Distribution characteristics and accumulation mechanism of carbon dioxide gas reservoirs in the Pearl River Mouth Basin
-
摘要:
珠江口盆地多个凹陷均有钻井钻遇CO2气体, 个别井钻遇的CO2体积分数高达90%以上, 这些CO2气体直接驱替了早期油藏或影响了油气充注规模, 增加了勘探风险。运用钻井数据、地球化学分析数据、重磁研究结果, 通过分析CO2分布特征, 总结CO2分布与断裂、火成岩的关系, 明确CO2分布的主控因素, 预测珠江口盆地高CO2风险带的分布。研究表明: 珠江口盆地对油气成藏有影响的CO2主要为无机幔源成因, 受区域盖层和储层的控制, CO2主要分布在上渐新统到下中新统地层及以下地层, 向上CO2逐渐减少, 同时无机幔源CO2分布明显受控于断裂体系, 与基底断裂和火成岩体具有较好的对应关系。无机CO2气源主要为幔源岩浆的脱气作用, 垂向运移主要受不同级别断裂控制, 尤其该区深大断裂和基底长期活动断裂起到了很大作用, 因此幔源岩浆活动与断裂体系是CO2汇聚的主控因素。由于珠江口盆地不同凹陷结构差异的影响, 幔源CO2运聚成藏机制可概括为两类: 一是在北部坳陷带, 地壳厚度大, CO2沿着深大断裂逐级向中上地壳运移形成"中转站", 然后在基底断裂的沟通下向浅层运移成藏; 二是在珠二坳陷, 由于地壳减薄作用, 并且发育拆离体系, 幔源岩浆首先到达拆离面, 脱出的CO2沿着拆离面运移, 当遇到深切至拆离面的断裂后继续向浅层运移成藏。基于以上分析并结合运聚条件预测出珠江口盆地分布着7个高CO2风险带, 这7个高CO2风险带均位于深大断裂带附近, 并且周边火成岩较为发育。
Abstract:Exploration practice has revealed abundant carbon dioxide gas reservoirs in many depressions of the Pearl River Mouth Basin, South China Sea with a CO2 content as high as 90%. These CO2 reservoirscan either directly displace the early oil reservoirs or affect the oil and gas charging scale, which further increases exploration risk. Based on the comprehensive analysis of drilling data, geochemical analysis data, gravity and magnetic research results, the migration and accumulation conditions of the CO2 reservoirs have been investigated. Our results suggest that CO2 in the Pearl River Mouth Basin is sourced by inorganic mantle, and its distribution locations are controlled by regional caprocks and reservoirs. CO2 is mainly distributed in upper Oligocene to lower Miocene strata and the overlying strata, with its contents gradually decreasing upwards. Meanwhile, the distribution of inorganic mantle source CO2 is greatly controlled by the fault system, and its distribution locations have a close relationship with the ranges of basement faults and igneous rocks. The inorganic CO2 gas is sourced by the degassing of mantle-derived magma. Its vertical migration process is mainly controlled by different scales faults, especially the regional abyssal faults. Therefore, it can be concluded that mantle-derived magma activity and fault systems are the main controlling factors for the accumulation processes of CO2 reservoirs. The mechanisms of mantle-derived CO2 migration and accumulation can be summarized into two types by structural differences. In the northern depression zone, CO2 migrates along deep faults step by step to the upper and middle crust to form a "transfer station". By contrast, the detachment system developed in the Zhu 2 Depression, and CO2 migrates along the detachment plane to upper strata.
-
表 1 珠江口盆地新生代岩浆活动情况表[16]
Table 1. Cenozoic magmatic activities in the Pearl River Mouth Basin
岩浆活动 主要喷发岩类 主要分布区 期次 时代 构造运动 第1期 E12~E22(Tg~T9) 神狐运动 中酸性岩及基性岩 东沙隆起和海南隆起北部 第2期 E22~E32(T9~T8) 珠琼运动 中酸性岩及基性火山碎屑岩 东沙隆起、惠州凹陷和番禺低隆起南部 第3期 N1(T7~T4) 南海运动 中酸性岩及基性火山碎屑岩 西江凹陷、开平凹陷、恩平凹陷、白云凹陷、阳江凹陷 第4期 N12~Q1(T2~T1) 东沙运动 基性岩 神狐隆起东部恩平凹陷、阳江凹陷 第5期 Q2~Q4(TN) 流花运动 基性岩 韩江凹陷、东沙隆起、海丰隆起、开平凹陷 表 2 不同地区CO2气、油和烃气充注期次及时期结果比较[20]
Table 2. Comparison of charging periods and periods of CO2, oil and gas in different areas
地区 CO2充注 油充注 烃气充注 CO2驱替影响 期次 时限/Ma 期次 时限/Ma 期次 时限/Ma 惠陆低凸起 1 ①12.7~7.8 1 ①16.6~8.8 存在 惠南披覆断阶带 3 ①17.8~14.1
②10.3
③7.1~4.22 ①16.5~14.5
②9.4~4.93 ①17.8~12.7
②10.3~4.8
③3.9~2.2存在 番禺低隆起 3 ①18.4~13.2
②11.1~6.0
③5.3~0.22 ①16.1~11.1
②6.5~4.63 ①20.3~10.1
②8.1~4.3
③1.5~1.0抑制 恩平地区 3 ①11.6
②6.1~5.9
③4.5~1.72 ①13.8~9.1
②3.9~03 ①11.9~11.7
②10.5~6.7
③5.3~1.1存在 白云-荔湾地区 3 ①18.9~12.7
②11.1~6.3
③4.8~1.92 ①10.7~6.9
②5.3~3.13 ①17.3~14.2
②8.2
③5.1~0.1抑制 -
[1] 牛杏, 何云龙, 庄新国. 东海盆地丽水凹陷CO2分布特征及成藏主控因素[J]. 地球科学, 2021, 46(10): 3549-3559. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202110010.htmNiu X, He Y L, Zhuang X G. Distribution and major controlling factors of CO2 reservoirs in Lishui Sag, East China Sea Basin[J]. Earth Science, 2021, 46(10): 3549-3559(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202110010.htm [2] 张向涛, 彭光荣, 朱定伟, 等. 珠江口盆地恩平凹陷CO2成藏特征与成藏过程[J]. 大地构造与成矿学, 2021, 45(1): 211-218. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202101019.htmZhang X T, Peng G R, Zhu D W, et al. Characteristics and process of CO2 accumulation in the Enping Sag, Pearl River Mouth Basin[J]. Geotectonica et Metallogenia, 2021, 45(1): 211-218(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202101019.htm [3] 徐新德, 张迎朝, 熊小峰, 等. 南海北部莺-琼盆地CO2成因与成藏特征及其分布规律[J]. 海洋地质前沿, 2017, 33(7): 45-54. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201707005.htmXu X D, Zhang Y C, Xiong X F, et al. Gensis, accumulation and disteibution of CO2 in the Yinggehai-Qiongdongnan basin, Northern South China Sea[J]. Marine Geology Frontiers, 2017, 33(7): 45-54(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201707005.htm [4] 陈红汉, 米立军, 刘妍鷨, 等. 珠江口盆地深水区CO2成因、分布规律与风险带预测[J]. 石油学报, 2017, 38(2): 119-134. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201702001.htmChen H H, Mi L J, Liu Y H, et al. Genesis, distribution and risk belt prediction of CO2 in deep-water area in the Pearl River Mouth Basin[J]. Acta Peterolel Sinica, 2017, 38(2): 119-134(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201702001.htm [5] 甘永年, 叶青, 漆智, 等. D气田群黄流组一段CO2对储层质量的影响[J]. 地质科技情报, 2018, 37(4): 141-145. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201804019.htmGan Y N, Ye Q, Qi Z, et al. Effect of CO2 on reservoir quality in Huang-1 Member of Huangliu Formation in D Gasfield Group[J]. Geological Science and Technology Information, 2018, 37(4): 141-145(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201804019.htm [6] 孙金山, 代一丁. 珠江口盆地南部深水区CO2对天然气成藏影响的探讨[C]//佚名. 南海深水油气勘探开发技术研讨会论文集. 广州:, 2015.Sun J S, Dai Y D. Study effect of CO2 on gas accumulation in south Pearl-River Mouth Basin deepwater area[C]//Anon. The proceedings of the deep water oil and gas exploration and development technology seminar in the South China Sea. Guangzhou:, 2015 (in Chinese). [7] 何家雄, 祝有海, 崔莎莎, 等. 南海北部边缘盆地CO2成因及运聚规律与资源化利用思路[J]. 天然气地球科学, 2009, 20(4): 488-496. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200904003.htmHe J X, Zhu Y H, Cui S S, et al. Origin, migration and accumulation of CO2 and its resource utilization in marginal basin, northern South China Sea[J]. Natural Gas Geoscience, 2009, 20(4): 488-496(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200904003.htm [8] 何家雄, 马文宏, 陈胜红, 等. 南海北部边缘盆地非烃气分布及形成的地质条件与控制因素[J]. 海洋地质与第四纪地质, 2011, 31(2): 95-104. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201102016.htmHe J X, Ma W H, Cheng S H, et al. Non-hydrocarbon gas distribution and its geological conditions and controlling factors in the margin basin of northern South China Sea[J]. Marine geology & Quaternary Geology, 2011, 31(2): 95-104(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201102016.htm [9] 魏喜, 陈亦寒, 祝永军, 等. 南海盆地及邻区CO2天然气成因类型及特征综述[J]. 天然气工业, 2005, 26(12): 12-19. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ200505000.htmWei X, Chen Y H, Zhu Y J, et al. An overview of characteristics and origin types of CO2 gas in South China Sea and the adjacent region[J]. Special Oil and Gas Reservoirs, 2005, 26(12): 12-19(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ200505000.htm [10] 李美俊, 王铁冠. 南海盆地及邻区CO2火山-幔源与有机成因CO2气混合模型探讨[J]. 天然气工业, 2006, 12(5): 49-52. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200612011.htmLi M J, Wang T G. A preliminary study on the model for mixing of volcanic mantle derived and or ganic CO2-northren margin basins of South China Sea as a case[J]. Natural Gas Industry, 2006, 12(5): 49-52(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200612011.htm [11] 陶明信, 徐永昌, 史宝光, 等. 中国不同类型断裂带的地幔脱气与深部地质构造特征[J]. 中国科学: D辑, 2005, 35(2): 441-451. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200505007.htmTao M X, Xu Y C, Shi B G, et al. Characteristics of mantle degassing and deep geological structure in different types of fault zones in China[J]. Science in China: Series D, 2005, 35(2): 441-451(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200505007.htm [12] 李振生, 张文俊, 吴小奇, 等. 松辽盆地二氧化碳的气源及其脱气模式[J]. 天然气地球科学, 2011, 22(1): 29-37. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201101007.htmLi Z S, Zhang W J, Wu X Q, et al. Gas source of carbon dioxide and its degassing model in Songliao Basin[J]. Natural Gas Geoscience, 2011, 22(1): 29-37(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201101007.htm [13] 刘妍鷨, 陈红汉, 王艳飞, 等. 珠江口盆地白云-荔湾深水区幔源CO2充注的黏土矿物成岩响应[J]. 地质科技通报, 2021, 40(3): 85-95. doi: 10.19509/j.cnki.dzkq.2021.0020Liu Y H, Chen H H, Wang Y F, et al. Diagenetic effect of mantle-derived CO2 charge to clay minerals in the Baiyun-Liwan deepwater area of the Pearl River Mouth Basin in South China Sea[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 85-95(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0020 [14] 李平鲁. 珠江口盆地地质特征与构造演化[R]. 广州: 中国海洋石油南海东部公司, 1993.Li P L. Geological characteristics and tectonic evolution of the Pearl River Mouth Basin[R]. Guangzhou: China Offshore Oil East China Sea Company, 1993(in Chinese with English abstract). [15] 邵磊, 孟晓捷, 张功成, 等. 白云凹陷断裂特征对构造与沉积的控制作用[J]. 同济大学学报: 自然科学版, 2013, 41(9): 1435-1441. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201309025.htmShao L, Meng X J, Zhang G C, et al. The controlling effect of fault characteristics of Baiyun Sag on structure and sedimentation[J]. Journal of Tongji University: Natural Science Edition, 2013, 41(9): 1435-1441(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201309025.htm [16] 李平鲁, 梁慧娴, 代一丁. 珠江口盆地基岩油气藏远景探讨[J]. 中国海上油气地质, 1998, 12(6): 361-369. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD199806000.htmLi P L, Liang H X, Dai Y D. Exploration perspectives of basement hydrocarbon accumulations in the Pearl River Mouth Basin[J]. China Offshore Oil and Gas Geology, 1998 12(6): 361-369(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD199806000.htm [17] 陈长民, 施和生, 徐世策, 等. 珠江口盆地(东部)第三系油气藏形成条件[M]. 北京: 科学出版社, 2003.Chen C M, Shi H S, Xu S C, et al. Formation conditions of Tertiary reservoirs in the Pearl River Mouth Basin(eastern part)[M]. Beijing: Science Press, 2003(in Chinese). [18] 王家林, 张新兵, 吴健生, 等. 珠江口盆地基底结构的综合地球物理研究[J]. 热带海洋学报, 2002, 21(2): 13-22. https://www.cnki.com.cn/Article/CJFDTOTAL-RDHY200202001.htmWang J L, Zhang X B, Wu J S, et al. Integrated geophysical researches on base texture of the Pearl River Mouth Basin[J]Journal of Tropical Oceangraphy, 2002, 21(2): 13-22(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-RDHY200202001.htm [19] 许新明, 刘丽华, 陈胜红, 等. 珠江口盆地恩平凹陷新近系油气成藏主控因素分析[J]. 地质科技情报, 2015, 34(1): 100-106. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201501016.htmXu X M, Liu L H, Chen S H, et al. Analysis of the main control factors on Neogene hydrocarbon accumulation in Enping sag, Pearl River Mouth Basin[J]. Geological Science and Technology Information, 2015, 34(1): 100-106 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201501016.htm [20] 侯启军, 杨玉峰. 松辽盆地无机成因天然气及勘探方向探讨[J]. 天然气工业, 2002, 22(3): 5-10.Hou Q J, Yang Y F. Inorganic natural gas in Songliao Basin and exploration direction[J]. Natural Gas Industry, 2002, 22(3): 5-10(in Chinese with English abstract). [21] 陈红汉, 平宏伟, 李纯泉, 等. 珠江口盆地CO2成因、来源、分布及其对油气成藏影响[R]. 武汉: 中国地质大学(武汉), 2018: 79-80.Chen H H, Ping H W, Li C Q, et al. Origin, source and distribution of CO2 in Pearl River Estuary Basin and its influence on oil and gas accumulation[R]. Wuhan: China University of Geosciences(Wuhan), 2018: 79-80(in Chinese).