留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地下工程建设对岩溶水流场的影响及其修复

邢立亭 于苗 宿庆伟 赵振华 高扬 张云峰

邢立亭, 于苗, 宿庆伟, 赵振华, 高扬, 张云峰. 地下工程建设对岩溶水流场的影响及其修复[J]. 地质科技通报, 2022, 41(5): 242-254. doi: 10.19509/j.cnki.dzkq.2022.0190
引用本文: 邢立亭, 于苗, 宿庆伟, 赵振华, 高扬, 张云峰. 地下工程建设对岩溶水流场的影响及其修复[J]. 地质科技通报, 2022, 41(5): 242-254. doi: 10.19509/j.cnki.dzkq.2022.0190
Xing Liting, Yu Miao, Su Qingwei, Zhao Zhenhua, Gao Yang, Zhang Yunfeng. Influence and repair of underground engineering construction on karst flow field[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 242-254. doi: 10.19509/j.cnki.dzkq.2022.0190
Citation: Xing Liting, Yu Miao, Su Qingwei, Zhao Zhenhua, Gao Yang, Zhang Yunfeng. Influence and repair of underground engineering construction on karst flow field[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 242-254. doi: 10.19509/j.cnki.dzkq.2022.0190

地下工程建设对岩溶水流场的影响及其修复

doi: 10.19509/j.cnki.dzkq.2022.0190
基金项目: 

国家自然科学基金项目 41772257

济南市高校院所创新团队项目 2018GXRC012

详细信息
    作者简介:

    邢立亭(1966—),男,教授,博士生导师,主要从事水文地质学教学与研究工作。E-mail:xlting596@163.com

  • 中图分类号: P641.134

Influence and repair of underground engineering construction on karst flow field

  • 摘要:

    工程建设改变地下水流场危及建筑物的安全。以济南经十路沿线大型地下综合体为例, 通过数值模拟计算工程建设对地下水渗流场的影响, 并建立了地下水流场修复模型。结果表明: 地下空间结构会阻挡地下水运移, 地下水水位壅高造成地基承载力降低; 将地下工程设置导流措施后, 其迎水面水位随时间呈现衰减趋势, 且越接近天然状态水位衰减速率越慢; 因地层结构差异, 壅高水位基本回落的时间存在较大差异; 不同地质条件下流场修复所需导流井数量与导流几何体结构参数呈负相关关系, 所需导流井数量的预测方程反映了地质条件的复杂性和多变性。除导流几何体自身结构外, 围岩水力梯度与渗透系数对导水能力产生影响, 其中渗透系数大小制约导水速率的快慢, 水力梯度则控制导水行为的发生。导流措施的实施可减小工程建设对地下水环境的影响, 确保地下工程建设对水环境影响可控。

     

  • 图 1  济南经十路千佛山断裂-文化桥断裂段地质剖面示意图

    Figure 1.  Geological profile of the Qianfoshan fault-Wenhuaqiao fault in Jingshilu, Jinan

    图 2  碳酸盐岩单层结构类型(SCK)三维模型示意图

    Figure 2.  3D model of subterranean construction in karst(SCK type)

    图 3  碳酸盐岩单层结构类型(SCK)有限元模型网格剖分

    Figure 3.  Finite element mesh generation of subterranean construction in karst(SCK type)

    图 4  山师东路综合体长期观测点分布图

    Figure 4.  Distribution of long-term observation points of the underground complex on Shanshi East Road

    图 5  天然状态下实测水位与流场模拟水位对比图

    Figure 5.  Comparison between simulated water level and actual observed water level of seepage field under natural state

    图 6  不同类型模型天然流场分布情况

    a.碳酸盐岩单层结构类型(SCK);b.土体单层结构类型(SCS)

    Figure 6.  Distribution of natural flow field of different type model

    图 7  地下综合体建设后渗流场模拟结果

    a.碳酸盐岩单层结构类型(SCK);b.土体单层结构类型(SCS)

    Figure 7.  Simulation results of the seepage field after foundation construction

    图 8  地下工程建设前后迎水面边界水位变化情况

    a.碳酸盐岩单层结构类型(SCK);b.土体单层结构类型(SCS)

    Figure 8.  Variation in the water level at the boundary of the upstream surface before and after underground buildings construction

    图 9  地下水位影响建筑物地基深度示意图

    D.基础埋深;Z.地下水位距基底底面距离;h.对地基承载力产生影响的地下水深度;B.基础宽度

    Figure 9.  Schematic diagram of the underground water level affecting the foundation depth

    图 10  U型导水通道示意图

    Figure 10.  Schematic diagram of the U-shaped diversion channel

    图 11  增加导流措施后计算区流场模拟结果

    a.碳酸盐岩单层结构类型(SCK); b.土体单层结构类型(SCS)

    Figure 11.  Flow field simulation results of the calculation area after set diversion measures

    图 12  导流井数量与影响指标的关系

    Figure 12.  Relationship between the quantity of diversion wells and impact indicators

    图 13  预估模型计算值与实测值吻合程度

    Figure 13.  Degree of coincidence between the calculated value of the prediction model and the test value

    图 14  增加导流措施后水位衰减历时曲线

    a.碳酸盐岩单层结构类型(SCK); b.土体单层结构类型(SCS)

    Figure 14.  Water level attenuation duration curve after adding diversion measures

    表  1  不同结构类型边界条件设置

    Table  1.   Boundary condition settings of different models

    边界条件 山师东路商业综合体(SCK) 纬十二路商业综合体(SCS)
    水流入口 南侧边界 南侧边界
    水流出口 北侧边界 北侧边界
    开放边界 东、西边界 东、西边界
    第四系潜水含水层入口水位/m 42.0~43.40
    第四系承压水含水层入口水位/m 39.7~41.09
    碳酸盐岩裂隙岩溶水及闪长岩风化裂隙含水层入口水位/m 68.8~69.6 36.9~38.21
    出口水位/m 66.5~68.0 36.4~42.1
    下载: 导出CSV

    表  2  相关参数设置

    Table  2.   Relevant parameter settings

    岩土层 渗透系数(m/d) 孔隙度 备注
    试验值/经验值 模型计算值 试验值/经验值 模型计算值
    Kx Ky Kz
    碳酸盐岩单层结构(山师东路商业综合体为例) 杂填土 2 2.04 1.26 0.02 0.3 0.30 位于历史最高水位以上
    粉质黏土 10-3~10-4 0.003 0.006 2 0.01 0.3~0.45 0.30
    碎石 3~10[28] 8 3 0.1 0.24~0.36 0.25
    破碎白云岩 0.003 9~0.01 0.007 0.012 0.003 0.05~0.20 0.25 位于历史最高水位以下
    中风化白云岩 1.5~14.5 1.73 0.9 0.001 0.02~0.30[31] 0.3
    溶洞(粉质黏土及碎石充填) 2.62 0.13 0.006 0.6
    土体单层结构(纬十二路商业综合体为例) 杂填土 0.5 0.7 0.04 0.01 0.33~0.66 0.45 位于历史最高水位以上
    黄土 0.26~0.50[29] 0.55 0.3 0.1 0.3 0.25
    碎石 >50[30] 70 8 70 0.40[31] 0.36 位于历史最高水位以下
    粉质黏土1 0.024 0.065 0.03 0.015 0.4~0.6 0.32
    粉质黏土2 0.001~0.05 0.004 0.012 0.025 0.4~0.6 0.28
    含碎石粉质黏土 0.001~0.05[28] 0.009 0.02 0.12 0.3 0.32
    碎石 45~57 30 24 5 0.33~0.35 0.33
    全风化闪长岩 0.11 0.181 0.07 0.03 0.01~0.15[31] 0.05
    强风化闪长岩 < 0.11 0.01 0.013 0.013 0.01~0.15 0.13
    中风化闪长岩 0.108~0.114 0.12 0.032 0.012 0.01~0.15 0.08
    下载: 导出CSV

    表  3  天然状态下流场实测水位与模拟水位对比结果

    Table  3.   Results of the observed water level and simulated water level in the natural state 单位: m

    山师东路地下综合体 纬十二路地下综合体
    坐标(x, y) 实测水位 模拟水位 绝对误差 坐标(x, y) 实测水位 模拟水位 绝对误差
    0, 0 69.500 69.485 -0.015 0, 0 42.000 42.000 0.000
    50, 0 69.500 69.518 0.018 50, 0 42.133 42.133 0.000
    100, 0 69.500 69.524 0.024 100,0 42.267 42.267 0.000
    150, 0 69.500 69.515 0.015 150, 0 42.400 42.400 0.000
    200, 0 69.500 69.484 -0.016 200, 0 42.533 42.533 0.000
    250, 0 69.500 69.538 0.038 250, 0 42.667 42.667 0.000
    300, 0 69.600 69.552 -0.048 300, 0 42.800 42.800 0.000
    350, 0 69.622 69.606 -0.016 350, 0 42.933 42.933 0.000
    400, 0 69.786 69.835 0.049 400, 0 43.063 43.063 0.000
    0, 20 68.593 68.583 -0.010 450, 0 43.200 43.200 0.000
    50, 20 68.669 68.691 0.022 500, 0 43.398 43.398 0.000
    100, 20 68.754 68.787 0.033 0, 50 41.879 41.822 -0.057
    150, 20 68.877 68.886 0.009 50, 50 41.932 41.852 -0.080
    250, 20 69.075 69.089 0.014 150, 50 42.140 42.038 -0.101
    300, 20 69.191 69.171 -0.021 200, 50 42.264 42.222 -0.042
    350, 20 69.290 69.288 -0.002 250, 50 42.405 42.388 -0.018
    400, 20 69.354 69.351 -0.003 300, 50 42.533 42.526 -0.008
    0, 40 67.740 67.597 -0.143 350, 50 42.650 42.650 0.000
    50, 40 67.843 67.652 -0.191 400, 50 42.784 42.793 0.009
    100, 40 68.057 68.096 0.040 450, 50 42.886 42.885 -0.001
    150, 40 68.264 68.244 -0.021 500, 50 42.982 42.983 0.001
    200, 40 68.481 68.502 0.021 0, 100 41.628 41.536 -0.092
    250, 40 68.643 68.639 -0.004 50, 100 41.666 41.554 -0.111
    300, 40 68.791 68.757 -0.034 100, 100 41.741 41.592 -0.149
    350, 40 68.952 68.919 -0.033 150, 100 41.864 41.717 -0.147
    400, 40 69.002 68.991 -0.011 200, 100 41.987 41.919 -0.068
    0,60 66.838 66.881 0.043 250, 100 42.120 42.102 -0.018
    50, 60 66.915 66.883 -0.033 300, 100 42.249 42.246 -0.003
    100, 60 67.284 67.210 -0.074 350, 100 42.370 42.371 0.000
    150, 60 67.642 67.744 0.102 400, 100 42.503 42.508 0.006
    200, 60 67.973 68.008 0.035 450, 100 42.590 42.589 -0.001
    250, 60 68.222 68.264 0.043 500, 100 42.647 42.647 0.001
    300, 60 68.422 68.430 0.008 0, 150 41.295 41.202 -0.092
    350, 60 68.618 68.595 -0.023 50, 150 41.338 41.235 -0.103
    400, 60 68.693 68.710 0.017 100, 150 41.434 41.298 -0.136
    0,80 66.537 66.499 -0.038 150, 150 41.574 41.414 -0.160
    50, 80 66.665 66.625 -0.040 200, 150 41.701 41.613 -0.088
    100, 80 66.717 66.671 -0.046 250, 150 41.825 41.825 0.000
    150, 80 66.934 66.895 -0.039 300, 150 41.986 41.986 0.000
    200, 80 67.436 67.465 0.029 350, 150 42.120 42.138 0.018
    250, 80 67.783 67.831 0.048 400, 150 42.270 42.281 0.011
    300, 80 68.032 68.034 0.002 450, 150 42.335 42.335 0.000
    350, 80 68.292 68.307 0.015 500, 150 42.376 42.377 0.000
    400, 80 68.413 68.382 -0.031 0, 200 40.839 40.780 -0.059
    0,100 66.208 66.165 -0.043 50, 200 40.930 40.881 -0.049
    50, 100 66.361 66.378 0.018 100, 200 41.101 41.046 -0.055
    100, 100 66.598 66.603 0.005 150, 200 41.277 41.210 -0.067
    150, 100 66.661 66.623 -0.039 200, 200 41.416 41.378 -0.039
    200, 100 66.914 66.947 0.033 250, 200 41.566 41.565 -0.002
    250, 100 67.325 67.366 0.042 300, 200 41.749 41.749 0.000
    300, 100 67.614 67.618 0.004 350, 200 41.858 41.875 0.017
    350, 100 67.976 67.986 0.010 400, 200 41.972 42.020 0.048
    400, 100 68.162 68.152 -0.011 450, 200 42.090 42.089 -0.001
    0, 120 65.830 65.875 0.045 500, 200 42.152 42.152 0.000
    50, 120 66.055 66.054 -0.001
    100, 120 66.322 66.337 0.015
    150, 120 66.562 66.596 0.034
    200, 120 66.702 66.730 0.029
    250, 120 66.883 66.849 -0.033
    300, 120 67.130 67.160 0.030
    350, 120 67.682 67.709 0.027
    400, 120 67.946 67.928 -0.018
    下载: 导出CSV

    表  4  导流通道几何结构方案设定

    Table  4.   Geometric structure scheme setting of the diversion channel

    几何结构 具体规格
    垂向导流井直径D/mm 方案1 168
    方案2 277
    方案3 325
    方案4 377
    地下结构上下游之间导水通道矩形断面边长L1/mm 500~1 500
    相邻导流井之间导水通道断面边长L2/mm 500
    导流管内填充物渗透系数Kd/(m·d-1) 10~30
    下载: 导出CSV

    表  5  等效渗透系数计算

    Table  5.   Calculation of the equivalent permeability coefficient

    岩土体结构 岩土层 渗透系数Kx/(m·d-1) 地层厚度均值/m 等效渗透系数Kp/(m·d-1)
    碳酸盐岩单层结构(山师东路商业综合体为例) 杂填土 2.04 2.43 3.25
    粉质黏土 2 4.76
    碎石 15 12.66
    破碎白云岩 0.7 13.24
    中风化白云岩 0.03 32.75
    溶洞(粉质黏土及碎石充填) 2.62 0.51
    土体单层结构(纬十二路商业综合体为例) 杂填土 0.7 2.1 2.63
    黄土 0.55 3.04
    碎石 70 4.31
    粉质黏土1 0.065 1.02
    粉质黏土2 0.004 3.4
    含碎石粉质黏土 2.55 6.99
    碎石 30 2.26
    全风化闪长岩 0.081 15.37
    强风化闪长岩 0.015 3.62
    中风化闪长岩 0.06 22.48
    下载: 导出CSV

    表  6  因素水平

    Table  6.   Factor level

    水平号 垂向导流井直径D/mm 导流通道断面边长L1/mm 导流管渗透系数Kd/(m·d-1) 地层等效渗透系数Kp/(m·d-1)
    KSCK KSCS
    1 168 500 10 3.25 2.63
    2 277 800 20
    3 325 1 000 25
    4 377 1 500 30
    下载: 导出CSV

    表  7  SCK和SCS导流修复正交试验结果

    Table  7.   Orthogonal test results of SCK and SCS diversion restoration

    方案 D/mm L1/mm Kd/(m·d-1) KSCK/(m·d-1) NSCK/组 KSCS/(m·d-1) NSCS/组
    1 168 500 10 3.25 11 2.63 19
    2 168 800 20 3.25 9 2.63 13
    3 168 1 000 25 3.25 8 2.63 12
    4 168 1 500 30 3.25 7 2.63 8
    5 277 500 20 3.25 9 2.63 11
    6 277 800 10 3.25 7 2.63 10
    7 277 1 000 30 3.25 6 2.63 9
    8 277 1 500 25 3.25 6 2.63 9
    9 325 500 25 3.25 7 2.63 10
    10 325 800 25 3.25 7 2.63 9
    11 325 1 000 10 3.25 8 2.63 10
    12 325 1 500 20 3.25 7 2.63 7
    13 377 500 30 3.25 8 2.63 6
    14 377 800 25 3.25 7 2.63 8
    15 377 1 000 20 3.25 7 2.63 7
    16 377 1 500 10 3.25 8 2.63 9
    注: NSCKNSCS分别代表壅水回落所需最少导流井数量
    下载: 导出CSV

    表  8  模型性能评价指标及评价结果

    Table  8.   Model performance evaluation indexes and evaluation results

    评价准则 有效性
    (Nash-Sutcliffe Efficiency: NSE)准则[40]
    百分比偏差
    (Percent Bias: PBIAS)准则[40]
    相对误差
    (mean relative error: MRE)准则[41]
    公式 $N S E=1-\frac{\sum\limits_{i=1}^n\left(E_i-P_i\right)^2}{\sum\limits_{i=1}^n\left(E_i-\bar{E}\right)^2}$ $ { PBIAS }=\frac{\sum\limits_{i=1}^n\left(E_i-P_i\right) \times 100}{\sum\limits_{i=1}^n E_i}$ $M R E=\frac{1}{n} \sum\limits_{i=1}^n\left|\frac{E_i-P_i}{E_i}\right| \times 100$
    目的 评价模型结算结果的有效性 评价平均计算趋势较实测值的偏离状态 评价模型的计算误差效果
    准则 取值范围为(-∞, 1], 当计算值与实测值完全相等时NSE值为1, NSE值越小, 模型计算结果的有效性越差, 但NSE准则不能用于评价模型计算值总体低估或高估的状态 PBIAS值越接近零, 代表计算值越精确。PBIAS>0代表计算值总体处于低估状态, 反之则高估 MRE值较小, 表明对模型的预测效果更好
    本文SCK模型结果 0.840 5 -8.196×10-8 % 4.600 4%
    本文SCS模型结果 0.906 7 4.525 75×10-16 % 9.2438 %
    注: 表中Ei为第i个实测值;Pi为第i个计算值;E为实测值的均值;n为实测值数量
    下载: 导出CSV

    表  9  不同条件下壅水消失所需时间

    Table  9.   Time required for backwater disappearance under different conditions 单位: h

    岩溶地层渗透系数K/(m·d-1) 地下空间基础上下游水力梯度J
    0~0.05 0.1 0.5 1.0 1.5
    0.001~0.01 NULL 13.70 3.20 1.40 0.38
    0.03 NULL 13.50 3.20 1.40 0.38
    0.1 NULL 13.50 2.80 1.32 0.35
    0.5 NULL 13.40 2.40 1.32 0.35
    0.8 NULL 13.10 2.40 1.30 0.35
    1 NULL 12.30 2.30 1.26 0.33
    10 NULL 12.00 2.10 1.10 0.28
    20 NULL 11.50 1.80 1.06 0.27
    30 NULL 11.30 1.73 0.88 0.27
    50 NULL 11.00 1.58 0.82 0.22
    100 NULL 10.90 1.36 0.80 0.17
    200 NULL 10.70 0.95 0.76 0.13
    500 NULL 10.50 0.81 0.15 0.05
    1000 NULL 10.50 0.50 0.02 0.01
    注: NULL代表壅水无法预期回落
    下载: 导出CSV
  • [1] 成建梅, 柳璨, 李敏敏, 等. 城市化进程下北京平原渗流场与地面沉降发展演化模拟[J]. 地质科技通报, 2020, 39(1): 43-52. doi: 10.19509/j.cnki.dzkq.2020.0105

    Cheng J M, Liu C, Li M M, et al. Numerical study on evolution of groundwater hydrodynamics and land subsidence under the process of metro politan urbanization in Beijing Plain, China[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 43-52(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0105
    [2] 郭红东, 魏林森, 郑伟, 等. 地铁工程对兰州断陷盆地地下水环境的影响分析[J]. 水利水电技术, 2020, 51(8): 119-128. https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ202008015.htm

    Guo H D, Wei L S, Zheng W, et al. Impact from subway project on groundwater environment in Lanzhou fault basin[J]. Water Resources and Hydropower Engineering, 2020, 51(8): 119-128(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ202008015.htm
    [3] Kontanz P O. 地下隧道和输水建筑物对地下水流动的影响[J]. 赵鹤平, 译. 地理译报, 1989(3): 29-31.

    Kontanz P O. Effect on groundwater flow due to tunnel and pipe constructions[J]. Transtated by Zhao H P. Progress in Geography, 1989(3): 29-31 (in Chinese).
    [4] Sun S Q, Li L P, Wang J, et al. Karst development mechanism and characteristics based on comprehensive exploration along Jinan metro, China[J]. Sustainability, 2018, 10(10): 3383. doi: 10.3390/su10103383
    [5] 卢海平, 张发旺, 赵春红, 等. 我国南北方岩溶差异[J]. 中国矿业, 2018, 27(增刊2): 317-319. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA2018S2085.htm

    Lu H P, Zhang F W, Zhao C H, et al. Difference between southern karst and northern karst besides scientific issues that need attention[J]. China Mining Maganine, 2018, 27(S2): 317-319(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA2018S2085.htm
    [6] 李喜, 殷坤龙, 陈标典, 等. 武汉白沙洲长江两岸岩溶塌陷易发性评价与地铁建设过程中的防治对策[J]. 地质科技通报, 2020, 39(6): 121-130. doi: 10.19509/j.cnki.dzkq.2020.0612

    Li X, Yin K L, Chen B D, et al. Evaluation of susceptibility to karst collapse on both sides of the Yangtze River in Baishazhou, Wuhan and preventive measures in the process of metro construction[J]. Bulletin of Geological Science and Technology, 2020, 39(6): 121-130(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0612
    [7] Cui Q L, Wu H N, Shen S L, et al. Chinese karst geology and measures to prevent geohazards during shield tunnelling in karst region with caves[J]. Natural Hazards, 2015, 77(1): 129-152. doi: 10.1007/s11069-014-1585-6
    [8] Wang X, Lai J, He S, et al. Karst geology and mitigation measures for hazards during metro system construction in Wuhan, China[J]. Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2020, 103(4): 2905-2927.
    [9] Qu R F, Zhou C B. On the influence of karst collapse on subway tunnel and karst treatment in Wuhan[J]. Electronic Journal of Geotechnical Engineering, 2016, 21(10): 3979-3992.
    [10] Ding L Y, Wu X G, Li H, et al. Study on safety control for Wuhan metro construction in complex environments[J]. International Journal of Project Management, 2011, 29(7): 797-807. doi: 10.1016/j.ijproman.2011.04.006
    [11] 邓国基, 黄佳铭, 郑小战, 等. 广州市白云区岩溶发育特征与分布规律研究[J]. 中国地名, 2019(10): 54-56. https://www.cnki.com.cn/Article/CJFDTOTAL-NAME201910031.htm

    Deng G J, Huang J M, Zheng X Z, et al. Study on karst development characteristics and distribution in Baiyun District, Guangzhou[J]. China Place Name, 2019(10): 54-56(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-NAME201910031.htm
    [12] 秦俭, 李身想. 浅谈南北方岩溶地貌差异成因[J]. 科技展望, 2014(14): 192. doi: 10.3969/j.issn.1672-8289.2014.14.169

    Qin J, Li S X. On the causes of karst landform differences between South and North[J]. Science and Technology, 2014(14): 192(in Chinese with English abstract). doi: 10.3969/j.issn.1672-8289.2014.14.169
    [13] 刘光亚. 中国北方的岩溶水强径流带[J]. 河北地质大学学报, 2017, 40(2): 15-19. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDX201702003.htm

    Liu G Y. Strong runoff zone in karst water in northern China[J]. Journal of Hebei GEO University, 2017, 40(2): 15-19(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HBDX201702003.htm
    [14] 叶安强, 张洋, 杨士友. 岩溶地区地下工程建设对地下水渗流的影响分析[J]. 西部资源, 2020(6): 102-104. https://www.cnki.com.cn/Article/CJFDTOTAL-XBZY202006035.htm

    Ye A Q, Zhang Y, Yang S Y. Influence of underground engineering construction on groundwater seepage in karst area[J]. Western Resources, 2020(6): 102-104(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XBZY202006035.htm
    [15] Colombo L, Gattinoni P, Scesi L. Influence of underground structures and infrastructures on the groundwater level in the urban area of milan, Italy[J]. International Journal of Sustainable Development and Planning, 2017, 12(1): 176-184.
    [16] Esther S, Hyoung-Soo K, Kyoochul H, et al. Regional groundwater flow characteristics due to the subway system in Seoul, Korea[J]. Journal of Soil and Groundwater Environment, 2015, 20(3): 41-50.
    [17] Lan Y Y. Analysis of the influence of Nanchang Metro Line 4 on groundwater[J]. IOP Conference Series Earth and Environmental Science, 2017, 61(1): 012112.
    [18] Li F K, Gong H L, Chen B B, et al. Subsidence monitoring with Terra SAR-X data in Beijing Central Business District and subway tunnelings, China[J]. Proceedings of the International Association of Hydrological Sciences, 2020, 382(4): 125-130.
    [19] Ma Q Q, Li W T, Zhang Y J. Subway tunnel construction settlement analysis based on the combination of numerical simulation and neural network[J]. Scientific Programming, 2021(4): 46478744.
    [20] Wang J X, Deng Y S, Xu N, et al. Numerical simulation of land subsidence caused by subway train vibration using PFC[J]. Proceedings of the International Association of Hydrological Sciences, 2020, 382(4): 559-564.
    [21] 赵振华, 邢立亭, 王立艳, 等. 济南市区轨道交通建设适宜性评价[J]. 铜业工程, 2017(3): 42-46. https://www.cnki.com.cn/Article/CJFDTOTAL-TYGC201703013.htm

    Zhao Z H, Xing L T, Wang L Y, et al. Subway construction suitability evaluation in Jinan urban area[J]. Copper Engineering, 2017(3): 42-46(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TYGC201703013.htm
    [22] 郭红梅. 地下水数值模拟在济南地铁规划中的应用研究[J]. 勘察科学技术, 2012(5): 36-41. https://www.cnki.com.cn/Article/CJFDTOTAL-KCKX201205010.htm

    Guo H M. Application of groundwater numerical simulation on subway plan in Jinan[J]. Site Investigation Science and Technology, 2012(5): 36-41(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KCKX201205010.htm
    [23] 庞炜, 刘永勤, 戴迎春. 济南轨道交通建设对泉水影响预测及情景分析[J]. 都市快轨交通, 2012, 25(1): 94-98. https://www.cnki.com.cn/Article/CJFDTOTAL-DSKG201201024.htm

    Pang W, Liu Y Q, Dai Y C. Prediction and scenario analysis of the influence of urban rail transit consrtuction on spring ecosytem in Jinan City[J]. Urban Rapid Rail Transit, 2012, 25(1): 94-98(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DSKG201201024.htm
    [24] 王国富, 王倩, 路林海, 等. 济南轨道交通某深基坑降水与回灌数值分析[J]. 地下空间与工程学报, 2017, 13(5): 1280-1288. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201705020.htm

    Wang G F, Wang Q, Lu L H, et al. Numerical analysis on dewatering and recharging of a deep foundation pit of Jinan railway[J]. Chinese Journal of Underground Space and Engineering, 2017, 13(5): 1280-1288(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201705020.htm
    [25] 李严, 王家乐, 靳孟贵, 等. 运用水文时间序列分析识别济南泉域岩溶发育特征[J]. 地球科学, 2021, 46(7): 2583-2593. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202107024.htm

    Li Y, Wang J L, Jin M G, et al. Hydrodynamic characteristics of Jinan karst spring system identified by hydrologic time-series data[J]. Earth Science, 2021, 46(7): 2583-2593(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202107024.htm
    [26] 孙尚渠. 复杂形态溶洞精细化表征及其对盾构隧道施工围岩稳定性的影响研究[D]. 济南: 山东大学, 2019.

    Sun S Q. Precise characterization of irregular cavity and its effect on surrounding rockmass stability of shield tunnel[D]. Jinan: Shandong University, 2019(in Chinese with English abstract).
    [27] 徐军祥, 邢立亭, 魏鲁峰, 等. 济南岩溶水系统研究[M]. 北京: 冶金工业出版社, 2012.

    Xu J X, Xing L T, Wei L F. Study on karst water system in Jinan[M]. Beijing: Metallurgical Industry Press, 2012(in Chinese).
    [28] 林宗元. 岩土工程试验监测手册[M]. 北京: 中国建筑工业出版社, 2005.

    Lin Z Y. Geotechnical engineering test monitoring manual[M]. Beijing: China Architecture and Architecture Press, 2005(in Chinese).
    [29] 毛昶熙. 堤防工程手册[M]. 北京: 中国水利水电出版社, 2009.

    Mao C X. Dike engineering manual[M]. Beijing: China Water and Power Press, 2009(in Chinese).
    [30] Zheng C M, Bennett G D. 地下水污染物迁移模拟[M]. 孙晋玉译. 第2版. 北京: 高等教育出版社, 2009.

    Zheng C M, Bennett G D. Simulation of groundwater pollutant migration[M]. Translated by Sun J Y. Second Edition. Beijing: Higher Education Press, 2009(in Chinese).
    [31] 朱学愚. 地下水水文学[M]. 北京: 中国环境科学出版社, 2005.

    Zhu X Y. Groundwater hydrology[M]. Beijing: China Environmental Science Press, 2005(in Chinese).
    [32] 阳建新, 李发菊, 陈田华. 地下水位上升对浅基础地基承载力的影响[J]. 工程建设与设计, 2010(6): 95-99. https://www.cnki.com.cn/Article/CJFDTOTAL-GCJS201006033.htm

    Yang J X, Li F J, Chen T H. The influence about water table rise on bering capacity of shallow foundations[J]. Construction & Design for Engineering, 2010(6): 95-99(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCJS201006033.htm
    [33] 张江. 地下水对地铁车站结构底板的受力影响研究[D]. 成都: 西南交通大学, 2017.

    Zhang J. Study on the influence of groundwater level on mechanical behavior of subway station floor[D]. Chengdu: Southwest Jiaotong University, 2017(in Chinese with English abstract).
    [34] 毛邦燕, 许模, 唐万春, 等. 地铁建设中地下水与环境岩土体相互作用研究[J]. 人民长江, 2009, 40(16): 49-52. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE200916021.htm

    Mao B Y, Xu M, Tang W C, et al. Study on the interaction between groundwater and environmental rock and soil in subway construction[J]. Yangtze River, 2009, 40(16): 49-52(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE200916021.htm
    [35] 周健, 屠洪权, 缪俊发. 地下水位与环境岩土工程[M]. 上海: 同济大学出版社, 1995.

    Zhou J, Tu H Q, Miu J F. Groundwater level and environmental geotechnical engineering[M]. Shanghai: Tongji University Press, 1995(in Chinese).
    [36] 滕延京. 建筑地基基础设计规范理解与应用[M]. 北京: 中国建筑工业出版社, 2004.

    Teng Y J. Understanding and application of building foundation design code[M]. Beijing: China Architecture and Architecture Press, 2004(in Chinese).
    [37] 周健, 屠洪权. 地下水位上升与粘性土地基承载力[J]. 岩土力学, 1994(2): 62-69. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX402.007.htm

    Zhou J, Tu H Q. Groundwater level rise and bearing capacity of cohesive soil foundation[J]. Rock and Soil Mechanics, 1994(2): 62-69(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX402.007.htm
    [38] 赵瑞, 许模, 张强, 等. 成都地铁7号线地下水壅高引起的环境地质问题定量化研究[J]. 城市轨道交通研究, 2016, 19(9): 80-86. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201609022.htm

    Zhao R, Xu M, Zhang Q, et al. Quantitative research on the geo-environment problems caused by rising water level during the construction of Chengdu metro line 7[J]. Urban Mass Transit, 2016, 19(9): 80-86(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201609022.htm
    [39] 薛禹群, 吴吉春. 地下水动力学[M]. 第3版. 北京: 地质出版社, 2010.

    Xue Y Q, Wu J C. Groundwater dynamics[M]. Third Edition. Beijing: Geology Press, 2010(in Chinese).
    [40] 张常光, 单冶鹏, 高本贤. 考虑挡墙位移的土压力数学拟合新方法研究[J]. 岩石力学与工程学报, 2021, 40(10): 2124-2135. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202110016.htm

    Zhang C G, Shan Y P, Gao B X. A new mathematical fitting formulation of earth pressure considering the displacement of retaining walls[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(10): 2124-2135(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202110016.htm
    [41] Naghadeh R A, Toker N K. Exponential equation for predicting shear trength envelope of unsaturated soils[J]. International Journal of Geomechanics, 2019, 19(7): 04019061.
    [42] 邹立芝. 关于储水系数的概念[J]. 长春地质学院学报, 1982, 4(3): 123-124. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ198203013.htm

    Zou L Z. On the concept of water storage coefficient[J]. Journal of Changchun University of Earth Sciences, 1982, 4(3): 123-124(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ198203013.htm
  • 加载中
图(14) / 表(9)
计量
  • 文章访问数:  574
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-15
  • 网络出版日期:  2022-11-10

目录

    /

    返回文章
    返回