留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地球关键带与岩溶关键带: 结构、特征、底界

蒲俊兵

蒲俊兵. 地球关键带与岩溶关键带: 结构、特征、底界[J]. 地质科技通报, 2022, 41(5): 230-241. doi: 10.19509/j.cnki.dzkq.2022.0191
引用本文: 蒲俊兵. 地球关键带与岩溶关键带: 结构、特征、底界[J]. 地质科技通报, 2022, 41(5): 230-241. doi: 10.19509/j.cnki.dzkq.2022.0191
Pu Junbing. Earth's critical zone and karst critical zone: Structure, characteristic and bottom boundary[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 230-241. doi: 10.19509/j.cnki.dzkq.2022.0191
Citation: Pu Junbing. Earth's critical zone and karst critical zone: Structure, characteristic and bottom boundary[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 230-241. doi: 10.19509/j.cnki.dzkq.2022.0191

地球关键带与岩溶关键带: 结构、特征、底界

doi: 10.19509/j.cnki.dzkq.2022.0191
基金项目: 

国家重点研发计划项目 2021YFE0107100

国家自然科学基金项目 41977166

重庆师范大学基金项目 21XRC002

UNESCO国际地学计划 IGCP661

详细信息
    作者简介:

    蒲俊兵(1982—),男,研究员,主要从事岩溶地质作用与环境变化方面的研究工作。E-mail: junbingpu@163.com

  • 中图分类号: P641.34

Earth's critical zone and karst critical zone: Structure, characteristic and bottom boundary

  • 摘要:

    地球关键带已成为表层地球系统科学的重要研究领域, 代表了未来地球系统科学研究的新理念和发展趋势。岩溶分布面积约占全球陆地面积的15.2%。岩溶关键带是一个独特的关键带类型。目前对岩溶关键带的科学内涵还缺乏统一的认识, 对岩溶关键带的结构、特征和底界等问题还缺少相关的讨论。在回顾地球关键带科学发展的历程和归纳其主要特征的基础上, 梳理了岩溶关键带概念提出的背景、发展的过程, 总结了岩溶关键带的特征, 并对仍存在较大争议的岩溶关键带底界问题进行了分析讨论, 同时对岩溶关键带的进一步发展方向进行了分析。总结表明, 岩溶关键带是在可溶岩地区岩石圈、水圈、大气圈、生物圈、土壤圈界面上物质循环、能量流动所塑造的地球关键带类型。岩溶关键带的范围是可溶岩地区的植被冠层到岩溶含水层底板, 包括了植被层、土壤层、表层岩溶带、包气带、饱水带。岩溶关键带具有典型地表、地下双层地质结构及特殊的以碳水钙耦合循环为主的地球化学过程, 对环境变化敏感。通过对比发现, 岩溶关键带具有以下8个主要特征: ①碳酸盐岩积极参与关键带物质循环过程; ②对环境变化敏感; ③多层次水文地质结构; ④横向空间异质性强; ⑤地下空间网络庞大; ⑥具有大跨度的生物群; ⑦具有基岩-植被-水直接相互作用的独特的生态水文过程; ⑧横向边界受分水岭变迁的控制。岩溶关键带的底界为地表以下一定范围降雨补给来源的水体对碳酸盐矿物(方解石、白云石等)的溶解已没有影响且已没有可能产生进一步溶解碳酸盐矿物能力的深度。根据学科发展趋势和国家需求, 今后应进一步关注以下4个方面的研究: ①我国不同类型岩溶关键带的结构、形成及演化机制; ②退化岩溶生态区关键带服务功能与区域可持续发展; ③工程活动对我国岩溶关键带结构、属性和演化过程的影响; ④气候变化与我国岩溶关键带结构、功能、属性变化的耦合过程。

     

  • 图 1  地球关键带示意图(箭头表示物质和能量的流动和转移, 修改自文献[3, 26-27])

    Figure 1.  Schematic diagram of the Earth′s critical zone

    图 2  岩溶关键带示意图(底图修改自文献[39])

    Figure 2.  Schematic diagram of the karst critical zone

    图 3  典型岩溶生态系统植被水分利用策略(修改自文献[66])

    Figure 3.  Schematic diagram on the water use strategy of vegetation in a typical karst ecosystem

  • [1] Richter D D, Mobley M L. Monitoring Earth's critical zone[J]. Science, 2009, 326: 1067-1068. doi: 10.1126/science.1179117
    [2] National Research Council(NRC). Basic research opportunities in Earth science[M]. Washington DC: National Academy Press, 2001.
    [3] Banwart S, Chorover J, Gaillardet J, et al. Sustaining Earth's critical zone basic science and interdisciplinary solutions for global challenges[M]. Sheffield: University of Sheffield, UK, 2013.
    [4] 安培浚, 张志强, 王立伟. 地球关键带的研究进展[J]. 地球科学进展, 2016, 31(12): 1228-1234. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201612004.htm

    An P J, Zhang Z Q, Wang L W. Review of Earth critical zone research[J]. Advances in Earth Science, 2016, 31(12): 1228-1234(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201612004.htm
    [5] 杨建锋, 张翠关. 地球关键带: 地质环境研究的新框架[J]. 水文地质工程地质, 2014, 41(3): 98-104. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201403020.htm

    Yang J F, Zhang C G. Earth's critical zone: A holistic framework for geo-environmental researches[J]. Hydrogeology & Engineering Geology, 2014, 41(3): 98-104(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201403020.htm
    [6] 李小雁, 马育军. 地球关键带科学与水文土壤学研究进展[J]. 北京师范大学学报: 自然科学版, 2016, 52(6): 731-737. https://www.cnki.com.cn/Article/CJFDTOTAL-BSDZ201606010.htm

    Li X Y, Ma Y J. Advances in Earth's critical zone science and hydropedology[J]. Journal of Beijing Normal University: Natural Science Edition, 2016, 52(6): 731-737(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-BSDZ201606010.htm
    [7] 王立伟, 张志强, 安培浚, 等. 基于文献计量的地球关键带研究态势分析[J]. 世界科技研究与发展, 2017, 39(4): 202-208. doi: 10.16507/j.issn.1006-6055.2017.03.015

    Wang L W, Zhang Z Q, An P J. Bibliometrical analysis of Earth critical zone research[J]. World Sci-Tech. R. & D., 2017, 39(4): 202-208(in Chinese with English abstract). doi: 10.16507/j.issn.1006-6055.2017.03.015
    [8] Lin H. Earth's critical zone and hydropedology: Concepts, characteristics and advances[J]. Hydrology and Earth System Sciences, 2010, 14(1): 25-45. doi: 10.5194/hess-14-25-2010
    [9] 刘丛强. 关键带科学(Critical Zone Science)与未来表层地球系统科学(Surface-Earth System Sciences)研究[C]//国家自然科学基金委员会 & 中国科学院. 第114期双清论坛和第35期科学与技术前沿论坛"地球关键带科学"会议摘要集. 贵阳: 中国科学院地球化学研究所, 2014.

    Liu C Q. Researches on critical zone science and future surface-earth system sciences[C]// NSFC & CAS. Abstracts of the 114th Shuangqing forum & the 35th frontier forum of Science and Technology on Earth's critical zone. Guiyang: Institute of Geochemistry, CAS, 2014(in Chinese).
    [10] Goldscheider N, Chen Z, Auler A S, et al. Global distribution of carbonate rocks and karst water resources[J]. Hydrogeology Journal, 2020, 28(5): 1661-1677. doi: 10.1007/s10040-020-02139-5
    [11] 袁道先. 我国岩溶资源环境领域的创新问题[J]. 中国岩溶, 2015, 34(2): 98-100. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201502002.htm

    Yuan D X. Scientific innovation in karst resources and environment research field of China[J]. Carsologica Sinca, 2015, 34(2): 98-100(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201502002.htm
    [12] Brantley S L, White T S, White A F, et al. Frontiers in exploration of the critical zone: Report of a workshop sponsored by the National Science Foundation(NSF), Oct 24-26, Dewark, DE[M]. [S. l. ]: [s. n. ], 2006.
    [13] Giardino J R, Houser C. Introduction to the critical zone[C]//Giardino J R, Houser C. Principles and dynamics of the critical zone. Amsterdam, Netherland: Elseviser, 2015.
    [14] Gallagher K T. Core science systems: Mission overview[R]. U.S. Geological Survey Fact Sheet, 2012: 2012-3009.
    [15] Banwart S, Bernasconi S M, Bloem J, et al. Soil processes and functions in critical zone observatories: Hypotheses and experimental design[J]. Vadose Zone Journal, 2011, 10(3): 974- 987. doi: 10.2136/vzj2010.0136
    [16] Zacharias S, Bogena H, Samaniego L. A network of terrestrial environmental observatories in Germany[J]. Vadose Zone Journal, 2011, 10(3): 955- 973. doi: 10.2136/vzj2010.0139
    [17] National Academies of Sciences, Engineering, and Medicine. A vision for NSF earth sciences 2020-2030: Earth in time[M]. Washington, DC, USA: The National Academies Press, 2020.
    [18] Giardino J R, Houser C. Principles and dynamics of the critical zone[M]. Amsterdam, Netherland: Elsevier, 2015.
    [19] 李小雁, 马育军. 水文土壤学: 一门新兴的交叉学科[J]. 科技导报, 2008, 26(9): 78-82. doi: 10.3321/j.issn:1000-7857.2008.09.017

    Li X Y, Ma Y J. Hydropedology: A new interdisciplinary field related to soil science and hydroloy[J]. Science & Technology Review, 2008, 26(9): 78-82(in Chinese with English abstract). doi: 10.3321/j.issn:1000-7857.2008.09.017
    [20] Xu J, Huang P. Molecular environmental soil science at the interfaces in the Earth's critical zone[M]. Berlin, Germany: Springer-Verlag, 2009.
    [21] 李小雁. 水文土壤学面临的机遇与挑战[J]. 地球科学进展, 2012, 27(5): 557-562. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201205007.htm

    Li X Y. Opportunity and challenges for hydropedology[J]. Advances in Earth Science, 2012, 27(5): 557-562(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201205007.htm
    [22] Banwart S, Zhu C. Frontiers in international critical zone science-workshop report, May 21-23, 2014[R]. Beijing: National Natural Science Foundation of China, 2015.
    [23] 王晶袁, 赵文武, 张骁. 地球关键带水文土壤学与自然资源可持续利用: 2016年水文土壤学国际会议述评[J]. 生态学报, 2016, 36(22): 7501-7504. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201622063.htm

    Wang J Y, Zhao W W, Zhang X. Hydropedology in Earth's critical zone and sustainable use of natural resources: Review on the 2016 international conference of hydropedology[J], Acta Ecologica Sinica, 2016, 36(22): 7501-7504(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201622063.htm
    [24] White T. Special focus: The US critical zone observatories[J]. International Innovation, 2012, 8: 108-127.
    [25] Ashley G M. Where are we headed: Soft rock research into the new millennium[J]. Abstracts with Programs-Geological Society of America, 1998, 30(7): 148.
    [26] Banwart S, Menon M, Bernasconi S M, et al. Soil processes and functions across an international network of critical zone observatories: Introduction to experimental methods and initial results[J]. Comptes Rendus Geoscience, 2012, 344(11 /12): 758-772.
    [27] 朱永官, 李刚, 张甘霖, 等. 土壤安全: 从地球关键带到生态系统服务[J]. 地理学报, 2015, 70(12): 1859-1869. doi: 10.11821/dlxb201512001

    Zhu Y G, Li G, Zhang G L, et al. Soil security: From Earth's critical zone to ecosystem services[J]. Acta Geographica Sinica, 2015, 70(12): 1859-1869(in Chinese with English abstract). doi: 10.11821/dlxb201512001
    [28] Brantley S L, Goldhaber M B, Ragnarsdottir K V. Crossing disciplines and scales to understand the critical zone[J]. Elements, 2007, 3(5): 307-314. doi: 10.2113/gselements.3.5.307
    [29] Anderson S P, von Blanckenburg F, White A F. Physical and chemical controls on the critical zone[J]. Elements, 2007, 3(5): 315-319. doi: 10.2113/gselements.3.5.315
    [30] Amundson R, Richter D D, Humphreys G S, et al. Coupling between biota and earth materials in the critical zone[J]. Elements, 2007, 3(5): 327-332. doi: 10.2113/gselements.3.5.327
    [31] Anderson S P, Bales R C, Duffy C J. Critical zone observatories: Building a network to advance interdisciplinary study of Earth surface processes[J]. Mineralogical Magazine, 2008, 72(1): 7-10. doi: 10.1180/minmag.2008.072.1.7
    [32] 曹建华, 杨慧, 张春来, 等. 中国西南岩溶关键带结构与物质循环特征[J]. 中国地质调查, 2018, 5(5): 1-12. doi: 10.19388/j.zgdzdc.2018.05.01

    Cao J H, Yang H, Zhang C L, et al. Characteristics of structure and material cycling of the karst critical zone in Southwest China[J]. Geological Survey of China, 2018, 5(5): 1-12(in Chinese with English abstract). doi: 10.19388/j.zgdzdc.2018.05.01
    [33] Martin J B, Grammont P C D, Covington M D, et al. A new focus on the neglected carbonate critical zone[N/OL]. Eos, 2021-9-20[2022-06-22]. _aaaaaa_paichu__.
    [34] Mahlera B J, Jiang Y, Pu J, et al. Editorial: Advances in hydrology and the water environment in the karst critical zone under the impacts of climate change and anthropogenic activities[J]. Journal of Hydrology, 595(1): 125982.
    [35] Green S M, Dungaita J A J, Tu C L, et al. Soil functions and ecosystem services research in the Chinese karst critical zone[J]. Chemical Geology, 2019, 527(1): 119107.
    [36] Sullivan P L, Macpherson G L, Martin J B, et al. Evolution of carbonate and karst critical zones[J]. Chemical Geology, 2019, 527(1): 119223.
    [37] Covington M D, Martin J B, Toran L E. Carbonates in the critical zone[J/OL]. (2022-03-31)[2022-06-22]. _aaaaaa_paichu__.
    [38] 王世杰, 彭韬, 刘再华, 等. 加强喀斯特关键带长期观测研究, 支撑西南石漠化区生态恢复与民生改善[J]. 中国科学院院刊, 2020, 35(7): 925-933. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYX202007017.htm

    Wang S J, Peng T, Liu Z H, et al. Strengthen karst surface systematic processes research, support ecological restoration and social improvement in karst rocky desertification areas in Southwest China[J]. Bulletin of the Chinese Academy of Sciences, 2020, 35(7): 925-933(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KYYX202007017.htm
    [39] Hartmann A, Goldscheider N, Wagener T, et al. Karst water resources in a changing world: Review of hydrological modeling approaches[J]. Reviews of Geophysics, 2014, 52(3): 218-242. doi: 10.1002/2013RG000443
    [40] Yuan D, Zhu D, Weng J, et al. Karst of China[M]. Beijing: Geological Press, 1991: 1-239.
    [41] Dreybrodt W. Processes in karst systems: Physics, chemistry, and geology[M]. Berlin, Germany: Springer-Verlag, 1988: 1-288.
    [42] 袁道先, 刘再华, 蒋忠诚, 等. 碳循环与岩溶地质环境[M]. 北京: 科学出版社, 2003.

    Yuan D X, Liu Z H, Jiang Z C, et al. Carbon cycling and karst geological environment[M]. Beijing: Science Press, 2003(in Chinese).
    [43] Yang Q, Yang Z, Zhang Q, et al. Transferability of heavy metal(loid)s from karstic soils with high geochemical background to peanut seeds[J]. Environmental Pollution, 2022, 299(1): 118819.
    [44] Liu Z, Li Q, Sun H, et al. Seasonal, diurnal and storm-scale hydrochemical variations of typical epikarst springs in subtropical karst areas of SW China: Soil CO2 and dilution effects[J]. Journal of Hydrology, 2007, 337(1/2): 207-223.
    [45] Yang R, Liu Z, Zeng C, et al. Response of epikarst hydrochemical changes to soil CO2 and weather conditions at Chenqi, Puding, SW China[J]. Journal of Hydrology, 2012, 468/469(1/2): 151-158.
    [46] Pu J, Yuan D, Zhao H, et al. Hydrochemical and PCO2 variations of a cave stream in a subtropical karst area, Chongqing, SW China: Piston effects, dilution effects, soil CO2 and buffer effects[J]. Environmental Earth Sciences, 2014, 71(9): 4039-4049. doi: 10.1007/s12665-013-2787-z
    [47] Covington M D. The importance of advection for CO2 dynamics in the karst critical zone: An approach from dimensional analysi[C]// Feinberg J M, Gao Y, Alexander E C Jr. Caves and karst across time: Geological society of America special paper 516. Boulder, Colorado, USA: Geological Society of America. 2016.
    [48] 罗维均, 杨开萍, 王彦伟, 等. 喀斯特地区不同岩土组构对岩溶碳通量的影响[J]. 地质科技通报, 2022, 41(3): 208-214. doi: 10.19509/j.cnki.dzkq.2022.0088

    Luo W J, Yang K P, Wang Y W, et al. Influence of different rock-soil fabrics on carbonate weathering carbon sink flux in karst regions[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 208-2014(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0088
    [49] Pu J, Yuan D, He Q, et al. High-resolution monitoring of nitrate variations in a typical subterranean karst stream, Chongqing, China[J]. Environmental Earth Sciences, 2011, 64(7): 1985-1993. doi: 10.1007/s12665-011-1019-7
    [50] Yue F, Li S, Waldron S, et al. Rainfall and conduit drainage combine to accelerate nitrate loss from a karst agroecosystem: Insights from stable isotope tracing and high-frequency nitrate sensing[J]. Water Research, 2020, 186(1): 116388.
    [51] Zhang Z, Chen X, Soulsby C. Catchment-scale conceptual modelling of water and solute transport in the dual flow system of the karst critical zone[J]. Hydrological Processes, 2017, 31(19): 3421-3436. doi: 10.1002/hyp.11268
    [52] Bonacci O. Karst hydrology[M]. Berlin, Germany: Springer-Verlag, 1987.
    [53] 郭绪磊, 周宏, 罗明明, 等. 黄陵穹隆周缘岩溶水流系统特征及成因[J]. 地质科技通报, 2022, 41(1): 328-340. doi: 10.19509/j.cnki.dzkq.2022.0033

    Guo X L, Zhou H, Luo M M, et al. Characteristics and genesis of karst water flow system around Huangling anticline[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 328-340(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0033
    [54] Xu X, Liu W. The global distribution of Earth's critical zone and its controlling factors[J]. Geophysical Research Letters, 2017, 44(7): 3201-3208. doi: 10.1002/2017GL072760
    [55] 袁道先. 论岩溶水的不均匀性[C]//《汇编》选编小组. 岩溶地区水文地质及工程地质工作经验汇编. 北京: 地质出版社, 1978.

    Yuan D X. On the heterogeneity of karst water[C]//Editorial Group on This Compilation. Compilation of working experiences on hydrogeological & engineering geology in karst area. Beijing: Geological Publishing House, 1978(in Chinese).
    [56] 刘之葵, 梁金城. 地下水位变化对桂林地区地基基础的影响[J]. 中国岩溶, 2005, 24(3): 245-249. doi: 10.3969/j.issn.1001-4810.2005.03.014

    Liu Z K, Liang J C. Effect of water table variations on the foundation in Guilin region[J]. Carsologica Sinica, 2005, 24(3): 245-249(in Chinese with English abstract). doi: 10.3969/j.issn.1001-4810.2005.03.014
    [57] 王壬林. 桂林峰林平原地下的洞穴特征[J]. 广西地质, 1994, 7(4): 22-29. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDZ404.002.htm

    Wang R L. Characteristics of underground caves in Fenglin Plain, Guilin[J]. Guangxi Geology, 1994, 7(4): 22-29(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GXDZ404.002.htm
    [58] Mattey D P, Atkinson T C, Barker J A. et al. Carbon dioxide, ground air and carbon cycling in Gibraltar karst[J]. Geochimica et Cosmochimica Acta, 2016, 184(1): 88-113.
    [59] Zhang J, Li T. Seasonal and interannual variations of hydrochemical characteristics and stable isotopic compositions of drip waters in Furong Cave, southwest China based on 12 years' monitoring[J]. Journal of Hydrology, 2019, 572(1/2): 40-50.
    [60] Culver D C, Pipan T. The biology of caves and other subterranean habitats[M]. New York, USA: Oxford University Press, 2009.
    [61] 刘志霄. 洞穴生物学[M]. 北京: 科学出版社, 2021.

    Liu Z X. Speleobiology[M]. Beijing: Science Press, 2021(in Chinese).
    [62] 刘鸿雁, 蒋子涵, 戴景钰, 等. 岩石裂隙决定喀斯特关键带地表木本与草本植物覆盖[J]. 中国科学: 地球科学, 2019, 49(12): 1974-1981. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201912008.htm

    Liu H Y, Jiang Z H, Dai J Y, et al. Rock crevices determine woody and herbaceous plant cover in the karst critical zone[J]. Science China Earth Sciences, 2019, 49(12): 1974-1981(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201912008.htm
    [63] Ding Y, Nie Y, Schwinning S, et al. A novel approach for estimating groundwater use by plants in rock dominated habitats[J]. Journal of Hydrology, 2019, 565(1/2): 760-769.
    [64] Deng Y, Ke J, Wu S, et al. Responses of plant water uptake to groundwater depth in limestone outcrops[J]. Journal of Hydrology, 2020, 590(1/2): 125377.
    [65] Schwinning S. The ecohydrology of roots in rocks[J]. Ecohydrology, 2010, 3(2): 238-245.
    [66] Geekiyanage N, Goodale U M, Cao K, et al. Plant ecology of tropical and subtropical karst ecosystems[J]. Biotropica, 2019, 51(5): 626-640. doi: 10.1111/btp.12696
    [67] Klimchouk A B. Hypogene speleogenesis: Hydrogeological and morphogenetic perspective[R]. Carlsbad, NM, USA: National Cave and Karst Research Institute, 2007.
    [68] Mylroie J, Mylroie J, Humphreys W, et al. Flank margin cave development and tectonic uplift, Cape Range, Australia[J]. Journal of Cave and Karst Studies, 2017, 79(1): 35-47. doi: 10.4311/2015ES0142
    [69] Condon L E, Markovich K H, Kelleher C A, et al. Where is the bottom of a watershed?[J]. Water Resources Research, 2020, 56(3): e2019WR026010.
    [70] Riebe C S, Hahm W J, Brantley S L. Controls on deep critical zone architecture: A historical review and four testable hypotheses[J]. Earth Surface Processes and Landforms, 2017, 42(1): 128-156. doi: 10.1002/esp.4052
    [71] Brantley S L, Megonigal J P, Scatena F N, et al. Twelve testable hypotheses on the geobiology of weathering[J]. Geobiology, 2011, 9(2): 140-165.
    [72] McIntosh J C, Schlegel M E, Person M. Glacial impacts on hydrologic processes in sedimentary basins: Evidence from natural tracer studies[J]. Geofluids, 2012, 12(1): 7-21. doi: 10.1111/j.1468-8123.2011.00344.x
    [73] Klimchouk A, Kasjan J. Krubera(Voronja): In a search for the route to 2000 meters depth: The deepest cave in the world in the Arabika Massif, Western Caucasus[J]. NSS News, 2001, 59(5): 252-257.
    [74] Dreybrodt W. Processes in karst systems: Physics, chemistry, and geology[M]. Berlin, Germany: Springer-Verlag, 1988.
    [75] Phillips J D, Pawlik Ł, Šamonil P. Weathering fronts[J]. Earth-Science Reviews, 2019, 198: 102925. doi: 10.1016/j.earscirev.2019.102925
  • 加载中
图(3)
计量
  • 文章访问数:  1280
  • PDF下载量:  151
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-20
  • 网络出版日期:  2022-11-10

目录

    /

    返回文章
    返回