留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

鄂西北杀熊洞铌-稀土矿床烧绿石矿物学及地球化学特征及其形成机理

秦志军 周豹 苌笙任 苏建辉 邵辉

秦志军, 周豹, 苌笙任, 苏建辉, 邵辉. 鄂西北杀熊洞铌-稀土矿床烧绿石矿物学及地球化学特征及其形成机理[J]. 地质科技通报, 2023, 42(5): 150-160. doi: 10.19509/j.cnki.dzkq.2022.0197
引用本文: 秦志军, 周豹, 苌笙任, 苏建辉, 邵辉. 鄂西北杀熊洞铌-稀土矿床烧绿石矿物学及地球化学特征及其形成机理[J]. 地质科技通报, 2023, 42(5): 150-160. doi: 10.19509/j.cnki.dzkq.2022.0197
Qin Zhijun, Zhou Bao, Chang Sengren, Su Jianhui, Shao Hui. Mineralogy and geochemistry of pyrochlore from the Shaxiongdong Nb-REE deposit, northwestern Hubei Province: Implications for the niobium enrichment mechanism in carbonatites[J]. Bulletin of Geological Science and Technology, 2023, 42(5): 150-160. doi: 10.19509/j.cnki.dzkq.2022.0197
Citation: Qin Zhijun, Zhou Bao, Chang Sengren, Su Jianhui, Shao Hui. Mineralogy and geochemistry of pyrochlore from the Shaxiongdong Nb-REE deposit, northwestern Hubei Province: Implications for the niobium enrichment mechanism in carbonatites[J]. Bulletin of Geological Science and Technology, 2023, 42(5): 150-160. doi: 10.19509/j.cnki.dzkq.2022.0197

鄂西北杀熊洞铌-稀土矿床烧绿石矿物学及地球化学特征及其形成机理

doi: 10.19509/j.cnki.dzkq.2022.0197
基金项目: 

中国地质调查局项目“湖北三稀资源现状和潜力分析” 1212011220811

湖北省地质局科技项目“南秦岭地区古生代Nb-Ta-REE成矿岩浆的关键性质与过程” KJ2020-54

湖北省地质局项目“汉江生态经济带(湖北段)西北端战略性矿产资源综合评价” KCDZ2022-17

详细信息
    作者简介:

    秦志军(1978-), 男, 高级工程师, 主要从事三稀矿产地质调查与研究工作。E-mail: 45577893@qq.com

    通讯作者:

    苌笙任(1998-), 男, 正在攻读矿物学、岩石学、矿床学专业博士学位, 主要从事碱性岩-碳酸岩体系相关的稀土-铌-铁多金属矿成矿研究工作。E-mail: srchang@cug.edu.cn

  • 中图分类号: P618.7

Mineralogy and geochemistry of pyrochlore from the Shaxiongdong Nb-REE deposit, northwestern Hubei Province: Implications for the niobium enrichment mechanism in carbonatites

  • 摘要:

    位于南秦岭武当地区的杀熊洞铌-稀土矿床是我国典型的碳酸岩-碱性岩型铌-稀土矿床, 虽已有不少研究, 但对于该矿床中铌的富集、结晶及后期流体改造矿物学方面的研究仍较为薄弱, 制约了铌富集机理的精细刻画。采用偏光显微镜、光学阴极发光和背散射电子进行了详细的岩相学观察, 查明了矿物的结构、组分和共生关系, 并用电子探针分析了2类烧绿石的成分, 探讨了铌富集机理。研究表明: 杀熊洞碳酸岩-碱性岩杂岩体发育有一套完整的蚀变辉石岩-正长岩-碳酸岩岩性组合, 三者在空间上紧密共生。杀熊洞杂岩体中铌矿物主要为烧绿石, 主要在岩浆演化最晚期的碳酸岩相中结晶, 为碱性岩浆演化晚期富集的产物。烧绿石包括原生(Pcl1)和蚀变(Pcl2) 两种类型, 前者呈自形、粒度大、发育震荡环带, 被认为是直接从碳酸岩熔体中结晶的岩浆烧绿石; 而后者则为原生烧绿石被热液交代后形成, 其形状不规则, 在背散射电子(BSE)图像中表现为不均匀的亮白色。利用电子探针对两类烧绿石进行了原位成分分析, 两类烧绿石的B、Y位置分别以Nb、F元素为主导, 而A位置以Ca为主导, Na次之, 因此将大部分烧绿石定名为氟钙烧绿石, 少数定名为氟钠烧绿石。两类烧绿石的Nb与F均存在较好的线性正相关关系, 说明氟作为挥发分, 可能对Nb在碱性岩浆-热液体系中的富集起到了关键的作用, 与前人实验模拟结果一致。另一方面, 两者也存在一定成分差别, 与原生烧绿石相比, 蚀变烧绿石具有明显较低的Nb2O5、CaO、Na2O、F等以及较高的UO2、Ta2O5、SrO、SiO2等含量, 这些差异说明交代烧绿石的流体具有更富Sr、Si和U但贫Na和Ca的特征。此外, 在交代过程中, 局部存在明显的铌活化与丢失。

     

  • 图 1  南秦岭早志留世碱性岩浆岩分布图(据文献[19]修改)

    Figure 1.  Distribution of Early Silurian alkaline magmatic rocks in the South Qinling Belt

    图 2  杀熊洞碳酸岩-碱性岩型铌-稀土矿床矿区地质图(据文献[18]修改)

    Figure 2.  Geological map of the Shaxiongdong carbonatite-alkaline related Nb-REE deposit

    图 3  蚀变辉石岩镜下照片

    a.榍石与角闪石共生,部分角闪石发生了绿泥石化作用;b.蚀变辉石岩中大规模的绿泥石化作用;c, d.蚀变辉石岩主要矿物组合;Amp.角闪石; Chl.绿泥石; Ttn.榍石

    Figure 3.  Photograph of meta-pyroxenite rock

    图 4  正长岩镜下照片

    a.正长岩中的锆石、黑云母与碱性长石共生;b.正长岩中的独居石生长在黑云母条带周围;c.正长岩中典型的矿物组合特征;d.方解石呈细脉状和弥散状分布在正长岩中;Ae.霓石;Afs.碱性长石; Bt.黑云母; Cal.方解石;Mnz.独居石;Py.黄铁矿;Zr.锆石

    Figure 4.  Photograph of syenite

    图 5  碳酸岩显微照片

    a.烧绿石、霓石和磷灰石在碳酸岩中共生;b.碳酸岩中的霓石和烧绿石;c.碳酸岩中发育的稀土矿物;d.碳酸岩中磷灰石和烧绿石的阴极发光图像;Ae.霓石;Afs.碱性长石; Ap.磷灰石;Cal.方解石;Mnz.独居石; Pcl.烧绿石;Bt.黑云母

    Figure 5.  Micrograph of carbonatite

    图 6  杀熊洞碱性杂岩体中烧绿石BSE镜下照片

    a, b.具有明显震荡环带,且未经历明显后期改造的烧绿石;c, d.原生烧绿石受到了流体改造作用而呈现不均匀的亮白色;Pcl1.原生烧绿石;Pcl2.蚀变烧绿石

    Figure 6.  BSE images of pyrochlore in the Shaxiongdong complex

    图 7  杀熊洞碳酸岩-碱性岩杂岩体中烧绿石元素协变图解

    Figure 7.  Compositional variations (in atoms per formula unit) of pyrochlore from the Shaxiongdong carbonatite-alkaline complex

    图 8  杀熊洞碳酸岩中烧绿石A、B位置主量元素图解

    a.2种类型的烧绿石B位置均以Nb为主,落在烧绿石族的范围;b.2种类型的烧绿石在A位置上以Ca元素为主;X.烧绿石A位置除Ca、Na以外的其他元素总和

    Figure 8.  A and B site of pyrochlore in Shaxiongdong carbonatite

    表  1  杀熊洞碳酸岩中烧绿石主微量元素分析结果(均值)

    Table  1.   Major element compositions of pyrochlore from the Shaxiongdong carbonatite(average)

    岩性 碳酸岩
    Pcl1 Pcl2
    N=21 N=5
    F 4.43 1.42
    Na2O 5.82 1.26
    Al2O3 0.01 0.02
    TiO2 4.70 5.70
    CaO 13.45 8.02
    UO2 0.49 1.40
    ThO2 0.03 0.02
    ZrO2 0.25 0.24
    Y2O3 0.05 0.02
    FeO wB/% 0.16 1.78
    SiO2 0.55 1.96
    MgO 0.00 0.01
    MnO 2.32 3.51
    PbO 0.33 0.35
    Nb2O5 64.25 60.37
    SrO 2.78 8.10
    Ta2O5 0.35 0.70
    Nd2O3 0.18 0.27
    Ce2O3 0.65 1.15
    La2O3 0.13 0.21
    总计 100.94 96.50
    下载: 导出CSV
  • [1] 李建康, 李鹏, 王登红, 等. 中国铌钽矿成矿规律[J]. 科学通报, 2019, 64(15): 1545-1566. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201915002.htm

    Li J K, Li P, Wang D H, et al. Metallogenic regularity of niobium and tantalum deposits in China[J]. Chinese Science Bulletin, 2019, 64(15): 1545-1566 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201915002.htm
    [2] Mackay D, Simandl G. Geology, market and supply chain of niobium and tantalum: A review[J]. Mineralium Deposita, 2019, 49(8): 1025-1047.
    [3] Cordeiro P, Brod J, Palmieri M, et al. The catalao Ⅰ niobium deposit, central Brazil: Resources, geology and pyrochlore chemistry[J]. Ore Geology Reviews, 2011, 41(1): 112-121. doi: 10.1016/j.oregeorev.2011.06.013
    [4] Simandl G, Paradis S. Carbonatites: Related ore deposits, resources, footprint, and exploration methods[J]. Applied Earth Science, 2018, 127(4): 123-152. doi: 10.1080/25726838.2018.1516935
    [5] Smith M, Campbell L, Kynicky J. A review of the genesis of the world class Bayan Obo Fe-REE-Nb deposits, Inner Mongolia, China: Multistage processes and outstanding questions[J]. Ore Geology Reviews, 2015, 64: 459-476. doi: 10.1016/j.oregeorev.2014.03.007
    [6] Anenburg M, Mavrogenes J A, Frigo C, et al. Rare earth element mobility in and around carbonatites controlled by sodium, potassium, and silica[J]. Science Advances, 2020, 6: eabb6570. doi: 10.1126/sciadv.abb6570
    [7] 章永梅, 顾雪祥, 彭义伟, 等. 安哥拉Bonga碳酸岩型铌矿床地质地球化学特征及成因[J]. 地学前缘, 2014, 21(5): 50-68. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201405007.htm

    Zhang Y M, Gu X X, Peng Y W, et al. Geological and geochemical characteristics and genesis of Bonga carbonate-type niobium deposit in Angola[J]. Geoscience Frontiers, 2014, 21(5): 50-68(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201405007.htm
    [8] McCreath J, Finch A, Herd D, et al. Geochemistry of pyrochlore minerals from the Motzfeldt Center, South Greenland: The mineralogy of a syenite-hosted Ta, Nb deposit[J]. American Mineralogist, 2013, 98(2/3): 426-438.
    [9] Walter B, Parsapoor A, Braunger S, et al. Pyrochlore as a monitor for magmatic and hydrothermal processes in carbonatites from the Kaiserstuhl volcanic complex (SW Germany)[J]. Chemical Geology, 2018, 498: 1-16. doi: 10.1016/j.chemgeo.2018.08.008
    [10] Zurevinski S E, Mitchell R H. Extreme compositional variation of pyrochlore-group minerals at the Oka carbonatite complex, Quebec: Evidence of magma mixing?[J]. The Canadian Mineralogist, 2004, 42(4): 1159-1168. doi: 10.2113/gscanmin.42.4.1159
    [11] Chen W, Lu J, Jiang S Y, et al. Radiogenic Pb reservoir contributes to the rare earth element (REE) enrichment in South Qinling carbonatites[J]. Chemical Geology, 2018, 494: 80-95, doi: 10.1016/j.chemgeo.2018.07.019
    [12] Su J H, Zhao X F, Li X C, et al. Geological and geochemical characteristics of the Miaoya syenite-carbonatite complex, Central China: Implications for the origin of REE-Nb-enriched carbonatite[J]. Ore Geology Reviews, 2019, 113: 103101. doi: 10.1016/j.oregeorev.2019.103101
    [13] 刘万亮, 刘成新, 杨成, 等. 南秦岭竹溪天宝一带铌矿地质特征及找矿前景分析[J]. 资源环境与工程, 2015, 29(6): 779-784. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK201506006.htm

    Liu W L, Liu C X, Yang C, et al. Geological characteristics and prospecting prospect of niobium deposit in Zhuxi Tianbao area, south Qinling[J]. Resources Environment and Engineering, 2015, 29(6): 779-784(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK201506006.htm
    [14] 朱伟, 郑婧, 刘新会, 等. 陕西镇坪双河口铌矿床地质地球化学特征与成因探讨[J]. 地质与勘探, 2018, 54(5): 929-939. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201805005.htm

    Zhu W, Zheng J, Liu X H, et al. Discussion on the geological and geochemical characteristics and genesis of the Shuanghekou niobium deposit in Zhenping, Shaanxi[J]. Geology and Prospecting, 2018, 54(5): 929-939 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201805005.htm
    [15] Nie X, Wang Z, Chen L, et al. Mineralogical constraints on Nb-REE mineralization of the Zhujiayuan Nb (REE) deposit in the north Daba Mountain, south Qinling, China[J]. Geological Journal, 2019, 55(6): 4845-4863.
    [16] Xu C, Campbell I, Allen C, et al. U-Pb zircon age, geochemical and isotopic characteristics of carbonatite and syenite complexes from the Shaxiongdong, China[J]. Lithos, 2008, 105(1/2): 118-128.
    [17] Xu C, Kynicky J, Chakhmouradian A R, et al. A case example of the importance of multi-analytical approach in deciphering carbonatite petrogenesis in south Qinling Orogen: Miaoya rare-metal deposit, central China[J]. Lithos, 2015, 227: 107-121. doi: 10.1016/j.lithos.2015.03.024
    [18] 李石. 湖北杀熊洞碳酸岩杂岩体地球化学特征及其成因探讨[J]. 地球化学, 1991, 19(3): 245-254. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX199103005.htm

    Li S. Discussion on the geochemical characteristics and genesis of the Shaxiongdong carbonatite complex in Hubei[J]. Geochemistry, 1991, 19(3): 245-254(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX199103005.htm
    [19] 凌文黎, 段瑞春, 柳小明, 等. 南秦岭武当山群碎屑锆石U-Pb年代学及其地质意义[J]. 科学通报, 2010, 55(12): 1153-1161. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201012012.htm

    Ling W L, Duan R C, Liu X M, et al. Detrital zircon U-Pb geochronology of the Wudang Mountain Group in the southern Qinling Mountains and its geological significance[J]. Chinese Science Bulletin, 2010, 55(12): 1153-1161 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201012012.htm
    [20] 张国伟. 秦岭造山带的结构构造[J]. 中国科学B辑: 化学生命科学地球科学, 1995, 25(9): 994-1003. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK199509014.htm

    Zhang G W. Structure and tectonics of Qinling Orogenic Belt[J]. Science in China Series B: Chemistry, Life Sciences, Earth Sciences, 1995, 25(9): 994-1003(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK199509014.htm
    [21] 王宗起, 闫全人, 闫臻, 等. 秦岭造山带主要大地构造单元的新划分[J]. 地质学报, 2009, 83(11): 1527-1546. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200911003.htm

    Wang Z Q, Yan Q R, Yan Z, et al. New division of the main tectonic units in the Qinling Orogenic Belt[J]. Acta Geology, 2009, 83(11): 1527-1546(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200911003.htm
    [22] 吴元保. 秦岭造山带古生代岩浆作用及地球动力学意义[J]. 地球科学, 2019, 44(12): 4173-4177. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201912028.htm

    Wu Y B. Paleozoic magmatism and its geodynamic significance in Qinling Orogenic Belt[J]. Earth Science, 2019, 44(12): 4173-4177(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201912028.htm
    [23] 张国伟, 董云鹏, 姚安平. 秦岭造山带基本组成与结构及其构造演化[J]. 陕西地质, 1997, 15(2): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-SXDY199702000.htm

    Zhang G W, Dong Y P, Yao A P. The basic composition and structure of Qinling Orogenic Belt and its tectonic evolution[J]. Geology of Shaanxi, 1997, 15(2): 1-14(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SXDY199702000.htm
    [24] 夏林圻, 夏祖春, 李向民, 等. 南秦岭东段耀岭河群、陨西群、武当山群火山岩和基性岩墙群岩石成因[J]. 西北地质, 2008, 41(3): 1-29. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI200803002.htm

    Xia L Q, Xia Z C, Li X M, et al. Petrogenesis of the Yaolinghe Group, Yunxi Group, Wudangshan Group volcanic rocks and basic dyke swarms from eastern part of the south Qinling Mountains[J]. Northwestern Geology, 2008, 41(3): 1-29(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI200803002.htm
    [25] 杨成, 刘成新, 刘万亮, 等, 南秦岭竹溪县天宝乡粗面岩地球化学特征与铌成矿[J]. 岩石矿物学杂志, 2017, 36(5): 605-618. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201705003.htm

    Yang C, Liu C X, Liu W L, et al. Geochemical characteristics of trachyte and Nb mineralization process in Tianbao Township, Zhuxi County, southern Qinling[J]. Acta Petrologica et Mineralogica, 2017, 36(5): 605-618 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201705003.htm
    [26] Ying Y C, Chen W, Simonetti A, et al. Significance of hydrothermal reworking for REE mineralization associated with carbonatite: Constraints from in situ trace element and C-Sr isotope study of calcite and apatite from the Miaoya carbonatite complex (China)[J]. Geochimica et Cosmochimica Acta, 2020, 280: 340-359.
    [27] Zhang W, Chen W T, Gao J F, et al. Two episodes of REE mineralization in the Qinling Orogenic Belt, central China: In-situ U-Th-Pb dating of bastnäsite and monazite[J]. Mineralium Deposita, 2019, 54(8): 1265-1280.
    [28] Atencio D, Andrade M, Christy A, et al. The pyrochlore supergroup of minerals: Nomenclature[J]. The Canadian Mineralogist, 2010, 48(3): 673-698.
    [29] Caprilli E, Ventura G, Williams T, et al. The crystal chemistry of non-metamict pyrochlore-group minerals from Latium, Italy[J]. The Canadian Mineralogist, 2006, 44(6): 1367-1378.
    [30] 李国武, 杨光明, 熊明. 烧绿石超族矿物分类新方案及烧绿石超族矿物[J]. 矿物学报, 2014, 34(2): 153-158. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201402002.htm

    Li G W, Yang G M, Xiong M. A new classification of pyrochlore supergroup minerals and pyrochlore supergroup minerals[J]. Acta Mineralogy, 2014, 34(2): 153-158(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201402002.htm
    [31] Hogarth D, Williams C, Jones P. Primary zoning in pyrochlore group minerals from carbonatites[J]. Mineralogical Magazine, 2020, 64(4): 683-697.
    [32] Wu B, Hu Y Q, Bonnetti C, et al. Hydrothermal alteration of pyrochlore group minerals from the Miaoya carbonatite complex, central China and its implications for Nb mineralization[J]. Ore Geology Reviews, 2021, 132: 104059.
    [33] Deditius A P, Smith F N, Utsunomiya S, et al. Role of vein-phases in nanoscale sequestration of U, Nb, Ti, and Pb during the alteration of pyrochlore[J]. Geochmica et Cosmochimica Acta, 2015, 150: 226-252.
    [34] 祝明明, 邹建林, 王闯, 等. 幕阜山地区断峰山铌钽矿的矿物学, 年代学和赋存状态[J]. 地质科技通报, 2021, 40(6): 55-69. doi: 10.19509/j.cnki.dzkq.2021.0606

    Zhu M M, Zhou J L, Wang C, et al. Mineralogy, geochronology and occurrence state of the Duanfengshan Nb-Ta deposit in Mufushan area[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 55-69. doi: 10.19509/j.cnki.dzkq.2021.0606
    [35] 唐勇, Linnen R. 烧绿石在碱性岩浆体系中溶解度的实验研究[C]//佚名. 中国矿物岩石地球化学学会第17届学术年会论文摘要集. [出版地不详]: [出版社不详], 2019.

    Tang Y, Linnen R. Experimental study on the solubility of pyrochlore in alkaline magma system[C]//Anon. Abstracts of the 17th Annual Conference of Chinese Society of Mineralogy, Petrology and Geochemistry. [S. l. ]: [s. n. ], 2019(in Chinese with English abstract).
    [36] Aseri A A. Effects of fluorine on the solubilities of Nb, Ta, Zr and Hf minerals in highly fluxed water: Saturated haplogranitic melts[J]. Ore Geology Reviews, 2015, 64: 736-746.
    [37] 冉子龙, 李艳军. 伟晶岩型稀有金属矿床成矿作用研究进展[J]. 地质科技通报, 2021, 40(2): 13-23. doi: 10.19509/j.cnki.dzkq.2021.0018

    Ran Z L, Li Y J. Research advances on rare metal pegmatite deposits[J]. Bulletin of Geological Science and Technology, 2021, 40(2): 13-23(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0018
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  353
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-15
  • 录用日期:  2022-03-11
  • 修回日期:  2022-03-10

目录

    /

    返回文章
    返回