Evaluation of the blasting effects of insitu two-to-four lane expansion in the municipal tunnels based on EAHP model
-
摘要:
为准确评判隧道拆除爆破效果,保证原位二扩四市政隧道工程在爆破施工期间车辆正常通行,减少既有隧道衬砌结构爆破拆除及扩挖过程的风险,应用物元理论建立了基于EAHP的隧道爆破效果综合评价模型。首先,从爆破方案设计、爆区周边环境、爆破施工质量、爆破器材及爆破安全技术5个方面选取了29个评价因素指标,并划分为5个评价等级。其次,利用可拓变换构建初等关联函数,计算各爆破效果影响因素指标相对评价等级之间的关联度,同时引入层次分析法(AHP法)确定指标权重,根据最大关联度原则判定隧道爆破效果等级,由此建立基于可拓学-层次分析法的综合评价方法,即EAHP。结果表明,将该方法应用于浙江省楼山隧道原位二扩四工程爆破效果评价,得出爆破效果评定结果为
K max=K 2=-0.030 9,即原位二扩四隧道爆破效果评价级别为“爆破效果较好”,与工程实际情况相吻合。因此,基于EAHP综合评价模型选取的评价指标和权重系数合理可靠,通过可拓变换求得的最大关联度也能较好地反映隧道爆破效果等级,说明基于EAHP模型的综合评价方法对隧道爆破效果评判具有较好的适应性。Abstract:To accurately evaluate the blasting effect of tunnel demolition, guarantee the normal traffic of vehicles during the blasting for insitu two-to-four lane expansion in the municipal tunnels, and reduce the risk of blasting demolition as well as expansion of existing tunnel linings, a comprehensive evaluation model of the tunnel blasting effect based on EAHP was established with the matter-element theory. First, 29 evaluation factors were selected from 5 aspects: blasting scheme design, surroundings of blasting area, blasting quality, blasting materials, blasting safety technology, and 5 evaluation grades were demarcated. Second, the primary correlation function established with extension transformation was adopted to calculate the correlation degree of influencing factors of blasting effects to the evaluation grade, an analytic hierarchy process (AHP) method was introduced to determine the index weight, and the blasting effect grade was determined according to the principle of maximum correlation degree. Therefore, an integrated evaluation method based on Extenics-AHP, namely, EAHP, was established. The results showed that this method was applied to the blasting effect evaluation of the insitu two-to-four lane expansion project in Loushan Tunnel in Zhejiang Province, and the blasting effect evaluation result was
K max=K 2=-0.030 9, namely, the blasting effect evaluation level of the insitu two-to-four lane expansion in the tunnel was "good blasting effect", which was consistent with the actual condition of the project. Therefore, the evaluation indexes and weight coefficients selected based on EAHP model were reasonable and reliable, and the maximum correlation degree obtained by extension transformation could also better reflect the grade of the tunnel blasting effect, indicating this evaluation method had better adaptability to tunnel blasting effect evaluation. -
表 1 评价等级划分标准
Table 1. Evaluation grading standard
评价等级等级含义 N01 N02 N03 N04 N05 实际分值 良好 较好 一般 较差 差 B1 C11 [1.00, 0.82) [0.82, 0.68) [0.68, 0.54) [0.54, 0.36) [0.36, 0.00] 0.498 C12 [1.00, 0.68) [0.68, 0.40) [0.40, 0.28) [0.28, 0.21) [0.21, 0.00] 0.374 C13 [1.00, 0.85) [0.85, 0.65) [0.65, 0.45) [0.45, 0.30) [0.30, 0.00] 0.479 C14 [1.00, 0.58) [0.58, 0.36) [0.36, 0.24) [0.24, 0.18) [0.18, 0.00] 0.385 C15 [1.00, 0.84) [0.84, 0.67) [0.67, 0.50) [0.50, 0.34) [0.34, 0.00] 0.631 B2 C21 [1.00, 0.82) [0.78, 0.58) [0.58, 0.47) [0.47, 0.30) [0.30, 0.00] 0.703 C22 [1.00, 0.78) [0.78, 0.51) [0.51, 0.36) [0.36, 0.22) [0.22, 0.00] 0.243 C23 [1.00, 0.64) [0.64, 0.44) [0.44, 0.31) [0.31, 0.20) [0.20, 0.00] 0.327 C24 [1.00, 0.88) [0.88, 0.66) [0.66, 0.44) [0.44, 0.21) [0.21, 0.00] 0.506 C25 [1.00, 0.84) [0.84, 0.64) [0.64, 0.44) [0.44, 0.30) [0.30, 0.00] 0.611 C26 [1.00, 0.68) [0.68, 0.38) [0.38, 0.28) [0.28, 0.19) [0.19, 0.00] 0.397 C27 [1.00, 0.58) [0.58, 0.31) [0.31, 0.15) [0.15, 0.06) [0.06, 0.00] 0.418 B3 C31 [1.00, 0.56) [0.56, 0.26) [0.26, 0.14) [0.14, 0.07) [0.07, 0.00] 0.424 C32 [1.00, 0.74) [0.74, 0.44) [0.44, 0.17) [0.17, 0.08) [0.08, 0.00] 0.365 C33 [1.00, 0.86) [0.86, 0.66) [0.66, 0.49) [0.49, 0.33) [0.33, 0.00] 0.502 C34 [1.00, 0.80) [0.80, 0.59) [0.59, 0.49) [0.43, 0.25) [0.25, 0.00] 0.378 C35 [1.00, 0.75) [0.75, 0.50) [0.50, 0.25) [0.25, 0.08) [0.08, 0.00] 0.194 C36 [1.00, 0.60) [0.60, 0.40) [0.40, 0.20) [0.20, 0.10) [0.10, 0.00] 0.281 C37 [1.00, 0.62) [0.62, 0.32) [0.32, 0.12) [0.12, 0.05) [0.05, 0.00] 0.518 B4 C41 [1.00, 0.64) [0.64, 0.44) [0.44, 0.24) [0.24, 0.08) [0.08, 0.00] 0.433 C42 [1.00, 0.65) [0.65, 0.34) [0.34, 0.16) [0.16, 0.06) [0.06, 0.00] 0.178 C43 [1.00, 0.57) [0.57, 0.27) [0.27, 0.14) [0.14, 0.05) [0.05, 0.00] 0.094 C44 [1.00, 0.72) [0.72, 0.46) [0.46, 0.28) [0.28, 0.07) [0.07, 0.00] 0.449 B5 C51 [1.00, 0.84) [0.84, 0.64) [0.64, 0.37) [0.37, 0.17) [0.17, 0.00] 0.767 C52 [1.00, 0.82) [0.82, 0.61) [0.61, 0.38) [0.38, 0.19) [0.19, 0.00] 0.683 C53 [1.00, 0.78) [0.78, 0.53) [0.53, 0.28) [0.28, 0.12) [0.12, 0.00] 0.519 C54 [1.00, 0.69) [0.69, 0.48) [0.48, 0.27) [0.27, 0.09) [0.09, 0.00] 0.104 C55 [1.00, 0.60) [0.60, 0.30) [0.30, 0.15) [0.15, 0.07) [0.07, 0.00] 0.261 C56 [1.00, 0.73) [0.73, 0.41) [0.41, 0.23) [0.23, 0.08) [0.08, 0.00] 0.124 表 2 单层关联度Kj(C-N)
Table 2. Single layer correlation degree Kj(C-N)
WA-C K1 K2 K3 K4 K5 所属等级 等级评语 C11 0.088 2 -0.392 7 -0.267 6 -0.077 8 0.092 1 -0.217 0 N04 较差 C12 0.013 2 -0.450 0 -0.065 0 0.074 7 -0.200 9 -0.304 8 N03 一般 C13 0.046 1 -0.436 5 -0.263 1 0.064 4 -0.057 1 -0.272 0 N03 一般 C14 0.017 8 -0.336 2 0.069 4 -0.061 0 -0.273 6 -0.347 5 N02 较好 C15 0.043 9 -0.361 6 -0.095 6 0.118 2 -0.262 0 -0.440 9 N03 一般 C21 0.030 1 -0.741 3 -0.612 0 -0.224 0 0.405 8 -0.370 1 N04 较差 C22 0.011 2 -0.531 7 -0.297 5 0.405 0 -0.223 8 -0.391 8 N03 一般 C23 0.003 4 -0.174 7 0.268 4 -0.291 2 -0.452 3 -0.492 6 N02 较好 C24 0.006 4 -0.323 4 -0.015 9 0.016 4 -0.308 3 -0.449 1 N03 一般 C25 0.011 4 -0.726 2 -0.476 5 0.112 5 -0.091 8 -0.398 6 N03 一般 C26 0.011 0 -0.835 1 -0.651 9 -0.328 6 0.880 0 -0.318 8 N04 较差 C27 0.002 3 -0.376 4 -0.023 9 0.025 1 -0.273 5 -0.457 7 N03 一般 C31 0.080 1 -0.205 9 0.350 0 -0.292 9 -0.439 6 -0.575 7 N02 较好 C32 0.086 1 -0.688 5 -0.523 5 -0.325 0 0.104 5 -0.086 5 N04 较差 C33 0.053 9 -0.489 1 -0.256 8 0.054 8 -0.049 4 -0.279 7 N03 一般 C34 0.055 1 -0.430 9 -0.237 7 0.154 2 -0.117 9 -0.374 7 N03 一般 C41 0.157 1 -0.370 6 -0.069 4 0.080 6 -0.305 4 -0.444 3 N03 一般 C42 0.034 4 -0.416 2 0.044 7 -0.041 1 -0.227 6 -0.342 7 N02 较好 C43 0.023 7 -0.279 3 0.348 4 -0.205 3 -0.390 7 -0.461 3 N02 较好 C44 0.043 3 -0.242 9 0.472 2 -0.278 9 -0.401 1 -0.455 0 N02 较好 C45 0.015 1 -0.506 8 -0.170 5 0.258 6 -0.348 2 -0.438 5 N03 一般 C46 0.025 7 -0.418 2 -0.240 9 0.024 7 -0.023 5 -0.256 7 N03 一般 C47 0.004 7 -0.527 5 -0.359 3 -0.120 9 0.159 5 -0.253 0 N04 较差 C51 0.040 7 -0.238 6 0.456 3 -0.352 8 -0.630 2 -0.719 3 N02 较好 C52 0.013 6 -0.301 8 0.299 2 -0.187 2 -0.488 7 -0.608 6 N02 较好 C53 0.039 7 -0.351 8 -0.022 4 0.023 4 -0.331 9 -0.453 4 N03 一般 C54 0.006 1 -0.849 3 -0.783 3 -0.614 8 0.155 6 -0.118 6 N04 较差 C55 0.028 0 -0.565 0 -0.130 0 0.175 7 -0.298 4 -0.422 6 N03 一般 C56 0.007 4 -0.830 1 -0.697 6 -0.460 9 0.550 0 -0.261 9 N04 较差 注:黑体加粗表示最大值 表 3 单层权重及一致性检验
Table 3. Single layer weight and consistency test
矩阵 单层指标权重W λmax C.I. C.R. A WA-C=(0.209 2, 0.075 9, 0.490 5, 0.088 9, 0.135 5)T 5.375 7 0.093 9 0.083 9 B1 WB1-C=(0.088 2, 0.013 2, 0.046 1, 0.017 8, 0.043 9)T 5.167 0 0.041 8 0.037 3 B2 WB2-C=(0.030 1, 0.011 2, 0.003 4, 0.006 4, 0.011 4, 0.011 0, 0.002 3)T 7.744 2 0.124 0 0.091 2 B3 WB3-C=(0.080 1, 0.086 1, 0.053 9, 0.055 1, 0.157 1, 0.034 4, 0.023 7)T 7.659 0 0.109 8 0.080 8 B4 WB4-C=(0.043 3, 0.015 1, 0.025 7, 0.004 7)T 4.234 4 0.078 1 0.087 8 B5 WB5-C=(0.040 7, 0.013 6, 0.039 7, 0.006 1, 0.028 0, 0.007 4)T 6.451 2 0.090 2 0.071 6 注:λmax为判断矩阵的最大特征根;C.I., C.R.均为判断矩阵的一致性检验指标 表 4 爆破振动测试结果
Table 4. Blasting vibration test results
通道名 最大振速v/(cm·s-1) 主振频率f/Hz 爆破振动速度允许标准 爆破对结构安全的影响 通道1-段1 1.728 83.008 10~12 未超出标准 通道2-段1 1.702 71.553 12~15 未超出标准 通道3-段1 0.846 79.956 15~20 未超出标准 -
[1] 吴波, 兰扬斌, 杨建新, 等. 新建隧道爆破对临近隧道振动特性的影响研究[J]. 中国安全科学学报, 2019, 29(11): 89-95. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201911018.htmWu B, Lan Y B, Yang J X, et al. Influence of new tunnel blasting on vibration characteristics of adjacent existing tunnel[J]. China Safety Science Journal, 2019, 29(11): 89-95(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201911018.htm [2] Christian K, Andre V, Markus K. A tunnel information modelling framework to support management, simulations and visualisations in mechanised tunnelling projects[J]. Automation in Construction, 2017, 83: 78-90. doi: 10.1016/j.autcon.2017.07.006 [3] Jelena N, Christian K, Janosch S. An integrated platform for design and numerical analysis of shield tunnelling processes on different levels of detail[J]. Advances in Engineering Software, 2017, 112: 165-179. doi: 10.1016/j.advengsoft.2017.05.012 [4] Bansal V K. Application of geographic information systems in construction safety planning[J]. International Journal of Project Management, 2011, 31(29): 66-77. http://imensazan-pi.ir/wp-content/uploads/2017/12/Bansal-2011.pdf [5] 蒋开春. 明月峡长江大桥水下中深孔爆破安全技术研究[J]. 铁道工程学报, 2019, 36(7): 44-47, 91. doi: 10.3969/j.issn.1006-2106.2019.07.008Jiang K C. Research on the underwater medium-deep hole blasting safety technology for Mingyuexia Yangtze River Bridge[J]. Journal of Railway Engineering Society, 2019, 36(7): 44-47, 91(in Chinese with English abstract). doi: 10.3969/j.issn.1006-2106.2019.07.008 [6] Sacks1 R, Treckmann M, Rozenfeld O, et al. Visualization of work flow to support lean construction[J]. Journal of Construction Engineering and Management, 2009, 23(12): 1307-1315. [7] Ho C, Dzeng R. Construction safety training via e-learning: Learning effectiveness and user satisfaction[J]. Computers & Education, 2010, 55(2): 858-867. http://www.onacademic.com/detail/journal_1000035369319410_d41f.html [8] Yi K J, Langford D. Scheduling-based risk estimation and safety planning for construction projects[J]. Journal of Construction Engineering and Management, 2006, 21(19): 626-635. http://www.onacademic.com/detail/journal_1000037835799510_4e62.html [9] Yang H J, Chew D A S, Wu W W, et al. Design and implementation of an identification system in construction site safety for proactive accident prevention[J]. Accident Analysis and Prevention, 2012, 48(S1): 193-203. http://www.onacademic.com/detail/journal_1000035713964710_20cd.html [10] Venugopal M, Eastman C M, Sacks R, et al. Semantics of model views for information exchanges using the industry foundation class schema[J]. Advanced Engineering Informatics, 2012, 26(2): 411-428. doi: 10.1016/j.aei.2012.01.005 [11] 张志雄, 叶雪云, 殷志强, 等. 基于FAHP法的连续多跨渡槽拆除爆破安全评价[J]. 中国安全科学学报, 2020, 30(11): 67-74. doi: 10.16265/j.cnki.issn1003-3033.2020.11.010Zhang Z X, Ye X Y, Yin Z Q, et al. Safety evaluation of continuous multi-span aqueduct's demolition blasting based on FAHP method[J]. China Safety Science Journal, 2020, 30(11): 67-74(in Chinese with English abstract). doi: 10.16265/j.cnki.issn1003-3033.2020.11.010 [12] Tan C, Tong T K, Chiu G C, et al. Non-structural fuzzy decision support system for evaluation of construction safety management system[J]. International Journal of Project Management, 2002, 34(26): 303-313. http://www.onacademic.com/detail/journal_1000034185104110_981b.html [13] 谭松林, 黄玲, 李亚伟. 模糊层次综合评价在深埋隧道围岩质量分级中的应用[J]. 地质科技情报, 2009, 28(1): 105-108. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200901019.htmTan S L, Huang L, Li Y W. Application of fuzzy-AHP comprehensive evaluation to the quality classification of wall rock in deep buried tunnels[J]. Geological Science and Technology Information, 2009, 28(1): 105-108(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200901019.htm [14] 张永刚, 王永红, 王梦恕. 渤海湾海底隧道工程施工风险评估与控制分析[J]. 土木工程学报, 2015, 48(增刊1): 414-418. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2015S1074.htmZhang Y G, Wang Y H, Wang M S. Risk assessment of construction for Bohai Bay Subsea Tunnel[J]. China Civil Engineering Journal, 2015, 48(S1): 414-418(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2015S1074.htm [15] 沈世伟, 许君臣, 代树林, 等. 基于熵值赋权法的节理岩体隧道爆破质量可拓学评价[J]. 土木工程学报, 2013, 46(12): 118-126. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201312019.htmShen S W, Xu J C, Dai S L, et al. Extenics evaluation of joint rock tunnel blasting quality based on entropy weighting method[J]. China Civil Engineering Journal, 2013, 46(12): 118-126(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201312019.htm [16] Rozenfeld O, Sacks R, Rosenfeld Y, et al. Construction job safety analysis[J]. Safety Science, 2010, 48(4): 491-498. http://www.cabdirect.org/abstracts/20103080799.html [17] Chae S, Yoshida T. Application of RFID technology to prevention of collision accident with heavy equipment[J]. Automation in Construction, 2010, 19(3): 368-374. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0926580509001976&originContentFamily=serial&_origin=article&_ts=1483810088&md5=e7276a6a1d1542d2934ab3da4612b62e [18] Guo H L, Li H. Life-cycle management of construction projects based on virtual prototyping technology[J]. Journal of Management in Engineering, 2010, 26(1): 41-47. http://repository.lib.polyu.edu.hk/jspui/bitstream/10397/1858/1/LCMVP-1.pdf [19] 梁桂兰, 徐卫亚, 谈小龙. 基于熵权的可拓理论在岩体质量评价中的应用[J]. 岩土力学, 2010, 31(2): 535-540. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201002038.htmLiang G L, Xu W Y, Tan X L. Application of extension theory based on entropy weight in rock mass quality evaluation[J]. Rock and Soil Mechanics, 2010, 31(2): 535-540(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201002038.htm [20] 左昌群, 陈建平. 基于可拓学理论的围岩分级方法在变质软岩隧道中的应用[J]. 地质科技情报, 2007, 26(3): 75-78. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200703015.htmZuo C Q, Chen J P. Rock mass classification based on extenics theory applied in metamorphic soft rock tunnel[J]. Geological Science and Technology Information, 2007, 26(3): 75-78(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200703015.htm [21] 张明磊, 张益东, 季明, 等. 基于模糊可拓综合评价方法的巷道支护参数优化[J]. 采矿与安全工程学报, 2016, 33(6): 972-978. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201606003.htmZhang M L, Zhang Y D, Ji M, et al. Roadway support parameter optimization based on fuzzy extension synthetic evaluation[J]. Journal of Mining & Safety Engineering, 2016, 33(6): 972-978(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201606003.htm [22] 郭永华, 龚设, 康三月, 等. 基于层次-可拓(AHP-Extenics)模型的既有隧道衬砌结构病害评价[J]. 隧道建设: 中英文, 2020, 40(增刊1): 115-122. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD2020S1015.htmGuo Y H, Gong S, Kang S Y, et al. Disease evaluation of existing tunnel lining based on AHP-Extenics model[J]. Tunnel Construction, 2020, 40(S1): 115-122(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD2020S1015.htm [23] 王述红, 王斐笠, 高红岩, 等. 基于可拓理论的边坡地震稳定性评价方法研究[J]. 土木工程学报, 2016, 49(增刊2): 132-137. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2016S2023.htmWang S H, Wang F L, Gao H Y, et al. Evaluation method of seismic slope stability based on extension theory[J]. China Civil Engineering Journal, 2016, 49(S2): 132-137(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2016S2023.htm [24] 罗明明, 周宏, 郭绪磊, 等. 峡口隧道间歇性岩溶涌突水过程及来源解析[J]. 地质科技通报, 2021, 40(6): 246-254. doi: 10.19509/j.cnki.dzkq.2021.0054Luo M M, Zhou H, Guo X L, et al. Processes and sources identification of intermittent karst water inrush in Xiakou Tunnel[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 246-254(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0054 [25] 王剑非, 刘昆珏, 周文皎, 等. 香丽高速公路昌格洛滑坡-隧道工程病害三维数值分析[J]. 地质科技通报, 2022, 41(2): 34-43. doi: 10.19509/j.cnki.dzkq.2022.0009Wang J F, Liu K J, Zhou W J, et al. Three-dimensional numerical analysis of the Changgeluo landslide-tunnel engineering disaster on Shangri-La to Lijiang Highway[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 34-43(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0009 [26] 彭红明, 袁有靖, 李铜邦, 等. 青海天峻新关角隧道涌排水水源识别与量化分析[J]. 地质科技通报, 2022, 41(1): 60-70. doi: 10.19509/j.cnki.dzkq.2022.0026Peng H M, Yuan Y J, Li T B, et al. Identification and quantitative analysis of groundwater discharged from New Guanjiao Tunnel in Tianjun, Qinghai[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 60-70(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0026