留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

四川盆地公山庙油田大安寨段湖相灰岩-页岩裂缝特征与测井识别

吴丰 罗莹莹 李昱翰 杨宗恒 张洪千 刘建锋 石祥超

吴丰, 罗莹莹, 李昱翰, 杨宗恒, 张洪千, 刘建锋, 石祥超. 四川盆地公山庙油田大安寨段湖相灰岩-页岩裂缝特征与测井识别[J]. 地质科技通报, 2022, 41(5): 55-67. doi: 10.19509/j.cnki.dzkq.2022.0230
引用本文: 吴丰, 罗莹莹, 李昱翰, 杨宗恒, 张洪千, 刘建锋, 石祥超. 四川盆地公山庙油田大安寨段湖相灰岩-页岩裂缝特征与测井识别[J]. 地质科技通报, 2022, 41(5): 55-67. doi: 10.19509/j.cnki.dzkq.2022.0230
Wu Feng, Luo Yingying, Li Yuhan, Yang Zongheng, Zhang Hongqian, Liu Jianfeng, Shi Xiangchao. Fracture characteristics and logging identification of lacustrine limestone-shale reservoirs in Da′anzhai Member, Gongshanmiao Oilfield, Sichuan Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 55-67. doi: 10.19509/j.cnki.dzkq.2022.0230
Citation: Wu Feng, Luo Yingying, Li Yuhan, Yang Zongheng, Zhang Hongqian, Liu Jianfeng, Shi Xiangchao. Fracture characteristics and logging identification of lacustrine limestone-shale reservoirs in Da′anzhai Member, Gongshanmiao Oilfield, Sichuan Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 55-67. doi: 10.19509/j.cnki.dzkq.2022.0230

四川盆地公山庙油田大安寨段湖相灰岩-页岩裂缝特征与测井识别

doi: 10.19509/j.cnki.dzkq.2022.0230
基金项目: 

四川省重点研发计划(重大科技专项)项目 2020YFSY0039

国家自然科学基金区域创新发展联合基金项目 U20A20266

中国石油-西南石油大学创新联合体科技合作项目 2020CX030103

详细信息
    作者简介:

    吴丰(1983—),男,副教授,主要从事测井原理及地质应用方面的研究工作。E-mail: wufengzh@swpu.edu.cn

  • 中图分类号: P618.1

Fracture characteristics and logging identification of lacustrine limestone-shale reservoirs in Da′anzhai Member, Gongshanmiao Oilfield, Sichuan Basin

  • 摘要:

    四川盆地公山庙油田大安寨段同时发育湖相灰岩和页岩储层,裂缝是否发育成为大安寨段储层形成的关键。首先基于岩心观察、CT扫描、扫描电镜等分析了灰岩和页岩的裂缝特征,然后在分析沉积相、矿物含量、w(TOC)、断层对裂缝发育影响的基础上,建立了湖相灰岩和页岩裂缝的识别图版。结果表明:①大安寨段湖相灰岩主要发育构造缝与层间缝,湖相页岩主要发育成岩页理缝,两者裂缝产状均以水平和低角度为主;②湖相灰岩中,大三亚段和大一亚段的厚层灰岩、厚层灰岩夹单一薄页岩条带、厚层灰岩夹多个薄页岩条带, 这3种岩性组合最容易发育裂缝;湖相页岩中,大二a段的薄页岩与薄灰岩互层裂缝发育程度最高;③湖相灰岩裂缝识别优先采用ΔGR~ΔlogRT交会图,湖相页岩裂缝依据声波值增大和深浅双侧向电阻率“负差异”现象来识别。研究结果可为湖相灰岩-页岩裂缝评价提供思路与参考。

     

  • 图 1  四川盆地侏罗系自流井组大安寨段沉积体系与地层划分

    Figure 1.  Sedimentary system and stratigraphic division of the Da′anzhai Member of the Jurassic Ziliujing Formation, Sichuan Basin

    图 2  大安寨段介壳灰岩与页岩的岩心、薄片和扫描电镜照片

    a, d, g.介壳灰岩;b, e, h.灰岩-页岩互层;c, f, i.页岩。a.2 440.5 m,介壳灰岩,岩心照片;b.2 435.8 m,灰泥互层,岩心照片;c.页岩,岩心照片;d.2 420.05 m,粉晶介壳灰岩,薄片照片;e.2 402.37 m,页岩发育有机质,电镜照片;f.3 509.36 m,含介壳页岩,发育微裂缝,薄片照片;g.3 501.03 m,方解石溶蚀孔,电镜照片;h.2 402.37 m,页岩发育斜交裂缝,薄片照片;i.2 377.39 m,页岩发育有机质,电镜照片

    Figure 2.  Core photographs, thin section images and SEM images of shell limestone and shale in the Da′anzhai Member

    图 3  大安寨段岩性、黏土矿物类型及比例

    a.大安寨段岩性三角图;b.大安寨段不同岩性矿物成分与体积分数

    Figure 3.  Lithology, clay mineral types and proportions of the Da′anzhai Member

    图 4  大安寨段湖相灰岩裂缝特征

    Figure 4.  Fracture characteristics of lacustrine limestone in the Da′anzhai Member

    图 5  大安寨段湖相页岩裂缝特征

    Figure 5.  Fracture characteristics of lacustrine shale in the Da′anzhai Member

    图 6  沉积相与灰岩-页岩裂缝张开度、裂缝密度的关系

    Figure 6.  Relationship between sedimentary facies and fracture width, fracture density of limestone and shale

    图 7  断层与灰岩裂缝的关系

    Figure 7.  Relationship between faults and fractures in limestone

    图 8  灰岩-页岩裂缝张开度(a)、裂缝密度(b)与黏土矿物体积分数的关系

    Figure 8.  Relationship between fracture width (a), fracture density (b) and clay mineral content of limestone and shale

    图 9  灰岩-页岩裂缝张开度(a)、裂缝密度(b)与w(TOC)的关系

    Figure 9.  Relationship between fracture width (a), fracture density (b) and TOC of limestone and shale

    图 10  湖相灰岩裂缝识别相关参数确定原理

    Figure 10.  Principles of parameter determination related to fracture identification in lacustrine limestone

    图 11  湖相灰岩裂缝识别图版

    Figure 11.  Fracture identification plots of lacustrine limestone

    图 12  湖相页岩裂缝识别图版

    Figure 12.  Fracture identification plot of lacustrine shale

    图 13  湖相灰岩-页岩裂缝与原油产量和动态储量的关系

    Figure 13.  Relationship between fractures in lacustrine limestone-shale and crude oil production, dynamic reserves

    表  1  基于成因的灰岩和页岩裂缝分类与特征

    Table  1.   Genetic classification and characteristics of fractures in limestone and shale

    岩性 裂缝类型 裂缝特征
    灰岩 构造缝 裂缝面平直、规则,可见擦痕,裂缝延伸距离远,裂缝宽度变化较大,常呈组系出现
    非构造缝 表生裂缝 卸载裂缝 形状不规则,呈叠状或尖头状,与新形成的自由表面破裂相平行,其发育与地形有关
    风化裂缝 裂缝产状呈叶脉状或马尾状,出现在岩层表面
    成岩缝 层间缝 沿岩石层理或者面理产生,张开度较小,与层理面平行
    溶蚀缝 裂缝面粗糙、不规则,缝宽大小不一,其发育程度受岩性、水动力条件控制,形状奇特
    缝合线 呈锯齿状镶嵌,起伏波动明显,产状变化大,常被暗色泥质或有机质充填
    差异压实裂缝 不成组系分布,延伸不远,密度、宽度变化大。在地形起伏大、坡度陡的岩层中裂缝的密度及范围大
    收缩缝 规模较小,延伸较短;薄片上该类裂缝开度在5~30μm,多数被石膏或硬石膏充填
    压裂缝 一般都很微小,只有在显微镜下才可看见
    异常压力缝 走向弯曲、张开度不一,呈裂缝脉群,均为张裂缝,后期大部分被方解石、白云石等脉体充填
    页岩 构造缝 在构造应力作用下产生,可以是高角度剪切裂缝,也可以是顺层滑动产生的裂缝
    非构造缝 表生裂缝 裂缝发育受层理面控制,走向呈“Z”字型扩展,缝宽随裂缝扩展方向变窄
    成岩缝 成岩层理裂缝 倾角较小,一般呈水平或低角度状态,缝面上常见擦痕、阶步或光滑镜面
    干裂裂缝 纵向垂直层面。剖面呈“V”型,裂缝长终止于同一平面
    收缩裂缝 前端呈规律地延伸,尾端以分叉弯曲状结束,裂缝在平面上交织成网状,纵向垂直层面,深度较浅
    缝合线 与层面大致平行,呈锯齿状
    溶蚀缝 裂缝走向近水平,形态近弧形,缝宽很小,延伸长度很小,后期易被矿物充填
    异常压力缝 主要由欠压实超压和生烃超压导致,裂缝的开启与闭合具有循环往复性
    下载: 导出CSV
  • [1] 郑荣才, 陈洪德, 刘文均, 等. 川北大安寨段储层深部热水溶蚀作用[J]. 石油与天然气地质, 1996, 17(4): 293-301. doi: 10.3321/j.issn:0253-9985.1996.04.007

    Zheng R C, Chen H D, Liu W J, et al. Deep hydrothermal dissolution of Da'anzhai reservoirs in North Sichuan[J]. Oil and Gas Geology, 1996, 17(4): 293-301(in Chinese with English abstract). doi: 10.3321/j.issn:0253-9985.1996.04.007
    [2] 邓康龄. 四川盆地柏垭-石龙场地区自流井组大安寨段油气成藏地质条件[J]. 油气地质与采收率, 2001, 8(2): 9-13. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS200102002.htm

    Deng K L. Geological conditions of hydrocarbon accumulation in Da'anzhai Member of Ziliujing Formation in Baiya-Shilongchang area, Sichuan Basin[J]. Oil and Gas Geology and Recovery, 2001, 8(2): 9-13(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS200102002.htm
    [3] 张金川, 聂海宽, 徐波, 等. 四川盆地页岩气成藏地质条件[J]. 天然气工业, 2008, 28(2): 151-156. doi: 10.3787/j.issn.1000-0976.2008.02.045

    Zhang J C, Nie H K, Xu B, et al. Geological conditions of shale gas accumulation in the Sichuan Basin[J]. Natural Gas Industry, 2008, 28(2): 151-156(in Chinese with English abstract). doi: 10.3787/j.issn.1000-0976.2008.02.045
    [4] Wang S Y, Li J Z, Li D H, et al. The potential of tight oil resource in Jurassic Da'anzhai Formation of the Gongshanmiao Oilfield, central Sichuan Basin[J]. Geology in China, 2013, 40(2): 477-486. doi: 10.3969/j.issn.1000-3657.2013.02.012
    [5] Chen Z H, Lavoie D, Malo M, et al. A dual-porosity model for evaluating petroleum resource potential in unconventional tight-shale plays with application to Utica Shale, Quebec (Canada)[J]. Marine and Petroleum Geology, 2017, 80: 333-348. doi: 10.1016/j.marpetgeo.2016.12.011
    [6] Gale J F W, Laubach S E, Olson J E, et al. Natural fractures in shale: A review and new observations[J]. AAPG Bulletin, 2014, 98(11): 2165-2176. doi: 10.1306/08121413151
    [7] Avanzini A, Balossino P, Brignoli M, et al. Lithologic and geomechanical facies classification for sweet spot identification in gas shale reservoir[J]. Interpretation, 2016, 41(3): SL21-SL31.
    [8] Curtis M E, Cardott B J, Sondergeld C H, et al. Development of organic porosity in the Woodford Shale with increasing thermal maturity[J]. International Journal of Coal Geology, 2012, 26(31): 26-30.
    [9] 王伟东, 彭军, 夏青松, 等. 川北大安寨生屑灰岩储层主控因素及预测思路[J]. 西南石油大学学报: 自然科学版, 2020, 42(4): 13-21. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY202004002.htm

    Wang W D, Peng J, Xia Q S, et al. Main controlling factors and prediction ideas of bioclastic limestone reservoirs in Da'anzhai, northern Sichuan[J]. Journal of Southwest Petroleum University: Natural Science Edition, 2020, 42(4): 13-21(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY202004002.htm
    [10] 胡伟光, 易小林, 范春华. 四川盆地元坝地区大安寨段储层裂缝预测[J]. 物探化探计算技术, 2018, 40(5): 565-572. doi: 10.3969/j.issn.1001-1749.2018.05.02

    Hu W G, Yi X L, Fan C H. Prediction of reservoir fractures in Da'anzhai Member of Yuanba area, Sichuan Basin[J]. Geophysical and Geophysical Calculation Technology, 2018, 40(5): 565-572(in Chinese with English abstract). doi: 10.3969/j.issn.1001-1749.2018.05.02
    [11] 曾棒, 刘小平, 刘国勇, 等. 陆相泥页岩层系岩相测井识别与预测: 以南堡凹陷拾场次洼为例[J]. 地质科技通报, 2021, 40(1): 69-79. doi: 10.19509/j.cnki.dzkq.2021.0103

    Zeng B, Liu X P, Liu G Y, et al. Logging identification and prediction of lithofacies of lacustrine shale system in Shichang Sub-Sag, Nanpu Depression[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 69-79(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0103
    [12] 曾宏斌, 王芙蓉, 罗京, 等. 基于低温氮气吸附和高压压汞表征潜江凹陷盐间页岩油储层孔隙结构特征[J]. 地质科技通报, 2021, 40(5): 242-252. doi: 10.19509/j.cnki.dzkq.2021.0022

    Zeng H B, Wang F R, Luo J, et al. Characteristics of pore structure of intersalt shale oil reservoir by low temperature nitrogen adsorption and high pressure mercury pressure methods in Qianjiang Sag[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 242-252(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0022
    [13] 史彪, 吴丰, 李树新, 等. 海陆过渡相优质页岩测井识别: 以鄂尔多斯盆地大宁—吉县地区山2段为例[J/OL]. 地质科技通报, 2022. DOI: 10.19509/j.cnki.dzkq.2022.0107.

    Shi B, Wu F, Li S X, et al. Logging identification of high-quality shale of marine-continent transitional facies: An example of Shan 2 Member of Daning-Jixian area in Ordos Basin[J/OL]. Bulletin of Geological Science and Technology, 2022. DOI: 10.19509/j.cnki.dzkq.2022.0107 (in Chinese with English abstract).
    [14] Nikolaev M Y, Kazak A V. Liquid saturation evaluation in organic-rich unconventional reservoirs: A comprehensive review[J]. Earth-Science Reviews, 2019, 194: 327-349. doi: 10.1016/j.earscirev.2019.05.012
    [15] 杨跃明, 黄东, 杨光, 等. 四川盆地侏罗系大安寨段湖相页岩油气形成地质条件及勘探方向[J]. 天然气勘探与开发, 2019, 42(2): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-TRKT201902002.htm

    Yang Y M, Huang D, Yang G, et al. Geological conditions and exploration direction of lacustrine shale oil and gas formation in Jurassic Da'anzhai Member, Sichuan Basin[J]. Natural Gas Exploration and Development, 2019, 42(2): 1-12(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TRKT201902002.htm
    [16] 孙莎莎, 董大忠, 李育聪, 等. 四川盆地侏罗系自流井组大安寨段陆相页岩油气地质特征及成藏控制因素[J]. 石油与天然气地质, 2021, 42(1): 124-135. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202101012.htm

    Sun S S, Dong D Z, Li Y C, et al. Geological characteristics and controlling factors of hydrocarbon accumulation in terrestrial shale in the Da'anzhai Member of the Jurassic Ziliujing Formation, Sichuan Basin[J]. Oil and Gas Geology, 2021, 42(1): 124-135(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202101012.htm
    [17] 周广照, 刘红岐. 川中地区侏罗系大安寨段致密油储层综合评价[J]. 科学技术与工程, 2017, 17(29): 241-249. doi: 10.3969/j.issn.1671-1815.2017.29.035

    Zhou G Z, Liu H Q. Comprehensive evaluation of tight oil reservoirs in the Jurassic Da'anzhai Member in Central Sichuan[J]. Science Technology and Engineering, 2017, 17(29): 241-249(in Chinese with English abstract). doi: 10.3969/j.issn.1671-1815.2017.29.035
    [18] 卢炳雄, 郑荣才, 梁西文, 等. 川东地区侏罗系自流井组大安寨段页岩气(油)储层评价[J]. 石油与天然气地质, 2015, 36(3): 488-496.

    Lu B X, Zheng R C, Liang X W, et al. Evaluation of shale gas (oil) reservoirs in Da'anzhai Member of Jurassic Ziliujing Formation in eastern Sichuan[J]. Oil & Gas Geology, 2015, 36(3): 488-496(in Chinese with English abstract).
    [19] 蒋裕强, 漆麟, 邓海波, 等. 四川盆地侏罗系油气成藏条件及勘探潜力[J]. 天然气工业, 2010, 30(3): 22-26. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201003009.htm

    Jiang Y Q, Qi L, Deng H B, et al. Hydrocarbon accumulation conditions and exploration potential of Jurassic in Sichuan Basin[J]. Natural Gas Industry, 2010, 30(3): 22-26(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201003009.htm
    [20] 康家豪, 王兴志, 谢圣阳, 等. 川中地区侏罗系大安寨段页岩岩相类型及储层特征[J]. 岩性油气藏, 2022, 34(4): 53-65. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202204006.htm

    Kang J H, Wang X Z, Xie S Y, et al. Lithofacies types and reservoir characteristics of shale in the Da'anzhai Member of Jurassic in Central Sichuan[J]. Lithologic Reservoir, 2022, 34(4): 53-65(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202204006.htm
    [21] 冯动军. 四川盆地侏罗系大安寨段陆相页岩油气地质特征及勘探方向[J]. 石油实验地质, 2022, 44(2): 219-230. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202202003.htm

    Feng Dongjun. Geological characteristics and exploration direction of continental shale gas in Jurassic Daanzhai Member, Sichuan Basin[J]. Petroleum Geology & Experiment, 2022, 44(2): 219-230(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202202003.htm
    [22] Laubach S E. Practical approaches to identifying sealed and open fractures[J]. AAPG Bulletin, 2003, 87(4): 561-579.
    [23] 吴丰, 黄丹, 袁龙, 等. 青西油田窿六区块储层裂缝有效性研究[J]. 特种油气藏, 2012, 19(5): 42-45. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201205009.htm

    Wu F, Huang D, Yuan L, et al. Study on reservoir fracture effectiveness of block Long 6 of Qingxi Oilfield[J]. Special Oil and Gas Reservoirs, 2012, 19(5): 42-45(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201205009.htm
    [24] Stadtmüller M. Well logging interpretation methodology for carbonate formation fracture system properties determination[J]. Acta Geophysica, 2019, 67(6): 1933-1943.
    [25] Shalaby M R, Islam M A. Fracture detection using conventional well logging in carbonate Matulla Formation, Geisum Oilfield, southern Gulf of Suez, Egypt[J]. Journal of Petroleum Exploration and Production Technology, 2017, 7: 977-989.
    [26] Lazar O R, Bohacs K M, Macquaker J, et al. Capturing key attributes of fine-frained sedimentary rocks in outcrops, cores, and thin sections: Nomenclature and description guidelines[J]. Journal of Sedimentary Research, 2015, 85(3): 230-246.
    [27] Mohsen E, Mehran A, Ali R M, et al. Characterization of micro-fractures in carbonate Sarvak reservoir, using petrophysical and geological data, SW Iran[J]. Journal of Petroleum Scienence and Engineering, 2018, 170: 675-695.
    [28] Permadi P, Marhaendrajana T, Nandya S, 等. 碳酸盐岩储集层微裂缝的识别与表征[J]. 石油勘探与开发, 2022, 49(2): 366-376. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202202013.htm

    Permadi P, Marhaendrajana T, Nandya S, et al. Identification and characterization of microfractures in carbonate samples[J]. Petroleum Exploration and Development, 2022, 49(2): 366-376(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202202013.htm
    [29] 王濡岳, 胡宗全, 周彤, 等. 四川盆地及其周缘五峰组-龙马溪组页岩裂缝发育特征及其控储意义[J]. 石油与天然气地质, 2021, 42(6): 1295-1306. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202106005.htm

    Wang R Y, Hu Z Q, Zhou T, et al. Development characteristics of shale fractures in the Wufeng Formation-Longmaxi Formation in the Sichuan Basin and its periphery and its significance for reservoir control[J]. Oil & Gas Geology, 2021, 42(6): 1295-1306(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202106005.htm
    [30] 汪虎, 何治亮, 张永贵, 等. 四川盆地海相页岩储层微裂缝类型及其对储层物性影响[J]. 石油与天然气地质, 2019, 40(1): 41-49. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201901006.htm

    Wang H, He Z L, Zhang Y G, et al. Types of microfractures in marine shale reservoirs in the Sichuan Basin and their effects on the physical properties of the reservoirs[J]. Oil & Gas Geology, 2019, 40(1): 41-49(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201901006.htm
    [31] 苗凤彬, 彭中勤, 汪宗欣, 等. 雪峰隆起西缘下寒武统牛蹄塘组页岩裂缝发育特征及主控因素[J]. 地质科技通报, 2020, 39(2): 31-42. doi: 10.19509/j.cnki.dzkq.2020.0204

    Miao F B, Peng Z Q, Wang Z X, et al. Development characteristics and major controlling factors of shale fractures in the Lower Cambrian Niutitang Formation, western margin of Xuefeng Uplift[J]. Bulletin of Geological Science and Technology, 2020, 39(2): 31-42(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0204
    [32] 苟启洋, 徐尚, 郝芳, 等. 基于成像测井的泥页岩裂缝研究: 以焦石坝区块为例[J]. 地质科技通报, 2020, 39(6): 193-200. doi: 10.19509/j.cnki.dzkq.2020.0620

    Gou Q Y, Xu S, Hao F, et al. Research on mud shale fractures based on image logging: A case study of Jiaoshiba area[J]. Bulletin of Geological Science and Technology, 2020, 39(6): 193-200(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0620
    [33] 孙天礼, 欧成华, 郭威, 等. 元坝大安寨灰岩-砂岩-页岩储集模式及开发对策[J]. 特种油气藏, 2021, 28(6): 36-44. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202106005.htm

    Sun T L, Ou C H, Guo W, et al. Accumulation mode and development countermeasures for limestone-sandstone-shale reservoirs in Da'anzhai Member, Yuanba Block[J]. Special Oil & Gas Reservoirs, 2021, 28(6): 36-44(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202106005.htm
    [34] 李英强, 何登发. 四川盆地及邻区早侏罗世构造-沉积环境与原型盆地演化[J]. 石油学报, 2014, 35(2): 219-232.

    Li Y Q, He D F. Early Jurassic tectonics-sedimentary environment and prototype basin evolution in Sichuan Basin and adjacent areas[J]. Journal of Petroleum, 2014, 35(2): 219-232(in Chinese with English abstract).
    [35] 厚刚福, 宋兵, 倪超, 等. 致密油源储配置特征及油气勘探意义: 以四川盆地川中地区侏罗系大安寨段为例[J]. 沉积学报, 2021, 39(5): 1078-1085. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202105003.htm

    Hou G F, Song B, Ni C, et al. Source-reservoir configuration characteristics of tight oil and its significance for oil and gas exploration: A case study of the Jurassic Da'anzhai Member in the Central Sichuan Basin[J]. Acta Sedimentology, 2021, 39(5): 1078-1085(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202105003.htm
    [36] 李长海, 赵伦, 刘波, 等. 碳酸盐岩裂缝研究进展及发展趋势[J]. 地质科技通报, 2021, 40(4): 31-48. doi: 10.19509/j.cnki.dzkq.2021.0403

    Li C H, Zhao L, Liu B, et al. Research progress and development trend of carbonate fractures[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 31-48(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0403
    [37] 赵军龙, 巩泽文, 李甘, 等. 碳酸盐岩裂缝性储层测井识别及评价技术综述与展望[J]. 地球物理学进展, 2012, 27(2): 537-547. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201202018.htm

    Zhao J L, Gong Z W, Li G, et al. Review and prospect of logging identification and evaluation technology of carbonate fractured reservoirs[J]. Advances in Geophysics, 2012, 27(2): 537-547(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201202018.htm
    [38] 袁玉松, 周雁, 邱登峰, 等. 泥页岩非构造裂缝形成机制及特征[J]. 现代地质, 2016, 30(1): 155-162.

    Yuan Y S, Zhou Y, Qiu D F, et al. Formation mechanism and characteristics of non-tectonic fractures in shales[J]. Geoscience, 2016, 30(1): 155-162(in Chinese with English abstract).
    [39] Pireh A, Alavi S A, Ghassemi M R, et al. Analysis of natural fractures and effect of deformation intensity on fracture density in Garau Formation for shale gas development within two anticlines of Zagros fold and thrust belt, Iran[J]. Journal of Petroleum Science and Engineering, 2015, 125: 162-180.
    [40] Amosu A, Imsalem M, Sun Y. Effective machine learning identification of TOC-rich zones in the Eagle Ford Shale[J]. Journal of Applied Geophysics, 2021, 2: 104311.
    [41] Bernard S, Horsfield B, Schulz H M, et al. Geochemical evolution of organic-rich shales with increasing maturity: A STXM and TEM study of the Posidonia Shale (Lower Toarcian, northern Germany)[J]. Marine and Petroleum Geology, 2012, 31(1): 0-89.
    [42] 薛莲花, 杨巍, 仲佳爱, 等. 富有机质页岩生烃阶段孔隙演化: 来自鄂尔多斯延长组地质条件约束下的热模拟实验证据[J]. 地质学报, 2015, 89(5): 970-978. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ201601009051.htm

    Xue L H, Yang W, Zhong J A, et al. Pore evolution of organic-rich shale during hydrocarbon generation: Evidence from thermal simulation experiments under the constraints of geological conditions in the Ordos Yanchang Formation[J]. Acta Geologica Sinica, 2015, 89(5): 970-978(in Chinese with English abstract). https://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ201601009051.htm
    [43] 谷阳, 徐晟, 张炜, 等. 黔北地区牛蹄塘组页岩储层裂缝特征[J]. 科学技术与工程, 2021, 21(9): 3556-3562. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202109018.htm

    Gu Y, Xu S, Zhang Y, et al. Fracture characteristics of shale reservoirs of Niutitang Formation in northern Guizhou[J]. Science Technology and Engineering, 2021, 21(9): 3556-3562(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202109018.htm
    [44] Cao T, Deng M, Cao Q, et al. Pore formation and evolution of organic-rich shale during the entire hydrocarbon generation process: Examination of artificially and naturally matured samples[J]. Journal of Natural Gas Science and Engineering, 2021, 93: 104020.
    [45] Wu F, Dai J, Wen Z, et al. Resistivity anisotropy analysis of Longmaxi shale by resistivity measurements, scanning electron microscope, and resistivity simulation[J]. Journal of Applied Geophysics, 2022, 203: 104700.
    [46] Lai J, Wang G W, Fan Q X, et al. Geophysical well-Log evaluation in the era of unconventional hydrocarbon resources: A review on current status and prospects[J]. Surveys in Geophysics, 2022, 43(3): 913-957.
    [47] 陆云龙, 崔云江, 关叶钦, 等. 基于阵列声波测井的裂缝有效性定量评价方法[J]. 测井技术, 2022, 46(1): 64-70. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS202201011.htm

    Lu Y L, Cui Y J, Guan Y Q, et al. Quantitative evaluation method of fracture effectiveness based on array acoustic logging[J]. Logging Technology, 2022, 46(1): 64-70(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS202201011.htm
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  484
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-05
  • 网络出版日期:  2022-11-10

目录

    /

    返回文章
    返回