留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

东亚季风区石笋δ18O解译:基于夏季风与夏季风降雨的思考

殷建军

殷建军. 东亚季风区石笋δ18O解译:基于夏季风与夏季风降雨的思考[J]. 地质科技通报, 2022, 41(5): 308-314. doi: 10.19509/j.cnki.dzkq.2022.0201
引用本文: 殷建军. 东亚季风区石笋δ18O解译:基于夏季风与夏季风降雨的思考[J]. 地质科技通报, 2022, 41(5): 308-314. doi: 10.19509/j.cnki.dzkq.2022.0201
Yin Jianjun. Interpretation of stalagmite δ18O in East Asian summer monsoon region: Based on the relationship between summer monsoon and summer monsoon rainfall[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 308-314. doi: 10.19509/j.cnki.dzkq.2022.0201
Citation: Yin Jianjun. Interpretation of stalagmite δ18O in East Asian summer monsoon region: Based on the relationship between summer monsoon and summer monsoon rainfall[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 308-314. doi: 10.19509/j.cnki.dzkq.2022.0201

东亚季风区石笋δ18O解译:基于夏季风与夏季风降雨的思考

doi: 10.19509/j.cnki.dzkq.2022.0201
基金项目: 

中国地质科学院岩溶地质研究所基本科研业务费项目 2021002

中国地质科学院岩溶地质研究所基本科研业务费项目 2020006

详细信息
    作者简介:

    殷建军(1985—),男,副研究员,主要从事岩溶环境与全球变化研究工作。E-mail: jianjunyin@foxmail.com

  • 中图分类号: P642.254;P426.6

Interpretation of stalagmite δ18O in East Asian summer monsoon region: Based on the relationship between summer monsoon and summer monsoon rainfall

  • 摘要:

    近些年,对于东亚季风区石笋δ18O的气候环境指示意义的争论较多,主要在东亚季风区石笋δ18O代表夏季和风强度、夏季风降水还是水汽源变化。基于中国东部华北地区降水与长江中下游地区降水反相变化和长江中下游地区降水与菲律宾海降水反相变化(遥相关),从年际-年代际到千年-轨道尺度对石笋δ18O与夏季风降水、厄尔尼诺-南方涛动(ENSO)的相互关系进行了探讨分析。通过对比石笋δ18O记录与华北和梅雨区降水,发现石笋δ18O偏负对应华北降水增加,梅雨区降水减少;石笋δ18O偏正对应华北降水减少,梅雨区降水增加。这种对应关系不仅存在年际-年代际尺度,而且在千年-轨道尺度同样存在,石笋δ18O不仅反映夏季风强弱变化,同时与中国东部区域降水关系是明确对应的。通过降水的空间相互关系,发现ENSO活动主要通过影响中国东部降水的空间分布格局而作用于石笋δ18O。La Niña态导致南海及菲律宾海对流加强,西太副高位置偏北,长江中下游地区梅雨期缩短,华北夏季降水增加,东亚季风区石笋δ18O偏负。El Niño态,南海和菲律宾海对流受到抑制,西太副高位置南移,长江中下游地区梅雨期延长,华北夏季降水减少,东亚季风区石笋δ18O偏正。另外,水汽源分析发现,菲律宾海水汽输送对东亚季风区降水及降水δ18O贡献相对较小。因此,综合分析认为,东亚季风区石笋δ18O主要反映了亚洲夏季风的强弱变化。

     

  • 图 1  研究点和区域分布图

    浅蓝色线为1971-2010年夏季整层水汽通量流线,和尚洞和石花洞为石笋研究洞穴,ECMZ为东海大陆架钻孔位置,MD06-3052和MD06-3054为海洋钻孔位置。两红色方框分别为梅雨区27.5°N~32.5°N, 105°E~120°E和菲律宾海10°N~20°N, 115°E~150°E

    Figure 1.  Distribution map of the studied sites and areas

    图 2  北京石花洞XMG-1[15]和和尚洞HS-4石笋δ18O[14]及PC1值与东亚夏季风指数(EASMI)[12]和南方涛动指数(SOI)对比(黄色条带突出共同的变化阶段)

    Figure 2.  Comparison of the PC1 of δ18O of stalagmite XMG-1 from Shihua Cave, Beijing and stalagmite HS-4 from Heshang Cave, Hubei Province, EASMI and SOI

    图 3  湖北清江和尚洞HS-4石笋δ18O[14]、ECMZ钻孔黑炭重建的长江流域野火历史[16]、TraCE-21 ka模拟的梅雨区和菲律宾海年均降水[20]、MD06-3052钻孔综合化学风化强度指标[18]和东西热带太平洋海平面温度梯度变化[21]对比

    Figure 3.  Comparison of stalagmite δ18O of HS-4 from Heshang Cave, black carbon from core ECMZ, the Meiyu area and Philippine Sea precipitation simulated by the model of TraCE-21 ka, reconstructed weathering intensity from core MD06-3052 and West-East Pacific Ocean sea surface temperature difference

    图 4  东亚夏季风指数与菲律宾海夏季OLR对比(a)和梅雨区(27.5°N~32.5°N, 105°E~120°E)夏季降水与菲律宾海(陆地)10°N~20°N, 115°E~150°E)夏季降水对比(b)

    Figure 4.  Comparison of the EASMI and summer OLR of the Philippine sea (a), and comparison of summer rainfall between the Meiyu area and the Philippine Sea (b)

  • [1] 汪品先. 全球季风的地质演变[J]. 科学通报, 2009, 54(5): 535-556. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200905003.htm

    Wang P X. Global monsoon in a geological perspective[J]. Chinese Science Bulletin, 2009, 54: 1113-1136(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200905003.htm
    [2] Wang B, Wu Z, Li J, et al. How to measure the strength of the East Asian summer monsoon[J]. Journal of Climate, 2008, 21: 4449-4463. doi: 10.1175/2008JCLI2183.1
    [3] Liu Z, Wen X, Brady E C, et al. Chinese cave records and the East Asia summer monsoon[J]. Quaternary Science Reviews, 2014, 83: 115-128. doi: 10.1016/j.quascirev.2013.10.021
    [4] Cheng H, Edwards R L, Sinha A, et al. The Asian monsoon over the past 640 000 years and ice age terminations[J]. Nature, 2016, 534: 640-646. doi: 10.1038/nature18591
    [5] Cheng J, Wu H B, Liu Z Y, et al. Vegetation feedback causes delayed ecosystem response to East Asian summer monsoon rainfall during the Holocene[J]. Nature Communications, 2021, 12: 1843. doi: 10.1038/s41467-021-22087-2
    [6] 丁一汇, 司东, 柳艳菊, 等. 论东亚夏季风的特征、驱动力与年代际变化[J]. 大气科学, 2018, 42(3): 533-558. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201803006.htm

    Ding Y H, Si D, Liu Y J, et al. On the characteristics, driving forces and inter-decadal variability of the East Asian summer monsoon[J]. Chinese Journal of Atmospheric Sciences, 2018, 42(3): 533-558(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201803006.htm
    [7] Chen J H, Rao Z G, Liu J B, et al. On the timing of the East Asian summer monsoon maximum during the Holocene: Does the speleothem oxygen isotope record reflect monsoon rainfall variability?[J]. Science China: Earth Sciences, 2016, 59(12): 2328-2338. doi: 10.1007/s11430-015-5500-5
    [8] Cai Z, Tian L. Atmospheric controls on seasonal and interannual variations in the precipitation isotope in the East Asian monsoon region[J]. Journal of Climate, 2016, 29: 1339-1352. doi: 10.1175/JCLI-D-15-0363.1
    [9] Maher B A, Thompson R. Oxygen isotopes from Chinese caves: Records not of monsoon rainfall but of circulation regime[J]. Journal of Quaternary Science, 2012, 27(6): 615-624. doi: 10.1002/jqs.2553
    [10] 谭明. 环流效应: 中国季风区石笋氧同位素短尺度变化的气候意义: 古气候记录与现代气候研究的一次对话[J]. 第四纪研究, 2009, 29(5): 851-862. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ200905002.htm

    Tan M. Circulation effect: Climatic significance of the short term variability of the oxygen isotopes in stalagmites from monsoonal China: Dialogue between paleoclimate records and modern climate research[J]. Quaternary Sciences, 2009, 29(5): 851-862(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ200905002.htm
    [11] Huang G. An index measuring the interannual variation of the East Asian summer monsoon: The EAP index[J]. Advances in Atmospheric Sciences, 2004, 21(1): 41-52. doi: 10.1007/BF02915679
    [12] Zhao G, Huang G, Wu R, et al. A new upper-level circulation index for the East Asian summer monsoon variability[J]. Journal of Climate, 2015, 28: 9977-9996. doi: 10.1175/JCLI-D-15-0272.1
    [13] Huang G, Zhao G. The East Asian summer monsoon index(1851-2021)[Z]. National Tibetan Plateau Data Center, DOI: 10.11888/Meteoro.tpdc.270323.CSTR:18406.11.Meteoro.tpdc.270323.
    [14] Hu C, Henderson G M, Huang J, et al. Quantification of Holocene Asian monsoon rainfall from spatially separated cave records[J]. Earth and Planetary Science Letters, 2008, 266: 221-232. doi: 10.1016/j.epsl.2007.10.015
    [15] Li X, Cheng H, Tan L, et al. The East Asian summer monsoon variability over the last 145 years inferred from the Shihua Cave record, North China[J]. Scientific Reports, 2017, 7: 7078. doi: 10.1038/s41598-017-07251-3
    [16] Pei W, Wan S, Clift P D, et al. Human impact overwhelms long-term climate control of fire in the Yangtze River Basin since 3.0 ka BP[J]. Quaternary Science Reviews, 2020, 230: 106165. doi: 10.1016/j.quascirev.2020.106165
    [17] Xiong Z, Li T, Chang F, et al. Rapid precipitation changes in the tropical West Pacific linked to North Atlantic climate forcing during the last deglaciation[J]. Quaternary Science Reviews, 2018, 197: 288-306. doi: 10.1016/j.quascirev.2018.07.040
    [18] Xu Z, Li T, Clift P D, et al. Sea-level, monsoonal, and anthropogenic impacts on the millennial-scale variability of siliciclastic sediment input into the western Philippine sea since 27 ka[J]. Journal of Asian Earth Sciences, 2019, 177: 250-262. doi: 10.1016/j.jseaes.2019.04.001
    [19] Xiong Z, Li T, Jiang F, et al. Millennial-scale evolution of elemental ratios in bulk sediments from the western Philippine Sea and implications for chemical weathering in Luzon since the Last Glacial Maximum[J]. Journal of Asian Earth Sciences, 2019, 179: 127-137. doi: 10.1016/j.jseaes.2019.04.021
    [20] Liu Z, Otto-Bliesner B L, He F, et al. Transient simulation of last deglaciation with a new mechanism for Bolling-CAllerod Warming[J]. Science, 2009, 325: 310-314. doi: 10.1126/science.1171041
    [21] Koutavas A, Joanides S. El Niño-Southern oscillation extrema in the Holocene and Last Glacial Maximum[J]. 2012, 27(4): PA4208.
    [22] 殷建军, 唐伟. 桂林茅茅头大岩近50年来石笋δ18O记录与局地气候/大尺度环流关系探讨[J]. 地质学报, 2016, 90(8): 2035-2042. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201608030.htm

    Yin J, Tang W. The relationship between local climate/large scale circulation and δ18O recorded by stalagmite in the past 50 years from Maomaotou Big Cave, Guilin[J]. Acta Geologica Sinica, 2016, 90(8): 2035-2042(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201608030.htm
    [23] Wang Y, Cheng H, Edwards R L, et al. The Holocene Asian monsoon: Links to solar changes and North Atlantic climate[J]. Science, 2005, 308: 854-857. doi: 10.1126/science.1106296
    [24] Zhao Y, Yu Z, Chen F, et al. Vegetation response to Holocene climate change in monsoon-influenced region of China[J]. Earth-Science Reviews, 2009, 97: 242-256. doi: 10.1016/j.earscirev.2009.10.007
    [25] Daniau A L, Bartlein P J, Harrison S P, et al. Predictability of biomass burning in response to climate changes[J]. Global Biogeochemical Cycles, 2012, 26: GB4007. doi: 10.1029/2011GB004249
    [26] He C, Liu Z, Otto-Bliesner B L, et al. Hydrolcimate footprint of pan-Asian monsoon water isotope during the last deglaciation[J]. Science Advances, 2021, 7: eabe2611.
    [27] 张翠贞, 朱宗敏, 丁建宇, 等. 鄂西和尚洞石笋500年生长周期及其对区域水文变化的响应[J]. 地质科技通报, 2022, 41(3): 246-253. doi: 10.19509/j.cnki.dzkq.2022.0083

    Zhang C Z, Zhu Z M, Ding J Y, et al. 500-year growth cycle of stalagmite and its response to regional hydrological changes in Heshang Cave, western Hubei[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 246-253(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0083
    [28] Herzschuh U, Cao X, Laepple T, et al. Position and orientation of the westerly jet determined Holocene rainfall patterns in China[J]. Nature Communications, 2019, 10: 2376.
    [29] Baker A J, Sodemann H, Baldini J U L, et al. Seasonality of westerly moisture transport in the East Asian summer monsoon and its implications for interpreting precipitation δ18O[J]. Journal of Geophysical Research: Atmospheres, 2015, 120: 5850-5862. doi: 10.1002/2014JD022919
  • 加载中
图(4)
计量
  • 文章访问数:  887
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-09
  • 网络出版日期:  2022-11-10

目录

    /

    返回文章
    返回