Mineralogy and geochemistry of pyrochlore from the Shaxiongdong Nb-REE deposit, northwestern Hubei Province: Implications for the niobium enrichment mechanism in carbonatites
-
摘要:
位于南秦岭武当地区的杀熊洞铌-稀土矿床是我国典型的碳酸岩-碱性岩型铌-稀土矿床, 虽已有不少研究, 但对于该矿床中铌的富集、结晶及后期流体改造矿物学方面的研究仍较为薄弱, 制约了铌富集机理的精细刻画。采用偏光显微镜、光学阴极发光和背散射电子进行了详细的岩相学观察, 查明了矿物的结构、组分和共生关系, 并用电子探针分析了2类烧绿石的成分, 探讨了铌富集机理。研究表明: 杀熊洞碳酸岩-碱性岩杂岩体发育有一套完整的蚀变辉石岩-正长岩-碳酸岩岩性组合, 三者在空间上紧密共生。杀熊洞杂岩体中铌矿物主要为烧绿石, 主要在岩浆演化最晚期的碳酸岩相中结晶, 为碱性岩浆演化晚期富集的产物。烧绿石包括原生(Pcl1)和蚀变(Pcl2) 两种类型, 前者呈自形、粒度大、发育震荡环带, 被认为是直接从碳酸岩熔体中结晶的岩浆烧绿石; 而后者则为原生烧绿石被热液交代后形成, 其形状不规则, 在背散射电子(BSE)图像中表现为不均匀的亮白色。利用电子探针对两类烧绿石进行了原位成分分析, 两类烧绿石的B、Y位置分别以Nb、F元素为主导, 而A位置以Ca为主导, Na次之, 因此将大部分烧绿石定名为氟钙烧绿石, 少数定名为氟钠烧绿石。两类烧绿石的Nb与F均存在较好的线性正相关关系, 说明氟作为挥发分, 可能对Nb在碱性岩浆-热液体系中的富集起到了关键的作用, 与前人实验模拟结果一致。另一方面, 两者也存在一定成分差别, 与原生烧绿石相比, 蚀变烧绿石具有明显较低的Nb2O5、CaO、Na2O、F等以及较高的UO2、Ta2O5、SrO、SiO2等含量, 这些差异说明交代烧绿石的流体具有更富Sr、Si和U但贫Na和Ca的特征。此外, 在交代过程中, 局部存在明显的铌活化与丢失。
Abstract:Objective The Shaxiongdong carbonatite-alkaline related Nb-REE deposit is located in the Wudang area of the south Qinling Belt, but the studies on Nb mineralization in this deposit are scarce.
Methods Detailed petrographic observations were made by using polarizing microscope, optical cathodoluminescence and backscattered electron testing. The structure, composition and symbiotic relationship of the minerals were identified. The composition of two types of pyrochlore was analyzed by electron probe and the mechanism of niobium enrichment was discussed.
Results The Shaxiongdong complex consists of three types of rocks that are spatially closely related: Meta-pyroxenite, syenite and carbonatite, of which the carbonatites are the major hosts of Nb mineralization characterized by main pyrochlore. This implies that Nb was concentrated to economic values in the carbonatite stage after extensive fractionation of the parental carbonated silicate magma. The pyrochlore in the deposit can be classified into two types on the basis of micro-textures: ① The primary ones (Pcl1) are euhedral to subhedral and display oscillatory zoning, implying their direct crystallization from carbonatite melts; ② The altered grains (Pcl2) exhibit patchy zonation under BSE images due to hydrothermal alteration. EPMA analytical results indicate that both types are rich in Nb and F at the B and Y sites, respectively, and at the A site, they are similarly mostly rich in Ca, thus named F-Ca-pyrochlore, with minor Na, thus named F-Na-pyrochlore.
Conclusion The good positive correlations between F and Nb in both types of pyrochlore indicate that F plays a key role in the enrichment of niobium during magma differentiation. On the other hand, compared to the primary pyrochlore, the altered ones have relatively low Nb2O5, CaO, Na2O and F but high UO2, Ta2O5, SrO and SiO2, indicating that the fluids responsible for pyrochlore alteration are rich in Sr, Si and U, and the alteration tends to mobilize Nb in early pyrochlore, a process that is able to lower the Nb budgets of the deposit.
-
Key words:
- pyrochlore /
- Nb-REE mineralization /
- carbonatite /
- Shaxiongdong
-
图 1 南秦岭早志留世碱性岩浆岩分布图(据文献[19]修改)
Figure 1. Distribution of Early Silurian alkaline magmatic rocks in the South Qinling Belt
图 2 杀熊洞碳酸岩-碱性岩型铌-稀土矿床矿区地质图(据文献[18]修改)
Figure 2. Geological map of the Shaxiongdong carbonatite-alkaline related Nb-REE deposit
表 1 杀熊洞碳酸岩中烧绿石主微量元素分析结果(均值)
Table 1. Major element compositions of pyrochlore from the Shaxiongdong carbonatite(average)
岩性 碳酸岩 Pcl1 Pcl2 N=21 N=5 F 4.43 1.42 Na2O 5.82 1.26 Al2O3 0.01 0.02 TiO2 4.70 5.70 CaO 13.45 8.02 UO2 0.49 1.40 ThO2 0.03 0.02 ZrO2 0.25 0.24 Y2O3 0.05 0.02 FeO wB/% 0.16 1.78 SiO2 0.55 1.96 MgO 0.00 0.01 MnO 2.32 3.51 PbO 0.33 0.35 Nb2O5 64.25 60.37 SrO 2.78 8.10 Ta2O5 0.35 0.70 Nd2O3 0.18 0.27 Ce2O3 0.65 1.15 La2O3 0.13 0.21 总计 100.94 96.50 -
[1] 李建康, 李鹏, 王登红, 等. 中国铌钽矿成矿规律[J]. 科学通报, 2019, 64(15): 1545-1566. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201915002.htmLi J K, Li P, Wang D H, et al. Metallogenic regularity of niobium and tantalum deposits in China[J]. Chinese Science Bulletin, 2019, 64(15): 1545-1566 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201915002.htm [2] Mackay D, Simandl G. Geology, market and supply chain of niobium and tantalum: A review[J]. Mineralium Deposita, 2019, 49(8): 1025-1047. [3] Cordeiro P, Brod J, Palmieri M, et al. The catalao Ⅰ niobium deposit, central Brazil: Resources, geology and pyrochlore chemistry[J]. Ore Geology Reviews, 2011, 41(1): 112-121. doi: 10.1016/j.oregeorev.2011.06.013 [4] Simandl G, Paradis S. Carbonatites: Related ore deposits, resources, footprint, and exploration methods[J]. Applied Earth Science, 2018, 127(4): 123-152. doi: 10.1080/25726838.2018.1516935 [5] Smith M, Campbell L, Kynicky J. A review of the genesis of the world class Bayan Obo Fe-REE-Nb deposits, Inner Mongolia, China: Multistage processes and outstanding questions[J]. Ore Geology Reviews, 2015, 64: 459-476. doi: 10.1016/j.oregeorev.2014.03.007 [6] Anenburg M, Mavrogenes J A, Frigo C, et al. Rare earth element mobility in and around carbonatites controlled by sodium, potassium, and silica[J]. Science Advances, 2020, 6: eabb6570. doi: 10.1126/sciadv.abb6570 [7] 章永梅, 顾雪祥, 彭义伟, 等. 安哥拉Bonga碳酸岩型铌矿床地质地球化学特征及成因[J]. 地学前缘, 2014, 21(5): 50-68. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201405007.htmZhang Y M, Gu X X, Peng Y W, et al. Geological and geochemical characteristics and genesis of Bonga carbonate-type niobium deposit in Angola[J]. Geoscience Frontiers, 2014, 21(5): 50-68(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201405007.htm [8] McCreath J, Finch A, Herd D, et al. Geochemistry of pyrochlore minerals from the Motzfeldt Center, South Greenland: The mineralogy of a syenite-hosted Ta, Nb deposit[J]. American Mineralogist, 2013, 98(2/3): 426-438. [9] Walter B, Parsapoor A, Braunger S, et al. Pyrochlore as a monitor for magmatic and hydrothermal processes in carbonatites from the Kaiserstuhl volcanic complex (SW Germany)[J]. Chemical Geology, 2018, 498: 1-16. doi: 10.1016/j.chemgeo.2018.08.008 [10] Zurevinski S E, Mitchell R H. Extreme compositional variation of pyrochlore-group minerals at the Oka carbonatite complex, Quebec: Evidence of magma mixing?[J]. The Canadian Mineralogist, 2004, 42(4): 1159-1168. doi: 10.2113/gscanmin.42.4.1159 [11] Chen W, Lu J, Jiang S Y, et al. Radiogenic Pb reservoir contributes to the rare earth element (REE) enrichment in South Qinling carbonatites[J]. Chemical Geology, 2018, 494: 80-95, doi: 10.1016/j.chemgeo.2018.07.019 [12] Su J H, Zhao X F, Li X C, et al. Geological and geochemical characteristics of the Miaoya syenite-carbonatite complex, Central China: Implications for the origin of REE-Nb-enriched carbonatite[J]. Ore Geology Reviews, 2019, 113: 103101. doi: 10.1016/j.oregeorev.2019.103101 [13] 刘万亮, 刘成新, 杨成, 等. 南秦岭竹溪天宝一带铌矿地质特征及找矿前景分析[J]. 资源环境与工程, 2015, 29(6): 779-784. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK201506006.htmLiu W L, Liu C X, Yang C, et al. Geological characteristics and prospecting prospect of niobium deposit in Zhuxi Tianbao area, south Qinling[J]. Resources Environment and Engineering, 2015, 29(6): 779-784(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK201506006.htm [14] 朱伟, 郑婧, 刘新会, 等. 陕西镇坪双河口铌矿床地质地球化学特征与成因探讨[J]. 地质与勘探, 2018, 54(5): 929-939. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201805005.htmZhu W, Zheng J, Liu X H, et al. Discussion on the geological and geochemical characteristics and genesis of the Shuanghekou niobium deposit in Zhenping, Shaanxi[J]. Geology and Prospecting, 2018, 54(5): 929-939 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201805005.htm [15] Nie X, Wang Z, Chen L, et al. Mineralogical constraints on Nb-REE mineralization of the Zhujiayuan Nb (REE) deposit in the north Daba Mountain, south Qinling, China[J]. Geological Journal, 2019, 55(6): 4845-4863. [16] Xu C, Campbell I, Allen C, et al. U-Pb zircon age, geochemical and isotopic characteristics of carbonatite and syenite complexes from the Shaxiongdong, China[J]. Lithos, 2008, 105(1/2): 118-128. [17] Xu C, Kynicky J, Chakhmouradian A R, et al. A case example of the importance of multi-analytical approach in deciphering carbonatite petrogenesis in south Qinling Orogen: Miaoya rare-metal deposit, central China[J]. Lithos, 2015, 227: 107-121. doi: 10.1016/j.lithos.2015.03.024 [18] 李石. 湖北杀熊洞碳酸岩杂岩体地球化学特征及其成因探讨[J]. 地球化学, 1991, 19(3): 245-254. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX199103005.htmLi S. Discussion on the geochemical characteristics and genesis of the Shaxiongdong carbonatite complex in Hubei[J]. Geochemistry, 1991, 19(3): 245-254(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX199103005.htm [19] 凌文黎, 段瑞春, 柳小明, 等. 南秦岭武当山群碎屑锆石U-Pb年代学及其地质意义[J]. 科学通报, 2010, 55(12): 1153-1161. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201012012.htmLing W L, Duan R C, Liu X M, et al. Detrital zircon U-Pb geochronology of the Wudang Mountain Group in the southern Qinling Mountains and its geological significance[J]. Chinese Science Bulletin, 2010, 55(12): 1153-1161 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201012012.htm [20] 张国伟. 秦岭造山带的结构构造[J]. 中国科学B辑: 化学生命科学地球科学, 1995, 25(9): 994-1003. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK199509014.htmZhang G W. Structure and tectonics of Qinling Orogenic Belt[J]. Science in China Series B: Chemistry, Life Sciences, Earth Sciences, 1995, 25(9): 994-1003(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK199509014.htm [21] 王宗起, 闫全人, 闫臻, 等. 秦岭造山带主要大地构造单元的新划分[J]. 地质学报, 2009, 83(11): 1527-1546. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200911003.htmWang Z Q, Yan Q R, Yan Z, et al. New division of the main tectonic units in the Qinling Orogenic Belt[J]. Acta Geology, 2009, 83(11): 1527-1546(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200911003.htm [22] 吴元保. 秦岭造山带古生代岩浆作用及地球动力学意义[J]. 地球科学, 2019, 44(12): 4173-4177. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201912028.htmWu Y B. Paleozoic magmatism and its geodynamic significance in Qinling Orogenic Belt[J]. Earth Science, 2019, 44(12): 4173-4177(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201912028.htm [23] 张国伟, 董云鹏, 姚安平. 秦岭造山带基本组成与结构及其构造演化[J]. 陕西地质, 1997, 15(2): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-SXDY199702000.htmZhang G W, Dong Y P, Yao A P. The basic composition and structure of Qinling Orogenic Belt and its tectonic evolution[J]. Geology of Shaanxi, 1997, 15(2): 1-14(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SXDY199702000.htm [24] 夏林圻, 夏祖春, 李向民, 等. 南秦岭东段耀岭河群、陨西群、武当山群火山岩和基性岩墙群岩石成因[J]. 西北地质, 2008, 41(3): 1-29. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI200803002.htmXia L Q, Xia Z C, Li X M, et al. Petrogenesis of the Yaolinghe Group, Yunxi Group, Wudangshan Group volcanic rocks and basic dyke swarms from eastern part of the south Qinling Mountains[J]. Northwestern Geology, 2008, 41(3): 1-29(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI200803002.htm [25] 杨成, 刘成新, 刘万亮, 等, 南秦岭竹溪县天宝乡粗面岩地球化学特征与铌成矿[J]. 岩石矿物学杂志, 2017, 36(5): 605-618. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201705003.htmYang C, Liu C X, Liu W L, et al. Geochemical characteristics of trachyte and Nb mineralization process in Tianbao Township, Zhuxi County, southern Qinling[J]. Acta Petrologica et Mineralogica, 2017, 36(5): 605-618 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201705003.htm [26] Ying Y C, Chen W, Simonetti A, et al. Significance of hydrothermal reworking for REE mineralization associated with carbonatite: Constraints from in situ trace element and C-Sr isotope study of calcite and apatite from the Miaoya carbonatite complex (China)[J]. Geochimica et Cosmochimica Acta, 2020, 280: 340-359. [27] Zhang W, Chen W T, Gao J F, et al. Two episodes of REE mineralization in the Qinling Orogenic Belt, central China: In-situ U-Th-Pb dating of bastnäsite and monazite[J]. Mineralium Deposita, 2019, 54(8): 1265-1280. [28] Atencio D, Andrade M, Christy A, et al. The pyrochlore supergroup of minerals: Nomenclature[J]. The Canadian Mineralogist, 2010, 48(3): 673-698. [29] Caprilli E, Ventura G, Williams T, et al. The crystal chemistry of non-metamict pyrochlore-group minerals from Latium, Italy[J]. The Canadian Mineralogist, 2006, 44(6): 1367-1378. [30] 李国武, 杨光明, 熊明. 烧绿石超族矿物分类新方案及烧绿石超族矿物[J]. 矿物学报, 2014, 34(2): 153-158. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201402002.htmLi G W, Yang G M, Xiong M. A new classification of pyrochlore supergroup minerals and pyrochlore supergroup minerals[J]. Acta Mineralogy, 2014, 34(2): 153-158(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201402002.htm [31] Hogarth D, Williams C, Jones P. Primary zoning in pyrochlore group minerals from carbonatites[J]. Mineralogical Magazine, 2020, 64(4): 683-697. [32] Wu B, Hu Y Q, Bonnetti C, et al. Hydrothermal alteration of pyrochlore group minerals from the Miaoya carbonatite complex, central China and its implications for Nb mineralization[J]. Ore Geology Reviews, 2021, 132: 104059. [33] Deditius A P, Smith F N, Utsunomiya S, et al. Role of vein-phases in nanoscale sequestration of U, Nb, Ti, and Pb during the alteration of pyrochlore[J]. Geochmica et Cosmochimica Acta, 2015, 150: 226-252. [34] 祝明明, 邹建林, 王闯, 等. 幕阜山地区断峰山铌钽矿的矿物学, 年代学和赋存状态[J]. 地质科技通报, 2021, 40(6): 55-69. doi: 10.19509/j.cnki.dzkq.2021.0606Zhu M M, Zhou J L, Wang C, et al. Mineralogy, geochronology and occurrence state of the Duanfengshan Nb-Ta deposit in Mufushan area[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 55-69. doi: 10.19509/j.cnki.dzkq.2021.0606 [35] 唐勇, Linnen R. 烧绿石在碱性岩浆体系中溶解度的实验研究[C]//佚名. 中国矿物岩石地球化学学会第17届学术年会论文摘要集. [出版地不详]: [出版社不详], 2019.Tang Y, Linnen R. Experimental study on the solubility of pyrochlore in alkaline magma system[C]//Anon. Abstracts of the 17th Annual Conference of Chinese Society of Mineralogy, Petrology and Geochemistry. [S. l. ]: [s. n. ], 2019(in Chinese with English abstract). [36] Aseri A A. Effects of fluorine on the solubilities of Nb, Ta, Zr and Hf minerals in highly fluxed water: Saturated haplogranitic melts[J]. Ore Geology Reviews, 2015, 64: 736-746. [37] 冉子龙, 李艳军. 伟晶岩型稀有金属矿床成矿作用研究进展[J]. 地质科技通报, 2021, 40(2): 13-23. doi: 10.19509/j.cnki.dzkq.2021.0018Ran Z L, Li Y J. Research advances on rare metal pegmatite deposits[J]. Bulletin of Geological Science and Technology, 2021, 40(2): 13-23(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0018