留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

渗流-应力耦合下侏罗系红砂岩力学及渗透特性试验研究

梁劲 王强 胡新丽 王斌 宗浩 王剑 李岚星

梁劲, 王强, 胡新丽, 王斌, 宗浩, 王剑, 李岚星. 渗流-应力耦合下侏罗系红砂岩力学及渗透特性试验研究[J]. 地质科技通报, 2023, 42(1): 52-61. doi: 10.19509/j.cnki.dzkq.2022.0237
引用本文: 梁劲, 王强, 胡新丽, 王斌, 宗浩, 王剑, 李岚星. 渗流-应力耦合下侏罗系红砂岩力学及渗透特性试验研究[J]. 地质科技通报, 2023, 42(1): 52-61. doi: 10.19509/j.cnki.dzkq.2022.0237
Liang Jin, Wang Qiang, Hu Xinli, Wang Bin, Zong Hao, Wang Jian, Li Lanxing. Experimental study on mechanics and permeability characteristics of Jurassic red sandstone under hydro-mechanical coupling[J]. Bulletin of Geological Science and Technology, 2023, 42(1): 52-61. doi: 10.19509/j.cnki.dzkq.2022.0237
Citation: Liang Jin, Wang Qiang, Hu Xinli, Wang Bin, Zong Hao, Wang Jian, Li Lanxing. Experimental study on mechanics and permeability characteristics of Jurassic red sandstone under hydro-mechanical coupling[J]. Bulletin of Geological Science and Technology, 2023, 42(1): 52-61. doi: 10.19509/j.cnki.dzkq.2022.0237

渗流-应力耦合下侏罗系红砂岩力学及渗透特性试验研究

doi: 10.19509/j.cnki.dzkq.2022.0237
基金项目: 

重点国际(地区)合作与交流项目 42020104006

国家重点研发计划 2017YFC1501302

国家自然科学基金重点项目 41630643

详细信息
    作者简介:

    梁劲(1998-), 女, 现正攻读土木工程专业硕士学位, 主要从事岩土工程数值模拟与地质灾害防治研究工作。E-mail: 1731764089@qq.com

    通讯作者:

    胡新丽(1968-), 女, 教授, 博士生导师, 主要从事岩土工程数值模拟与稳定性评价等方面的研究工作。E-mail: huxinli@cug.edu.cn

  • 中图分类号: TU458

Experimental study on mechanics and permeability characteristics of Jurassic red sandstone under hydro-mechanical coupling

  • 摘要:

    三峡库区广泛分布侏罗系红砂岩, 在水库运行期间红砂岩的渗流-应力耦合特性关乎库区内多数滑坡和岩质边坡的稳定性。借助岩石多场耦合三轴试验系统, 对三峡库区侏罗系红砂岩开展了不同围压、不同渗透压下的三轴压缩试验, 系统研究了红砂岩的三轴压缩力学特性和渗透率演化特征。研究结果表明: ①红砂岩的峰前应力-应变曲线可分为孔隙压密阶段、弹性变形阶段、微裂隙稳定发展阶段和非稳定发展阶段。红砂岩的力学参数与渗透压的关系呈负相关, 与围压呈正相关。②随着围压升高, 红砂岩的破坏模式由张拉破坏过渡到剪切破坏。③不同渗透压下, 渗透率曲线呈平稳发展→缓慢上升→快速上升3阶段演化规律; 不同围压下, 渗透率曲线先降低后升高。④从能量角度分析了渗透压和围压对岩石的作用, 验证了渗流对岩石的劣化效应以及围压对裂纹发展的抑制作用。本试验对鲜有报道的侏罗系红砂岩的强度、变形和渗透特性做了系统的研究, 对渗流-应力耦合课题有补充意义。其工况根据三峡库区边坡岩体的应力水平来确定, 试验结果对分析库区边坡稳定性具有指导意义。

     

  • 图 1  研究区及取样位置

    Figure 1.  Study area and sampling locations

    图 2  红砂岩试样

    Figure 2.  Red sandstone samples

    图 3  试验系统及试样装配

    Figure 3.  Testing system and sample assembly

    图 4  压力室

    Figure 4.  Schematic diagram of the instrument

    图 5  各工况下应力-应变曲线

    Figure 5.  Stress-strain curves under various working conditions

    图 6  破裂演化阶段划分

    Figure 6.  Stage division

    图 7  破坏试样及素描图

    Figure 7.  Specimen after destruction and the sketch

    图 8  渗透压、偏应力与轴应变关系曲线

    a.围压3 MPa, 渗透压1 MPa; b.围压3 MPa, 渗透压1.5 MPa; c.围压3 MPa, 渗透压2 MPa; d.围压5 MPa, 渗透压2 MPa; e.围压7 MPa, 渗透压2 MPa

    Figure 8.  Osmotic pressure, deviatoric stress-axial strain curves

    图 9  不同渗透压下红砂岩能量变化曲线

    a.渗透压1 MPa, 围压3 MPa; b.渗透压1.5 MPa,围压3 MPa; c.渗透压2 MPa,围压3 MPa; d.能量大小

    Figure 9.  Energy evolution curves under various osmotic pressure

    图 10  不同围压下红砂岩能量变化曲线

    a.围压3 MPa,渗透压2 MPa; b.围压5 MPa,渗透压2 MPa; c.围压7 MPa,渗透压2 MPa; d.能量大小

    Figure 10.  Energy evolution curves under various confining pressure

    表  1  红砂岩基本物理参数

    Table  1.   Physical properties of red sandstone

    试样编号 直径/mm 长度/mm 天然密度/(g·cm-3) 孔隙率/% 饱和吸水率/% 压缩波波速/(m·s-1)
    1# 49.36 101.89 2.643 1.62 0.66 3 453.79
    2# 49.52 102.15 2.649 1.49 0.56 3 462.42
    3# 49.38 101.96 2.651 1.52 0.62 3 455.87
    4# 49.41 101.64 2.643 1.65 0.63 3 444.83
    5# 49.67 101.43 2.651 1.47 0.56 3 447.59
    下载: 导出CSV

    表  2  试验方案

    Table  2.   Experimental scheme

    试样编号 围压/MPa 渗透压/MPa
    1# 3 1.0
    2# 3 1.5
    3# 3 2.0
    4# 5 2.0
    5# 7 2.0
    下载: 导出CSV

    表  3  红砂岩试样特征应力

    Table  3.   Characteristic intensity of red sandstone

    试样编号 闭合应力/MPa 起裂应力/MPa 损伤应力/MPa
    1# 18.96% 53.24% 72.36%
    2# 13.97% 34.08% 80.66%
    3# 14.11% 33.87% 71.24%
    4# 16.36% 38.63% 82.22%
    5# 12.18% 54.55% 79.60%
    下载: 导出CSV

    表  4  红砂岩力学参数

    Table  4.   Mechanical parameters of red sandstone

    试样编号 围压/MPa 渗透压/MPa 峰值应力/MPa 初始弹性模量/GPa 泊松比 最大体积应变/%
    1# 3.0 1.0 127.90 24.4 0.345 0.124 6
    2# 3.0 1.5 121.50 21.1 0.326 0.140 4
    3# 3.0 2.0 119.95 13.5 0.304 0.157 3
    4# 5.0 2.0 125.27 20.1 0.364 0.091 7
    5# 7.0 2.0 137.13 21.4 0.451 0.017 0
    下载: 导出CSV

    表  5  红砂岩初始渗透率

    Table  5.   Initial permeability of red sandstone

    岩样编号 初始渗透率/10-19 m2
    1# 2.5
    2# 5.1
    3# 8.0
    4# 1.3
    5# 0.8
    下载: 导出CSV
  • [1] 赵阳升. 多孔介质多场耦合作用及其工程响应[M]. 北京: 科学出版社, 2010.

    Zhao Y S. Multi field coupling and its engineering response of porous media[M]. Beijing: Science Press, 2010(in Chinese).
    [2] Wu A Q, Fan L, Fu X, et al. Design and application of hydro-mechanical coupling test system for simulating rock masses in high dam reservoir operations[J/OL]. International Journal of Rock Mechanics and Mining Sciences, 2021, 140. [2021-07-10]. http://doi.org/10.1016/j.ijrmms.2021-104638.
    [3] 张怡悦, 殷坤龙, 陈丽霞, 等. 奉节县曾家棚滑坡时空差异性变形特征与成因机制分析[J]. 地质科技通报, 2020, 39(2): 148-157. doi: 10.19509/j.cnki.dzkq.2020.0216

    Zhang Y Y, Yin K L, Chen L X, et al. Characteristics and mechanism of spatio-temporal difference deformation of Zengijiapeng landslide[J]. Bulletin of Geological Science and Technology, 2020, 39(2): 148-157(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0216
    [4] 李长冬, 龙晶晶, 姜茜慧, 等. 水库滑坡成因机制研究进展与展望[J]. 地质科技通报, 2020, 39(1): 67-77. doi: 10.19509/j.cnki.dzkq.2020.0108

    Li C D, Long J J, Jiang X H, et al. Advance and prospect of formation mechanism for reservoir landslides[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 67-77(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0108
    [5] 侯伟, 仵彦卿, 丁卫华. 裂隙岩体渗流场与应力场耦合研究进展与展望[J]. 山西建筑, 2006, 32(15): 1-2. https://www.cnki.com.cn/Article/CJFDTOTAL-JZSX200615000.htm

    Hou W, Wu Y Q, Ding W H. Advances and future research directions in the models of coupled seepage and stress fields in fractured rock mass[J]. Shanxi Architecyure, 2006, 32(15): 1-2(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JZSX200615000.htm
    [6] 刘仲秋, 章青. 岩体中饱和渗流应力耦合模型研究进展[J]. 力学进展, 2008, 38(5): 585-600. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ200805006.htm

    Liu Z Q, Zhang Q. A review on the stage of art of the satura seepage-stress coupling models in rock mass[J]. Advances in Mechanics, 2008, 38(5): 585-600(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ200805006.htm
    [7] Kou M M, Liu X R, Wang Z Q, et al. Laboratory investigations on failure, energy and permeability evolution of fissured rock-like materials under seepage pressures[J/OL]. Engineering Fracture Mechanics, 2021. (2021-4-15)[2021-7-10]. http://doi.org/10.1016/j.engfracmech.2021.107694.
    [8] Meng Z P, Li G Q, Xie X T. A geological assessment method of floor water inrush risk and its application[J]. Engineering Geology, 2012, 143: 51-60.
    [9] Tan X, Heinz K, Thomas F. Laboratory observation and numerical simulation of permeability evolution during progressive failure of brittle rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 68: 167-176. doi: 10.1016/j.ijrmms.2014.02.016
    [10] Heiland J. Laboratory testing of coupled hydro-mechanical processes during rock deformation[J]. Hydrogeology Journal, 2003, 11(1): 122-141. doi: 10.1007/s10040-002-0236-2
    [11] Mitchell T M, Faulkner D R. Experimental measurements of permeability evolution during triaxial compression of initially intact crystalline rocks and implications for fluid flow in fault zones[J]. Journal of Geophysical Research, 2008, 113(B11): B11412-1-B11412-16-0.
    [12] Wang S, Elsworth D, Liu J. Permeability evolution during progressive deformation of intact coal and implications for instability in underground coal seams[J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 58: 34-45. doi: 10.1016/j.ijrmms.2012.09.005
    [13] Tao M, Yechao Y, Jie C, et al. Investigation on the permeability evolution of gypsum interlayer under high temperature and triaxial pressure[J/OL]. Rock Mechanics and Rock Engineering, 2017, 50(8): 2059-2069.
    [14] Xiao W J, Zhang D M, Wang X J. Experimental study on progressive failure process and permeability characteristics of red sandstone under seepage pressure[J/OL]. Engineering Geology, 2020: 265. [2021-7-10]. https://doi.org/10.1016/j.enggeo.2019.105406.
    [15] 张金才, 张玉卓. 应力对裂隙岩体渗流影响的研究[J]. 岩土工程学报, 1998, 20(2): 19-22. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC802.005.htm

    Zhang J C, Zhang Y Z. The efects of stresses on the permeability of fractured rock masses[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(2): 19-22(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC802.005.htm
    [16] Chen Y, Hu S, Wei K, et al. Experimental characterization and micromechanical modeling of damage-induced permeability variation in Beishan granite[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 71: 64-76.
    [17] 胡少华, 陈益峰, 周创兵. 北山花岗岩渗透特性试验研究与细观力学分析[J]. 岩石力学与工程学报, 2014, 33(11): 2200-2209. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201411005.htm

    Hu S H, Chen Y F, Zhou C B. Laboratory test and mesomechanical analysis of permeability variation of beishan granite[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(11): 2200-2209(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201411005.htm
    [18] 王传乐, 李二兵, 韩阳, 等. 三轴压缩条件下北山花岗岩的力学特性及破裂演化[J]. 林业工程学报, 2018, 3(4): 151-158. https://www.cnki.com.cn/Article/CJFDTOTAL-LKKF201804026.htm

    Wang C L, Li E B, Han Y, et al. Study on mechanical characteristics and fracture evolution of Beishan granite undertriaxial compression[J]. Journal of Forestry Engineering, 2018, 3(4): 151-158(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-LKKF201804026.htm
    [19] 俞缙, 李宏, 陈旭, 等. 渗透压-应力耦合作用下砂岩渗透率与变形关联性三轴试验研究[J]. 岩石力学与工程学报, 2013, 32(6): 1203-1213. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201306015.htm

    Yu J, Li H, Chen X, et al. Triaxial experimental study of associated permeability-deformation of sandstone under hydro-mechanical coupling[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(6): 1203-1213(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201306015.htm
    [20] 边光. 真三轴加卸载条件下砂岩力学特性及渗流规律试验研究[D]. 重庆: 重庆大学, 2017.

    Bian G. Experimental study on mechanical properties and gas permeability of sandstone under true triaxial loadling and unloading[D]. Chongqing: Chongqing University, 2017(in Chinese with English abstract).
    [21] 李燕, 杨林德, 董志良, 等. 各向异性软岩的变形与渗流耦合特性试验研究[J]. 岩土力学, 2009, 30(5): 1231-1236. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200905007.htm

    Li Y, Yang L D, Dong Z L, et al. Experimental research on characteristic of deformation and hydromechanical couplingof anistropic rock[J]. Rock and Soil Mechanics, 2009, 30(5): 1231-1236(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200905007.htm
    [22] 李宏国, 朱大勇, 姚华彦, 等. 温度作用后大理岩加-卸荷破裂特性试验研究[J]. 合肥工业大学学报: 自然科学版, 2016, 39(1): 109-114. https://www.cnki.com.cn/Article/CJFDTOTAL-HEFE201601022.htm

    Li H G, Zhu D Y, Yao H Y, et al. Loading and unloading test on fracture characteristics of marble after heating[J]. Journal of Hefei University of Technology, 2016, 39(1): 109-114(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HEFE201601022.htm
    [23] 王向刚. 脆性材料中三维裂隙破坏过程试验与数值模拟研究[D]. 济南: 山东大学, 2014.

    Wang X G. The study on experiment and numericsimulation of fracture progress of flaws in brittle materials[D]. Jinan: Shandong University, 2014(in Chinese with English abstract).
    [24] 张培森, 侯季群, 赵成业, 等. 不同围压不同损伤程度红砂岩渗流特性试验研究[J]. 岩石力学与工程学报, 2020, 39(12): 2405-2415. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202012003.htm

    Zhang P S, Hou J Q, Zhao Y C, et al. Experimental study on seepage characteristics of red sandstone with differentconfining pressures and different damage degrees[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(12): 2405-2415(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202012003.htm
    [25] 王志俭, 殷坤龙, 简文星, 等. 三峡库区万州红层砂岩流变特性试验研究[J]. 岩石力学与工程学报, 2008, 27(4): 840-847. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200804028.htm

    Wang Z J, Yin K L, Jian W X, et al. Experimental study on rheological behaviors of Wanzhou red sandstone in Three Gorges Reservoir Area[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(4): 840-847(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200804028.htm
    [26] 柴波, 殷坤龙, 简文星, 等. 红层水岩作用特征及库岸失稳过程分析[J]. 中南大学学报: 自然科学版, 2009, 40(4): 1092-1098. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD200904043.htm

    Cai B, Yin K L, Jian W X, et al. Analysis of water-rock interaction characteristics and bank slope failure process of red-bed[J]. Journal of Central South University: Science and Technology, 2009, 40(4): 1092-1098(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD200904043.htm
    [27] 陈小川. 三峡水库运行期消落带红砂岩强度劣化的化学干预研究[D]. 合肥: 合肥工业大学, 2019.

    Chen X C. Study on chemical intervention for strength degradation of red sandstone in drawdown area during the course of Three Gorges reservoir operation[D]. Hefei: Hefei University of Technology, 2019(in Chinese with English abstract).
    [28] 胡新丽, David M P, Lidija Z, 等. 三峡水库运行条件下金乐滑坡稳定性评价[J]. 地球科学: 中国地质大学学报, 2007, 32(3): 403-408. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200703013.htm

    Hu X L, David M P, Lidija Z, et al. Jinle landslide stability under water level fluctuation of Three Gorges Reservoir[J]. Earth Science: Journal of China University of Geosciences, 2007, 32(3): 403-408(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200703013.htm
    [29] Wang Q, Hu X, Xu C, et al. Time-dependent behavior of saturated silty mudstone under different confining pressures[J]. Bulletin of Engineering Geology and the Environment, 2020, 79(5): 2621-2634.
    [30] Martin C D, Chandler N A. The progressive fracture of lac du bonnet granite[J]. International Journal of Rock Mechanics and Ming Sciences & Geomechanics Abstracts, 1994, 31(6): 643-659.
    [31] Alam A K M B, Niioka M, Fujii Y, et al. Effects ofconfining pressure on the permeability of three rock types under compression[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 65: 49-61.
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  674
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-21

目录

    /

    返回文章
    返回