留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中国西南喀斯特地区水库溶解态与颗粒态碳研究进展

易沅壁 王万发 王宝利 汪福顺 李思亮

易沅壁, 王万发, 王宝利, 汪福顺, 李思亮. 中国西南喀斯特地区水库溶解态与颗粒态碳研究进展[J]. 地质科技通报, 2022, 41(5): 341-346. doi: 10.19509/j.cnki.dzkq.2022.0200
引用本文: 易沅壁, 王万发, 王宝利, 汪福顺, 李思亮. 中国西南喀斯特地区水库溶解态与颗粒态碳研究进展[J]. 地质科技通报, 2022, 41(5): 341-346. doi: 10.19509/j.cnki.dzkq.2022.0200
Yi Yuanbi, Wang Wanfa, Wang Baoli, Wang Fushun, Li Siliang. Research progress on the dissolved and particulate carbon of reservoirs in karst areas of Southwest China[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 341-346. doi: 10.19509/j.cnki.dzkq.2022.0200
Citation: Yi Yuanbi, Wang Wanfa, Wang Baoli, Wang Fushun, Li Siliang. Research progress on the dissolved and particulate carbon of reservoirs in karst areas of Southwest China[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 341-346. doi: 10.19509/j.cnki.dzkq.2022.0200

中国西南喀斯特地区水库溶解态与颗粒态碳研究进展

doi: 10.19509/j.cnki.dzkq.2022.0200
基金项目: 

国家自然科学基金项目 18JCJQJC46200

国家自然科学基金项目 41925002

详细信息
    作者简介:

    易沅壁(1993—),主要从事水库有机质迁移转化研究工作。E-mail: yuanbi.yi@tju.edu.cn

    通讯作者:

    李思亮(1978—),教授,主要从事流域生物地球化学循环研究工作。E-mail: siliang.li@tju.edu.cn

  • 中图分类号: P641.134

Research progress on the dissolved and particulate carbon of reservoirs in karst areas of Southwest China

  • 摘要:

    为了阐明喀斯特水库对河流水体碳循环造成的影响, 总结了近年来喀斯特流域筑坝作用对不同形态碳迁移转化和环境影响的研究进展。通过光谱学、稳定及放射性同位素等手段等对喀斯特地区河流-水库系统中的溶解无机碳(DIC)、溶解有机碳(DOC)、颗粒无机碳(PIC)和颗粒有机碳(POC)迁移转化及其控制机制的研究, 发现喀斯特水库碳循环展现出明显的季节性分布特征以及梯级水库群可能会进一步放大单个水库的生态效应, 这一结果不仅极大地促进了人们对水库碳循环的认识, 还有利于探索河流碳循环中"遗失"的碳汇以及更加准确的评估岩溶水库在全球河流碳循环中扮演的角色。喀斯特水库相比非喀斯特水库对人为活动加剧的影响可能具有更强的响应强度, 这也意味着喀斯特水库在全球变暖的趋势中发挥的作用需要得到更准确的评估, 而在未来的研究中, 通过不同分析手段从微观到宏观系统性的总结不同形态碳迁移转化特点将更准确的回答该问题。

     

  • 图 1  乌江梯级水库溶解无机碳(DIC)的生物地球化学过程(据文献[1]修改)

    Figure 1.  Biogeochemical processes in the dissolved inorganic carbon (DIC) of the Wujiang River cascade reservoir

  • [1] Wang W F, Li S L, Zhong J, et al. Climatic and anthropogenic regulation of carbon transport and transformation in a karst river-reservoir system[J]. Science of the Total Environment, 2020, 707: 135628. doi: 10.1016/j.scitotenv.2019.135628
    [2] Wang F S, Maberly S C, Wang B L, et al. Effects of dams on riverine biogeochemical cycling and ecology[J]. Inland Waters, 2018, 8(2): 130-140. doi: 10.1080/20442041.2018.1469335
    [3] Mendonca R, Muller R A, Clow D, et al. Organic carbon burial in global lakes and reservoirs[J]. Nature Communications, 2017, 8(1): 1694. doi: 10.1038/s41467-017-01789-6
    [4] Best J. Author correction: Anthropogenic stresses on the world's big rivers[J]. Nature Geoscience, 2019, 12(2): 7-21.
    [5] Grill G, Lehner B, Thieme M, et al. Mapping the world's free-flowing rivers[J]. Nature, 2019, 569: 215-221. doi: 10.1038/s41586-019-1111-9
    [6] Wang F. Impact of a large sub-tropical reservoir on the cycling of nutrients in a river[J]. Water Research, 2020, 186: 116363. doi: 10.1016/j.watres.2020.116363
    [7] Maavara T, Chen Q W, Van Meter K, et al. River dam impacts on biogeochemical cycling[J]. Nature Reviews Earth & Environment, 2020, 1(2): 103-116.
    [8] Keller P S, Marce R, Obrador B, et al. Global carbon budget of reservoirs is overturned by the quantification of drawdown areas[J]. Nature Geoscience, 2021, 14(6): 402-408. doi: 10.1038/s41561-021-00734-z
    [9] Rosentreter J A, Borges A V, Deemer B R, et al. Half of global methane emissions come from highly variable aquatic ecosystem sources[J]. Nature Geoscience, 2021, 14(4): 225-230. doi: 10.1038/s41561-021-00715-2
    [10] 袁道先. 地球系统的碳循环和资源环境效应[J]. 第四纪研究, 2001, 21(3): 223-232. doi: 10.3321/j.issn:1001-7410.2001.03.004

    Yuan D X. Carbon cycling and resource-environmental effects in the Earth system[J]. Quaternary Research, 2001, 21(3): 223-232(in Chinese with English abstract). doi: 10.3321/j.issn:1001-7410.2001.03.004
    [11] 刘丛强, 汪福顺, 王雨春, 等. 河流筑坝拦截的水环境响应: 来自地球化学的视角[J]. 长江流域资源与环境, 2009, 18(4): 384-396. doi: 10.3969/j.issn.1004-8227.2009.04.015

    Liu C Q, Wang F S, Wang Y C, et al. Water environment response to damming of rivers from a geochemical perspective[J]. Yangtze River Basin Resources and Environment, 2009, 18(4): 384-396(in Chinese with English abstract). doi: 10.3969/j.issn.1004-8227.2009.04.015
    [12] 中国大坝工程协会. 中国大坝工程协会. http://wwwchincold-smartcom/wisdomlib/literature/statisticsrpt/index. 2021

    China Dam Engineering Association 2021, 283 http://www.chincold-smart.com/wisdomlib/literature/statisticsrpt/index(in Chinese).
    [13] ICOLD. Number of dams by country members[Z]. International Commission on Large Dams(World Register of Dams). 2018. https://www.icold-cigb.org/2021.
    [14] IPCC Climate C. The physical science basis[M]. Cambridge: Cambridge Univ. Press, 2007.
    [15] Goldscheider N, Chen Z, Auler A S, et al. Global distribution of carbonate rocks and karst water resources[J]. Hydrogeology Journal, 2020, 28(5): 1661-1677. doi: 10.1007/s10040-020-02139-5
    [16] 陈敬安, 王敬富, 于佳, 等. 西南地区水库生态环境特征与研究展望[J]. 地球与环境, 2017, 45(2): 115-125. doi: 10.14050/j.cnki.1672-9250.2017.02.001

    Chen J A, Wang J F, Yu J, et al. Ecological characteristics of reservoirs in Southwest China and research perspectives[J]. Earth and Environment, 2017, 45(2): 115-125(in Chinese with English abstract). doi: 10.14050/j.cnki.1672-9250.2017.02.001
    [17] Gaillardet J, Dupre B, Louvat P, et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers[J]. Chemical Geology, 1999, 159(1/4): 3-30.
    [18] Zhong J, Li S L, Liu J, et al. Climate variability controls on CO2 consumption fluxes and carbon dynamics for monsoonal rivers: Evidence from Xijiang River, Southwest China[J]. J. Geophys. Res. Biogeo., 2018, 123(8): 2553-2567. doi: 10.1029/2018JG004439
    [19] Shih Y T, Chen P H, Lee L C, et al. Dynamic responses of DOC and DIC transport to different flow regimes in a subtropical small mountainous river[J]. Hydrol. Earth Syst. Sci., 2019, 22(12): 6579-6590.
    [20] Lloret E, Dessert C, Pastor L, et al. Dynamic of particulate and dissolved organic carbon in small volcanic mountainous tropical watersheds[J]. Chemical Geology, 2013, 351: 229-244. doi: 10.1016/j.chemgeo.2013.05.023
    [21] Giesler R, Lyon S W, Morth C M, et al. Catchment-scale dissolved carbon concentrations and export estimates across six subarctic streams in northern Sweden[J]. Biogeosciences, 2014, 11(2): 525-537. doi: 10.5194/bg-11-525-2014
    [22] Chen S, Zhong J, Li C, et al. Coupled effects of hydrology and temperature on temporal dynamics of dissolved carbon in the Min River, Tibetan Plateau[J]. Journal of Hydrology, 2020: 125641.
    [23] Zhong J, Wallin M B, Wang W, et al. Synchronous evaporation and aquatic primary production in tropical river networks[J]. Water Research, 2021, 200: 117272. doi: 10.1016/j.watres.2021.117272
    [24] Liu Z, Macpherson G L, Groves C, et al. Large and active CO2 uptake by coupled carbonate weathering[J]. Earth Science Reviews, 2018, 182: 42-49. doi: 10.1016/j.earscirev.2018.05.007
    [25] Beaulieu E, Godderis Y, Donnadieu Y, et al. High sensitivity of the continental-weathering carbon dioxide sink to future climate change[J]. Nature Climate Change, 2012, 2(5): 346-349. doi: 10.1038/nclimate1419
    [26] McClanahan K, Polk J, Groves C, et al. Dissolved inorganic carbon sourcing using δ13CDIC from a karst influenced river system[J]. Earth Surface Processes and Landforms, 2016, 41(3): 392-405. doi: 10.1002/esp.3856
    [27] Pu J, Li J, Zhang T, et al. Varying thermal structure controls the dynamics of CO2 emissions from a subtropical reservoir, South China[J]. Water Research, 2020, 178: 115831. doi: 10.1016/j.watres.2020.115831
    [28] Wang W, Li S-L, Zhong J, et al. Understanding transport and transformation of dissolved inorganic carbon(DIC) in the reservoir system using δ13CDIC and water chemistry[J]. Journal of Hydrology, 2019, 574: 193-201. doi: 10.1016/j.jhydrol.2019.04.036
    [29] Han Q, Wang B, Liu C Q, et al. Carbon biogeochemical cycle is enhanced by damming in a karst river[J]. Science of the Total Environment, 2018, 616/617: 1181-1189. doi: 10.1016/j.scitotenv.2017.10.202
    [30] Yi Y, Zhong J, Bao H, et al. The impacts of reservoirs on the sources and transport of riverine organic carbon in the karst area: A multi-tracer study[J]. Water Research, 2021, 194: 116933. doi: 10.1016/j.watres.2021.116933
    [31] Wang W, Yi Y, Zhong J, et al. Carbon biogeochemical processes in a subtropical karst river-reservoir system[J]. Journal of Hydrology, 2020, 591: 125590. doi: 10.1016/j.jhydrol.2020.125590
    [32] Liu Z H, Zhao M, Sun H L, et al. "Old" carbon entering the South China Sea from the carbonate-rich Pearl River Basin: Coupled action of carbonate weathering and aquatic photosynthesis[J]. Applied Geochemistry, 2017, 78: 96-104. doi: 10.1016/j.apgeochem.2016.12.014
    [33] Maberly S C, Barker P A, Stott A W, et al. Catchment productivity controls CO2 emissions from lakes[J]. Nature Climate Change, 2012, 3(4): 391-394.
    [34] Weyhenmeyer G A, Kosten S, Wallin M B, et al. Significant fraction of CO2 emissions from boreal lakes derived from hydrologic inorganic carbon inputs[J]. Nature Geoscience, 2015, 8(12): 933-U62. doi: 10.1038/ngeo2582
    [35] Jaberg J, Jansson M, Jonsson A, et al. Importance of water temperature and thermal stratification dynamics for temporal variation of surface water CO2 in a boreal lake[J]. Journal of Geophysical Research Biogeosciences, 2010, 115(G2).
    [36] Peng X, Liu C Q, Wang B L, et al. The impact of damming on geochemical behavior of dissolved inorganic carbon in a karst river[J]. Chinese Science Bulletin, 2014, 59(19): 2348-2355. doi: 10.1007/s11434-014-0153-5
    [37] Wang W F, Li S L, Zhong J, et al. CO2 emissions from karst cascade hydropower reservoirs: Mechanisms and reservoir effect[J]. Environmental Research Letters, 2021, 16(4): 044013. doi: 10.1088/1748-9326/abe962
    [38] Li Y J, Meng F Y, Wang B L, et al. Regulation of particulate inorganic carbon by phytoplankton in hydropower reservoirs: Evidence from stable carbon isotope analysis[J]. Chemical Geology, 2021, 579: 120366. doi: 10.1016/j.chemgeo.2021.120366
    [39] Aucour A-M, Sheppard S M F, Guyomar O, et al. Use of 13C to trace origin and cycling of inorganic carbon in the Rhône river system[J]. Chemical Geology, 1999, 159(1/4): 87-105.
    [40] Wei Y, Yan H, Liu Z, et al. The ballast effect controls the settling of autochthonous organic carbon in three subtropical karst reservoirs[J]. Science of the Total Environment, 2022, 818: 151736.
    [41] Ji H B, Li C, Ding H J, et al. Source and flux of POC in a karstic area in the Changjiang River watershed: Impacts of reservoirs and extreme drought[J]. Biogeosciences, 2016, 13(12): 3687-3699.
    [42] Huang S Y, Pu J B, Li J H, et al. Sources, variations, and flux of settling particulate organic matter in a subtropical karst reservoir in Southwest China[J]. Journal of Hydrology, 2020, 586: 124882.
    [43] Lamb A L, Wilson G P, Leng M J. A review of coastal palaeoclimate and relative sea-level reconstructions using δ13C and C/N ratios in organic material[J]. Earth Science Reviews, 2006, 75(1/4): 29-57.
    [44] Marwick T R, Tamooh F, Teodoru C R, et al. The age of river-transported carbon: A global perspective[J]. Global Biogeochemical Cycles, 2015, 29(2): 122-137.
    [45] Qin Y, Hao F, Zhang D, et al. Accumulation of organic carbon in a large canyon reservoir in karstic area, Southwest China[J]. Environmental Science and Pollution Research International, 2020, 27(20): 25163-25172.
    [46] Mendonça R, Kosten S, Sobek S, et al. Organic carbon burial efficiency in a subtropical hydroelectric reservoir[J]. Biogeosciences, 2016, 13(11): 3331-3342.
    [47] Song K, Wen Z, Shang Y, et al. Quantification of dissolved organic carbon(DOC) storage in lakes and reservoirs of mainland China[J]. J. Environ. Manage, 2018, 217: 391-402.
    [48] Anderson N J, Heathcote A J, Engstrom D R, et al. Anthropogenic alteration of nutrient supply increases the global freshwater carbon sink[J]. Sci. Adv., 2020, 6(16): eaaw2145.
    [49] Matzinger A, Pieters R, Ashley K I, et al. Effects of impoundment on nutrient availability and productivity in lakes[J]. Limnology and Oceanography, 2007, 52(6): 2629-2640.
    [50] D'Andrilli J, Cooper W T, Foreman C M, et al. An ultrahigh-resolution mass spectrometry index to estimate natural organic matter lability[J]. Rapid Communications in Mass Spectrometry: RCM, 2015, 29(24): 2385-2401.
    [51] He W, Chen M, Schlautman M A, et al. Dynamic exchanges between DOM and POM pools in coastal and inland aquatic ecosystems: A review[J]. Science of the Total Environment, 2016, 551/552: 415-428.
    [52] Nianzhi J, Herndl G J, Hansell D A, et al. Microbial production of recalcitrant dissolved organic matter: Long-term carbon storage in the global ocean[J]. Nature Reviews Microbiology, 2010, 8(8): 593-599.
    [53] Chen J, Yang H, Zeng Y, et al. Combined use of radiocarbon and stable carbon isotope to constrain the sources and cycling of particulate organic carbon in a large freshwater lake, China[J]. Science of the Total Environment, 2018, 625: 27-38.
    [54] Liu Z H, Yan H, Zeng S B. Increasing autochthonous production in inland waters as a contributor to the missing carbon sink[J]. Front. Earth. Sci., 2021, 9: 772.
    [55] Friedlingstein P, O'Sullivan M, Jones M W, et al. Global carbon budget 2020[J]. Earth System Science Data, 2020, 12(4): 326-340.
    [56] McCallister S L, Ishikawa N F, Kothawala D N. Biogeochemical tools for characterizing organic carbon in inland aquatic ecosystems[J]. Limnology and Oceanography Letters, 2018, 3(6): 444-457.
    [57] He D, Wang K, Pang Y, et al. Hydrological management constraints on the chemistry of dissolved organic matter in the Three Gorges Reservoir[J]. Water Research, 2020, 187: 116413.
  • 加载中
图(1)
计量
  • 文章访问数:  652
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-07
  • 网络出版日期:  2022-11-10

目录

    /

    返回文章
    返回