration period

    表  1  Vensim和R-Vensim最优参数率定值

    Table  1.   Optimal parameter values in Vensim and R-Vensim model after calibration

    模型 参数 最优率定值 取值范围
    Venism Smax/mm 70 [0, 200]
    K1/min-1 0.000 4 [1×10-4, 1]
    K2/min-1 0.002 7 [1×10-3, 1]
    x 0.55 [0, 1]
    R-Venism Smax/mm 55 [0, 200]
    K1/(m1-n·min-1) 0.45 [1×10-4, 1]
    K2/min-1 0.002 8 [1×10-3, 1]
    n 3.25 [1, 5]
    x 0.90 [0, 1]
    x 0.29 [0, 1]
    Hd/mm 18 [0, 30]
    下载: 导出CSV

    表  2  2个模型在校正期和验证期目标函数值

    Table  2.   Objective values of the two models in the calibration and validation periods

    模型 Nashsqrt Nash Nashln
    校正期 Venism 0.83 0.85 0.61
    R-Venism 0.90 0.92 0.70
    验证期 Venism 0.75 0.77 0.11
    R-Venism 0.84 0.88 0.50
    下载: 导出CSV
  • [1] 单海平, 邓军. 我国西南地区岩溶水资源的基本特征及其和谐利用对策[J]. 中国岩溶, 2006, 25(4): 324-329. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR200604011.htm

    Shan H P, Deng J. Basic features and counter-measures for use of karst water in Southwest China[J]. Carsologica Sinica, 2006, 25(4): 324-329(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR200604011.htm
    [2] 常勇, 刘玲. 岩溶地区水文模型综述[J]. 工程勘察, 2015, 43(3): 37-44. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201503007.htm

    Chang Y, Liu L. Review of karst hydrological models[J]. Geotechnical Investigation & Surveying, 2015, 43(3): 37-44(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201503007.htm
    [3] 吴乔枫, 刘曙光, 蔡奕, 等. 流域非闭合特性对岩溶地区水文过程模拟的影响[J]. 水利学报, 2017, 48(4): 457-466. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201704009.htm

    Wu Q F, Liu S G, Cai Y, et al. Effect of unclosed characteristics of the basin on hydrological modeling in karst regions[J]. Journal of Hydraulic Engineering, 2017, 48(4): 457-466(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201704009.htm
    [4] Chang Y, Wu J, Jiang G, et al. Identification of the dominant hydrological process and appropriate model structure of a karst catchment through stepwise simplification of a complex conceptual model[J]. Journal of Hydrology, 2017, 548: 75-87. doi: 10.1016/j.jhydrol.2017.02.050
    [5] Duran L, Massei N, Lecoq N, et al. Analyzing multi-scale hydrodynamic processes in karst with a coupled conceptual modeling and signal decomposition approach[J]. Journal of Hydrology, 2020, 583: 124625. doi: 10.1016/j.jhydrol.2020.124625
    [6] Fleury P, Plagnes V, Bakalowicz M. Modelling of the functioning of karst aquifers with a reservoir model: Application to Fontaine de Vaucluse(South of France)[J]. Journal of Hydrology, 2007, 345(1): 38-49. https://www.sciencedirect.com/science/article/pii/S0022169407004295
    [7] Goldscheider N, Drew D. Methods in karst hydrogeology[C]//International Contributions to Hydrogeology, 26. London: Crc Press, 2007.
    [8] Fleury P. Sources sous-marines et aquiferes karstiques cǒtiers mediterraneens. fonctionnement et caracterisation[D]. Paris: Université Pierre Et Marie Curie-Paris Vi, 2005.
    [9] Charlier J B, Bertrand C, Mudry J. Conceptual hydrogeological model of flow and transport of dissolved organic carbon in a small Jura karst system[J]. Journal of Hydrology, 2012, 460/461: 52-64. doi: 10.1016/j.jhydrol.2012.06.043
    [10] Hartmann A, Lange J, Aguado A V, et al. A multi-model approach for improved simulations of future water availability at a large eastern Mediterranean karst spring[J]. Journal of Hydrology, 2012, 468/469: 130-138. doi: 10.1016/j.jhydrol.2012.08.024
    [11] Zhang Z C, Chen X, Cheng Q B, et al. Storage dynamics, hydrological connectivity and flux ages in a karst catchment: Conceptual modelling using stable isotopes[J]. Hydrology and Earth System Sciences, 2019, 23(1): 51-71. doi: 10.5194/hess-23-51-2019
    [12] Tritz S, Guinot V, Jourde H. Modelling the behaviour of a karst system catchment using non-linear hysteretic conceptual model[J]. Journal of Hydrology, 2011, 397(3): 250-262. https://www.sciencedirect.com/science/article/pii/S0022169410007432
    [13] Alparslan A. MODALP: A deterministic rainfall-runoff model for large karstic areas[J]. International Association of Scientific Hydrology Bulletin, 1988, 33(4): 401-414.
    [14] Bonacci O. Ground water behaviour in karst: Example of the Ombla Spring(Croatia)[J]. Journal of Hydrology, 1995, 165(1): 113-134. https://www.sciencedirect.com/science/article/pii/002216949402577X
    [15] Rozos E, Koutsoyiannis D. A multicell karstic aquifer model with alternative flow equations[J]. Journal of Hydrology, 2006, 325(1): 340-355. https://www.sciencedirect.com/science/article/pii/S0022169405005512
    [16] 刘再华, Chris G, 袁道先, 等. 水-岩-气相互作用引起的水化学动态变化研究: 以桂林岩溶试验场为例[J]. 水文地质工程地质, 2003, 30(4): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200304003.htm

    Liu Z H, Chris G, Yuan D X, et al. Study on the hydrochemical variations caused by the water-rock-gas interaction: An example from the Guilin Karst Experimental Site[J]. Hydrogeology & Engineering Geology, 2003, 30(4): 13-18(Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200304003.htm
    [17] Halihan T, Wicks C M, Engeln J F. Physical response of a karst drainage basin to flood pulses: Example of the Devil's Icebox cave system(Missouri, USA)[J]. Journal of Hydrology, 1998, 204(1): 24-36. https://www.sciencedirect.com/science/article/pii/S0022169497001042
    [18] Chang Y, Wu J C, Jiang G H. Modeling the hydrological behavior of a karst spring using a nonlinear reservoir-pipe model[J]. Hydrogeology Journal, 2015, 23(5): 1-14. doi: 10.1007/s10040-015-1241-6
    [19] Eagleman J R. Pan evaporation, potential and actual evapotranspiration[J]. Journal of Applied Meteorology, 1967, 6(3): 482-488.
    [20] Duan Q Y, Sorooshian S, Gupta V. Effective and efficient global optimization for conceptual rainfall-runoff models[J]. Water Resources Research, 1992, 28(4): 1015-1031. doi: 10.1029/91WR02985
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  310
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-06
  • 网络出版日期:  2022-11-10

目录

    /

    返回文章
    返回