留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

灰岩基缓释材料原位注入修复酸性矿山废水模拟研究

高旭波 李鸿煜 龚培俐 张兴周 方健聪

高旭波, 李鸿煜, 龚培俐, 张兴周, 方健聪. 灰岩基缓释材料原位注入修复酸性矿山废水模拟研究[J]. 地质科技通报, 2022, 41(5): 255-263. doi: 10.19509/j.cnki.dzkq.2022.0221
引用本文: 高旭波, 李鸿煜, 龚培俐, 张兴周, 方健聪. 灰岩基缓释材料原位注入修复酸性矿山废水模拟研究[J]. 地质科技通报, 2022, 41(5): 255-263. doi: 10.19509/j.cnki.dzkq.2022.0221
Gao Xubo, Li Hongyu, Gong Peili, Zhang Xingzhou, Fang Jiancong. Simulation study on remediation of acid mine drainage by in-situ injection of limestone based sustained release materials[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 255-263. doi: 10.19509/j.cnki.dzkq.2022.0221
Citation: Gao Xubo, Li Hongyu, Gong Peili, Zhang Xingzhou, Fang Jiancong. Simulation study on remediation of acid mine drainage by in-situ injection of limestone based sustained release materials[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 255-263. doi: 10.19509/j.cnki.dzkq.2022.0221

灰岩基缓释材料原位注入修复酸性矿山废水模拟研究

doi: 10.19509/j.cnki.dzkq.2022.0221
基金项目: 

国家自然科学基金项目 42172288

详细信息
    作者简介:

    高旭波(1975—), 男,研究员,主要从事岩溶及地下水水资源与水环境污染防治工作。E-mail: Xubo.gao.cug@gmail.com

  • 中图分类号: X141

Simulation study on remediation of acid mine drainage by in-situ injection of limestone based sustained release materials

  • 摘要:

    我国岩溶区分布面积广,生态环境脆弱。岩溶区大量矿山开采活动产生的酸性矿山废水(AMD)严重威胁着区域生态环境安全。以岩溶区广泛分布的碳酸盐岩和玉米棒(生物质炭)等为原料,通过改性、造粒、覆膜的方式制备了一种可用于原位注入修复的碱基缓释材料(ASRM),并在室内模拟开展了丰水和枯水交替作用下的原位注入修复实验,以验证和查明ASRM原位修复酸性矿井废水中重金属的能力及去除机制。研究结果表明,碱基缓释材料(ASRM)可有效提高水体pH值,酸性矿山废水(AMD)修复后pH值从2.8提高到5~7,并对Fe2+, Mn2+, Zn2+, Cu2+, Cd2+, Pb2+和Cr3+等多种有害重金属有良好去除效果。XRD和SEM分析证明,反应沉淀物主要以FeOOH的形式存在。重金属的去除机制主要包括:①部分金属离子被以反应产生的氢氧化物等沉淀的形式去除;②反应体系产生的大量FeOOH可以吸附去除重金属。本模拟实验研究为利用缓释材料原位高效处理岩溶山区矿山AMD提供了可靠的理论和技术依据。

     

  • 图 1  原位注入修复模拟装置图(a)和原位注入工程理论应用效果图(b)

    Figure 1.  Diagram of the in-situ injection and repair simulation device (a) and effect of the in-situ injection engineering application (b)

    图 2  AMD出水pH及Fe、Mn质量浓度变化

    Figure 2.  Changes of pH and Fe and Mn concentrations in outflow AMD

    图 3  Fe-Eh-pH(a)和Mn-Eh-pH(b)

    Figure 3.  Fe-Eh-pH(a) and Mn-Eh-pH(b)

    图 4  AMD出水Zn,Cu,Cd,Pb,Cr质量浓度变化

    Figure 4.  Changes of Zn, Cu, Cd, Pb and Cr concentration in outflow AMD

    图 5  AMD出水Ca2+, Mg2+质量浓度变化

    Figure 5.  Changes of Ca2+ and Mg2+ concentration in outflow AMD

    图 6  ASRM反应沉积物XRD图

    Figure 6.  XRD diagram of ASRM reaction sediments

    图 7  ASRM反应沉积物SEM-EDS图

    Figure 7.  SEM-EDS diagram of ASRM reaction sediments

    表  1  模拟酸性矿山废水水质指标(pH=2.8)

    Table  1.   Water quality index of simulated acid coal mine wastewater (pH=2.8)

    成分 模拟AMD质量浓度/(mg·L-1) 配置药品 天然AMD质量浓度/(mg·L-1)
    Fe2+ 180 FeSO4·7H2O 100~830
    Mn2+ 70 MnCl2·4H2O 0.3~160
    Zn2+ 13.8 ZnCl2 0.1~22
    Cu2+ 30 CuCl2·2H2O 0.01~50
    Cd2+ 0.5 CdCl2 0.1~5
    Pb2+ 1.5 PbCl2 0.1~30
    Cr3+ 1.2 CrCl3·6H2O 0.1~5
    下载: 导出CSV
  • [1] Tu Z H, Wu Q, He H P, et al. Reduction of acid mine drainage by passivation of pyrite surfaces: A review[J]. Science of The Total Environment, 2022, 832: 155116. doi: 10.1016/j.scitotenv.2022.155116
    [2] Offeddu F G, Cama J, Soler J M, et al. Processes affecting the efficiency of limestone in passive treatments for AMD: Column experiments[J]. Journal of Environmental Chemical Engineering, 2015, 3(1): 304-316. doi: 10.1016/j.jece.2014.10.013
    [3] Shim M J, Choi B Y, Lee G, et al. Water quality changes in acid mine drainage streams in Gangneung, Korea, 10 years after treatment with limestone[J]. Journal of Geochemical Exploration, 2015, 159: 234-242. doi: 10.1016/j.gexplo.2015.09.015
    [4] Shane A, Xu X, Siame J, et al. Removal of copper from acid mine drainage (AMD) or acid rock drainage (ARD)[J]. Journal of Water Resource and Protection, 2021, 13(7): 435-454. doi: 10.4236/jwarp.2021.137026
    [5] Rivera U Y, Romero F M, Sedoov S, et al. Carbonatos pedogénicos para el tratamiento del drenaje ácido de mina (DAM)[J]. Boletín de la Sociedad Geológica Mexicana, 2020, 72(1): A250919.
    [6] 徐建平, 万海洮. 利用活性炭处理酸性矿井废水研究[J]. 水处理技术, 2014, 40(3): 57-59. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLJ201403017.htm

    Xu J P, Wang H Z. Study on the treatment of Acid mine wastewater by activated carbon[J]. Technology of Water Treatment, 2014, 40(3): 57-59(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SCLJ201403017.htm
    [7] Jones S N, Cetin B. Evaluation of waste materials for acid mine drainage remediation[J]. Fuel, 2017, 188: 294-309. doi: 10.1016/j.fuel.2016.10.018
    [8] Akcil A, Koldas S. Acid mine drainage (AMD): Causes, treatment and case studies[J]. Journal of Cleaner Production, 2006, 14(12/13): 1139-1145. https://www.sciencedirect.com/science/article/pii/S0959652605000600
    [9] 武强, 李松营. 闭坑矿山的正负生态环境效应与对策[J]. 煤炭学报, 2018, 43(1): 21-32. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201801004.htm

    Wu Q, Li S Y. Positive and negative environmental effects of closed mines and its countermeasures[J]. Journal of China Coal Society, 2018, 43(1): 21-32(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201801004.htm
    [10] 任虎俊. 废弃煤矿岩溶地下水污染机理及防控研究: 以贵州凯里鱼洞河流域为例[D]. 北京: 中国矿业大学, 2021.

    Ren H J. Investigation on themechanism and control of karst groundwater pollution due to abandoned coal mines: A case study in the Yudong River basin, Kaili City, Guizhou Province, China[D]. Beijing: China University of Mining and Technology, 2021(in Chinese with English abstract).
    [11] Jiang C, Gao X, Hou B, et al. Occurrence and environmental impact of coal mine goaf water in karst areas in China[J]. Journal of Cleaner Production, 2020, 275: 123813. doi: 10.1016/j.jclepro.2020.123813
    [12] 宋凯. 前和煤矿开采对岩溶泉域水环境的影响[J]. 现代矿业, 2021, 37(7): 242-254. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKB202107068.htm

    Song K. The influence of Qianhe Coal Mining on karst spring water environment[J]. Modern Mining, 2021, 37(7): 242-254(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KYKB202107068.htm
    [13] 李冲. 随机森林模型预测岩溶区酸性煤矿井水锰污染[J]. 中国煤炭地质, 2021, 33(3): 43-47, 59. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT202103009.htm

    Li C. Prediction of karst region acidic coalmine water manganese pollution based on random forest[J]. Coal Geology of China, 2021, 33(3): 43-47, 59(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT202103009.htm
    [14] 李曦滨. 煤矿酸性废水污染综合治理技术与展望: 以贵州省鱼洞河流域综合治理技术应用研究为例[J]. 中国煤炭地质, 2018, 30(7): 48-53, 93. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT201807011.htm

    Li X B. Coalmine acid wastewater pollution integrated governance technology and expectation: A case study of Yudonghe Valley integrated governance technology application in Guizhou Province[J]. Coal Geology of China, 2018, 30(7): 48-53, 93. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT201807011.htm
    [15] 李星颖, 刘明凤, 吴永贵, 等. 不同碳酸盐岩对铅锌冶炼废渣-黑麦草体系中重金属迁移的影响[J]. 地球与环境, (2021-8-23)[2021-12-20]. https://kns.cnki.net/kcms/detail/52.1139.P.20211216.1715.002.html.

    Li X Y, Liu M F, Wu Y G, et al. Effect of different carbonate rocks on the migration and transformation of heavy metals in the lead-zinc smelting slag-plant system[J]. Earth and Environment, (2021-8-23)[2021-12-20]. https://kns.cnki.net/kcms/detail/52.1139.P.20211216.1715.002.html (in Chinese with English abstract).
    [16] Kamal N M, Mohammad K, Khan N A, et al. Lab-scale study of passive treatment to treat acidic mine effluent by using limestone and dolomite[C]//AIP Conference Proceedings. [S. l. ]: Aip Publishing LLC, 2019.
    [17] Silva D, Weber C, Olivwira C. Neutralization and uptake of pollutant cations from acid mine drainage (AMD) using limestones and zeolites in a pilot-scale passive treatment system[J]. Minerals Engineering, 2021, 170: 107000.
    [18] 张春宇, 管树巍, 吴林, 等. 塔西北地区下寒武统碳酸盐岩地球化学特征及其古环境意义: 以舒探1井为例[J]. 地质科技通报, 2021, 40(5): 99-111. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202105013.htm

    Zhang C Y, Guan S W, Wu L, et al. Geochemical characteristics and its paleo-environmental significance of the Lower Cambrian carbonate in the northwestern Tarim Basin: A case study of Well Shutan-1[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 99-111. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202105013.htm
    [19] 张敏, 胡学玉, 胡晓晓, 等. 硫对地球表层生态系统中镉迁移转化影响的研究进展: 以土壤-植物系统为例[J]. 地质科技通报, 2022, 41(3): 236-245. doi: 10.19509/j.cnki.dzkq.2021.0089

    Zhang M, Hu X Y, Hu X X, et al. Research progress on the effects of sulfur on the migration and transformation of cadmium in the earth surface ecosystem: A case study of soil-plant system[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 236-245(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0089
    [20] Wang Y, Sikora S, Townsend T G. Ferrous iron removal by limestone and crushed concrete in dynamic flow columns[J]. Journal of Environmental Management, 2013, 124: 165-171. https://www.sciencedirect.com/science/article/pii/S0301479713001060
    [21] Kairies C L, Capo R C, Watzlaf G R. Chemical and physical properties of iron hydroxide precipitates associated with passively treated coal mine drainage in the Bituminous Region of Pennsylvania and Maryland[J]. Applied Geochemistry, 2005, 20(8): 1445-1460. https://www.sciencedirect.com/science/article/pii/S0883292705001034
    [22] Silva A M, Cunha E C, Silvaf D, et al. Treatment of high-manganese mine water with limestone and sodium carbonate[J]. Journal of Cleaner Production, 2012, 29: 11-19. https://www.sciencedirect.com/science/article/pii/S0959652612000522
    [23] Hallberg K B, Johnson D B. Biological manganese removal from acid mine drainage in constructed wetlands and prototype bioreactors[J]. Science of the Total Environment, 2005, 338(1/2): 115-124. https://www.sciencedirect.com/science/article/pii/S0048969704006291
    [24] 杨绍章, 吴攀, 张瑞雪, 等. 有氧垂直折流式反应池处理煤矿酸性废水[J]. 环境工程学报, 2011, 5(4): 789-794. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201104013.htm

    Yang S Z, Wu P, Zhang R X, et al. Treatment of acid mine drainage using aerobic baffled vertical flow reactor[J]. Chinese Journal of Environmental Engineering, 2011, 5(4): 789-794(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201104013.htm
    [25] Sracek O, Gzyl G, Frolik A, et al. Evaluation of the impacts of mine drainage from a coal waste pile on the surrounding environment at Smolnica, southern Poland[J]. Environmental Monitoring and Assessment, 2010, 165(1): 233-254. doi: 10.1007/s10661-009-0941-6
    [26] Aziz H A, Adlan M N, Ariffin K S. Heavy metals (Cd, Pb, Zn, Ni, Cu and Cr (Ⅲ)) removal from water in Malaysia: Post treatment by high quality limestone[J]. Bioresource Technology, 2008, 99(6): 1578-1583. https://www.sciencedirect.com/science/article/pii/S0960852407003239
    [27] Swenlund P J, Webster J G, Miskelly G M. Goethite adsorption of Cu (Ⅱ), Pb (Ⅱ), Cd (Ⅱ), and Zn (Ⅱ) in the presence of sulfate: Properties of the ternary complex[J]. Geochimica et Cosmochimica Acta, 2009, 73(6): 1548-1562. https://www.sciencedirect.com/science/article/pii/S0016703708007400
    [28] Elghali A, Benzaazoua M, Bouzahzah H, et al. Laboratory study on the effectiveness of limestone and cementitious industrial products for acid mine drainage remediation[J]. Minerals, 2021, 11(4): 413.
    [29] Genty T, Bussière B, Benzaazoua M, et al. Capacity of wood ash filters to remove iron from acid mine drainage: Assessment of retention mechanism[J]. Mine Water and the Environment, 2012, 31(4): 273-286. doi: 10.1007/s10230-012-0199-z
    [30] 夏雨, 吴攀, 张瑞雪, 等. 酸性矿山废水对碳酸盐岩侵蚀的影响[J]. 生态学杂志, 2018, 37(6): 1702-1707. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201806013.htm

    Xia Y, Wu P, Zhang R X, et al. The effects of acid mine drainage on the erosion of carbonatite in carbonate rocks[J]. Chinese Journal of Ecology, 2018, 37(6): 1702-1707(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201806013.htm
    [31] Li W B, Feng Q Y, Liang H Q, et al. Passive treatment test of acid mine drainage from an abandoned coal mine in Kaili Guizhou, China[J]. Water Science and Technology, 2021, 84(8): 1981-1996.
    [32] Ahammed M M, Meera V. Metal oxide/hydroxide-coated dual-media filter for simultaneous removal of bacteria and heavy metals from natural waters[J]. Journal of Hazardous Materials, 2010, 181(1/3): 788-793. https://www.sciencedirect.com/science/article/pii/S0304389410006655
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  525
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-26
  • 网络出版日期:  2022-11-10

目录

    /

    返回文章
    返回