留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

断裂带和俯冲带中石墨碳质物的地质过程与碳循环意义

曹淑云 周丁奎

曹淑云, 周丁奎. 断裂带和俯冲带中石墨碳质物的地质过程与碳循环意义[J]. 地质科技通报, 2022, 41(5): 101-111. doi: 10.19509/j.cnki.dzkq.2022.0240
引用本文: 曹淑云, 周丁奎. 断裂带和俯冲带中石墨碳质物的地质过程与碳循环意义[J]. 地质科技通报, 2022, 41(5): 101-111. doi: 10.19509/j.cnki.dzkq.2022.0240
Cao Shuyun, Zhou Dingkui. Geological process and carbon cycle significance of graphite carbon material in faults and subduction zones[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 101-111. doi: 10.19509/j.cnki.dzkq.2022.0240
Citation: Cao Shuyun, Zhou Dingkui. Geological process and carbon cycle significance of graphite carbon material in faults and subduction zones[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 101-111. doi: 10.19509/j.cnki.dzkq.2022.0240

断裂带和俯冲带中石墨碳质物的地质过程与碳循环意义

doi: 10.19509/j.cnki.dzkq.2022.0240
基金项目: 

国家自然科学基金面上项目 41972220

国家自然科学基金优秀青年基金项目 41722207

国家重点研发计划项目 SQ2017YFSF040030

详细信息
    作者简介:

    曹淑云(1978—), 女, 教授, 博士生导师, 主要从事构造变形、深部至浅部构造-热-流体过程及流变学方面研究工作。E-mail: shuyun.cao@cug.edu.cn

  • 中图分类号: P51

Geological process and carbon cycle significance of graphite carbon material in faults and subduction zones

  • 摘要:

    碳是自然界中常见的一种元素,其以单矿物(如石墨、金刚石)、化合物形式(如碳酸盐、二氧化碳)及生物体中的有机碳等多种形式存在。随着越来越多的深入研究,碳质物或石墨化的作用和地位也引起了广泛的关注。石墨碳质物出现在不同地壳深度的断裂带或俯冲带岩石中,特别是在一些大地震断裂带中富集。在地质变质作用过程中,随着温度的增加,非晶形碳质物转变为晶形有序化的石墨,且其石墨化过程不可逆,因此其拉曼光谱峰可定量记录峰期变质作用温度;同时,在变形过程中,石墨的特殊结构性能和力学属性能有效降低岩石强度,促进塑性变形,在快速滑动面或地震滑动面中,起到固体润滑剂作用,因此,地壳中的石墨物质对于岩石强度弱化和地震断裂滑动及演化过程具有重要意义。石墨碳质物具有低溶解性和低移动性,常作为碳汇稳定存在于深部地壳中,在地质时间尺度上,一旦碳及石墨化共同参与到岩石中,一些主要的地质过程(如俯冲作用、断裂作用、风化侵蚀、生物作用)致使石墨碳质物通过形成和破坏过程富集或释放碳到地球表面(大气圈),将显著地影响碳循环。

     

  • 图 1  石墨结构与石墨化过程

    a.石墨层状及层内碳原子三角形排列结构;b.碳化过程与H/C和O/C原子比值变化[19];c.有机化合物升温导致的碳化和石墨化过程示意图[9];Å=0.1 nm

    Figure 1.  Graphite texture and graphitization process

    图 2  石墨碳质物拉曼光谱与变质演化

    A.石墨拉曼光谱一级序区的特征及参数;B.石墨拉曼二级序区的特征及参数;C.不同岩石变质程度与拉曼参数变化对比[26]; G-FWHM为G峰半高宽; D-FWHM为D峰半高宽

    Figure 2.  Raman spectra and metamorphic evolution of graphitic carbon

    图 3  不同变形岩石中石墨拉曼光谱温度范围及参数G-FWGM(G峰半高宽)比较(样品采自红河-哀牢山剪切带中段哀牢山变质杂岩[5]; 温度计算采用Beyssac等[32]的拉曼经验公式)

    Figure 3.  Comparison of the temperature range and G-FWGM parameters of graphite Raman spectra for differently deformed rocks

    图 4  变形过程中不同岩石中石墨的微观变形程度及结构特征(据文献[18])

    Figure 4.  Microscopic deformation degree and structural characteristics of graphite in different rocks during deformation

    图 5  石墨化断层镜面和含石墨岩石的变形特征

    a, b.石墨化断层镜面(采自崇山剪切带);c.含石墨碳质物的千糜岩和定向的碎裂岩(采自阿尔卑斯Pariadriatic剪切带);d.含石墨碳质物碎裂岩(采自阿尔卑斯Paritriatic剪切带);e, f.含石墨大理岩中的石墨集合体成微剪切条带(采自阿尔卑斯Pariadriatic剪切带)

    Figure 5.  Deformation characteristics of graphitized fault mirror and graphitized rock

    图 6  红河-哀牢山剪切带中含石墨岩石的变形-变质过程定量化约束(据文献[12])

    Figure 6.  Quantitative constraints on the deformation-metamorphism of graphite-bearing rocks in theHonghe-Ailaoshan shear zone

    图 7  沿着地壳规模不同地壳层次的断层带石墨矿物形成和破坏的潜在机制(据文献[1])

    Figure 7.  Potential graphite formation and destruction mechanisms along crustal-scale fault zones at various crustal and metamorphic levels

    图 8  俯冲带的碳循环简图(包括石墨的形成和破坏, 据文献[4, 47])

    Figure 8.  Illustration of the carbon cycle in subduction zones

  • [1] Craw D, Upton P. Graphite reaction weakening of fault rocks, and uplift of the Annapurna Himal, central Nepal[J]. Geosphere, 2014, 10: 720-731. doi: 10.1130/GES01056.1
    [2] Sverjensky D A, Stagno V, Huang F. Important role for organic carbon in subduction zone fluids in the deep carbon cycle[J]. Nature Geoscience, 2014, 7: 909-913. doi: 10.1038/ngeo2291
    [3] Cao S Y, Neubauer F. Deep crustal expressions of exhumed strike-slip fault systems: Shear zone initiation on rheological boundaries[J]. Earth-Science Reviews, 2016, 162: 155-176. doi: 10.1016/j.earscirev.2016.09.010
    [4] Cao S Y, Neubauer F. Graphitic material in fault zones: Implication for fault strength and carbon cycle[J]. Earth Science Review, 2019, 194: 109-124. doi: 10.1016/j.earscirev.2019.05.008
    [5] 曹淑云, 吕美霞. 变形石墨对构造-热过程的定量约束及流变弱化意义[J]. 地质学报, 2022, DOI: 10.19762/j.cnki.dizhixuebao.2022293.

    Cao S Y, Lü M X. Quantitative constraint of tectono-thermal process by deformed graphite and its rheological weakening significance[J]. Acta Geologica Sinica, 2022, DOI: 10.19762/j.cnki.dizhixuebao.2022293 (in Chinese with English abstract).
    [6] Kuo L W, Li H, Smith S A F, et al. Gouge graphitization and dynamic fault weakening during the 2008 Mw 7.9 Wenchuan earthquake[J]. Geology, 2014, 42: 47-50.
    [7] Wopenka B, Pasteris J D. Structural characterization of kerogens to granulite-facies graphite: Applicability of Raman microprobe spectroscopy[J]. Am. Mineral., 1993, 78: 533-557.
    [8] Beyssac O, Rouzaud J N, Goffé B, et al. Graphitization in a high-pressure, low-temperature metamorphic gradient: A Raman microspectroscopy and HRTEM study[J]. Contributions to Mineralogy and Petrology, 2002, 143(1): 19-31. doi: 10.1007/s00410-001-0324-7
    [9] Buseck P, Beyssac O. From organic matter to graphite: Graphitization[J]. Elements, 2014, 10: 421-426. doi: 10.2113/gselements.10.6.421
    [10] Rahl J M, Anderson K M, Brandon M T, et al. Raman spectroscopic carbonaceous material thermometry of low-grade metamorphic rocks: Calibration and application to tectonic exhumation in Crete, Greece[J]. Earth and Planetary Science Letters, 2005, 240: 339-354. doi: 10.1016/j.epsl.2005.09.055
    [11] 吕美霞, 曹淑云, 李俊瑜, 等. 滇西哀牢山变质杂岩中含石墨岩石的变质-变形温度、构造特征及流变弱化意义[J]. 地质学报, 2019, 94(2): 491-510. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202002010.htm

    Lü M X, Cao S Y, Li J Y, et al. The deformation-metamorphic temperature, structural characteristics and rheological weakening significance of the graphite-bearing rocks in the Ailaoshan metamorphic complex, western Yunnan[J]. Acta Geologica Sinica, 2019, 94(2): 491-510 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202002010.htm
    [12] Lyu M X, Cao S Y, Neubauer F, et al. Deformation fabrics and strain localization mechanism in graphitic carbon-bearing rocks from the Ailaoshan—Red River strike-slip fault zone[J]. Journal of Structural Geology, 2020, 140: 104150. doi: 10.1016/j.jsg.2020.104150
    [13] Kretz R. Graphite deformation in marble and mylonitic marble, Grenville Province, Canadian Shield[J]. Journal of Metamorphic Geology, 1996, 14: 399-412. doi: 10.1046/j.1525-1314.1996.05971.x
    [14] Oohashi K, Han R, Hirose T, et al. Carbon-forming reactions under a reducing atmosphere during seismic fault slip[J]. Geology, 2014, 42(9): 787-790. doi: 10.1130/G35703.1
    [15] Upton P, Craw D. Modelling the role of graphite in development of a mineralised mid-crustal shear zone, Macraes mine, New Zealand[J]. Earth and Planetary Science Letters, 2008, 266: 245-255. doi: 10.1016/j.epsl.2007.10.048
    [16] Oohashi K, Hirose T, Kobayashi K, et al. The occurrence of graphite-bearing fault rocks in the Atotsugawa fault system, Japan: Origins and implications for fault creep[J]. Journal of Metamorphic Geology, 2012, 38: 39-50.
    [17] Oberlin A. High-resolution TEM studies of carbonization anti graphitization[C]//Thrower P A. Chemistry and Physics of Carbon 22. New York: Marcel Dekker, 1989.
    [18] Nakamura Y, Oohashi K, Toyoshima T, et al. Strain-induced amorphization of graphite in fault zones of the Hidaka metamorphic belt, Hokkaido, Japan[J]. Journal of Metamorphic Geology, 2015, 72: 142-161.
    [19] Vandenbroucke M, Largeau C. Kerogen origin, evolution and structure[J]. Organic Geochemistry, 2007, 38: 719-833. doi: 10.1016/j.orggeochem.2007.01.001
    [20] Harris N B W, Jackson D H, Matte D P, et al. Carbon-isotope constraints on fluid advection during contrasting examples of incipient charnockite formation[J]. Journal of Metamorphic Geology, 1993, 11: 833-843. doi: 10.1111/j.1525-1314.1993.tb00193.x
    [21] Wada H, Tomita T, Matsuura K, et al. Graphitization of carbonaceous matter during metamorphism with references to carbonate and pelitic rocks of contact and regional metamorphisms, Japan[J]. Contribut to Mineralogy and Petrology, 1994, 118: 217-228. doi: 10.1007/BF00306643
    [22] Scharf A, Handy M R, Ziemann M A, et al. Peak-temperature patterns of polyphase metamorphism resulting from accretion, subduction and collision (eastern Tauern Window, European Alps): A study with Raman microspectroscopy on carbonaceous material (RSCM)[J]. Journal of Metamorphic Geology, 2013, 31: 863-880. doi: 10.1111/jmg.12048
    [23] Selverstone J. Preferential embrittlement of graphitic schists during extensional unroofing in the Alps: The effect of fluid composition on rheology in low-permeability rocks[J]. Journal of Metamorphic Geology, 2005, 23: 461-470. doi: 10.1111/j.1525-1314.2005.00583.x
    [24] Oohashi K, Hirose T, Shimamoto T. Shear-induced graphitization of carbonaceous materials during seismic fault motion: Experiments and possible implications for fault mechanics[J]. Journal of Structural Geology, 2011, 33: 1122-1134. doi: 10.1016/j.jsg.2011.01.007
    [25] Kaneki S, Hirono T, Mukoyoshi H, et al. Organochemical characteristics of carbonaceous materials as indicators of heat recorded on an ancient plate-subduction fault[J]. Geochemistry, Geophysics, Geosystems, 2016, 17: 2855-2868. doi: 10.1002/2016GC006368
    [26] Henry D G, Jarvis I, Gillmore G, et al. Raman spectroscopy as a tool to determine the thermal maturity of organic matter: Application to sedimentary, metamorphic and structural geology[J]. Earth-Science Reviews, 2019, 198: 102936. doi: 10.1016/j.earscirev.2019.102936
    [27] Beyssac O, Bollinger L, Avouac J P, et al. Thermal metamorphism in the lesser Himalaya of Nepal determined from Raman spectroscopy of carbonaceous material[J]. Earth and Planetary Science Letters, 2004, 225: 233-241. doi: 10.1016/j.epsl.2004.05.023
    [28] Ferralis N, Matys E D, Knoll A H, et al. Rapid, direct and non-destructive assessment of fossil organic matter via micro-Raman spectroscopy[J]. Carbon, 2016, 108: 440-449. doi: 10.1016/j.carbon.2016.07.039
    [29] Romero-Sarmiento M F, Rouzaud J N, Bernard S, et al. Evolution of Barnett Shale organic carbon structure and nanostructure with increasing maturation[J]. Org. Geochem., 2014, 71: 7-16. doi: 10.1016/j.orggeochem.2014.03.008
    [30] Zeng Y, Wu C. Raman and infrared spectroscopic study of kerogen treated at elevated temperatures and pressures[J]. Fuel, 2007, 86: 1192-1200. doi: 10.1016/j.fuel.2005.03.036
    [31] Pan D, Spanu L, Harrison B, et al. Dielectric properties of water under extreme conditions and transport of carbonates in the deep Earth[J]. Proceed. Nat. Acad. Sci. USA, 2013, 110: 6646-6650. doi: 10.1073/pnas.1221581110
    [32] Beyssac O, Goffé B, Chopin C, et al. Raman spectra of carbonaceous material in metasediments: A new geothermometer[J]. Journal of Metamorphic Geology, 2002, 20(9): 859-871. doi: 10.1046/j.1525-1314.2002.00408.x
    [33] Numelin T, Marone C, Kirby E. Frictional properties of natural fault gouge from a low-angle normal fault, Panamint Valley, California[J]. Tectonics, 2007, 26: TC2004.
    [34] Smith S A, Faulkner D R. Laboratory measurements of the frictional properties of the Zuccale low-angle normal fault, Elba Island, Italy[J]. Journal of Geophysical Research, 2010, 115: B02407.
    [35] Schleicher A M, van der Pluijm B A, Warr L N. Nanocoatings of clay and creep of the San Andreas fault at Parkfi eld, California[J]. Geology, 2010, 38: 667-670.
    [36] 刘江, 李海兵, 司佳亮, 等. 汶川地震断裂带碳质来源、赋存特征及构造意义[J]. 地质学报, 2016, 90(10): 2567-1581. doi: 10.3969/j.issn.0001-5717.2016.10.003

    Liu J, Li H B, Si J L, et al. Origin, formation and tectonic implications of carbonaceous material in the Wenchuan earthquake fault zone[J]. Acta Geologica Sinica, 2016, 90(10): 2567-1581 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2016.10.003
    [37] Rutter E H, Hackston A J, Yeatman E, et al. Reduction of friction on geological faults by weak-phase smearing[J]. Journal of Geophysical Research, 2013, 51: 52-60.
    [38] Furuichi H, Ujiie K, Kouketsu Y, et al. Vitrinite reflectance and Raman spectra of carbonaceous material as indicators of frictional heating on faults: Constraints from friction experiments[J]. Earth and Planetary Science Letters, 2015, 424: 191-200. doi: 10.1016/j.epsl.2015.05.037
    [39] Kouketsu Y, Shimizu I, Wang Y, et al. Raman spectra of carbonaceous materials in a fault zone in the Longmenshan thrust belt, China: Comparisons with those of sedimentary and metamorphic rocks[J]. Tectonophysics, 2017, 699: 129-145. doi: 10.1016/j.tecto.2017.01.015
    [40] Oohashi K, Hirose T, Shimamoto T. Graphite as a lubricating agent in fault zones: An insight from low- to high-velocity friction experiments on a mixed graphite-quartz gouge[J]. Journal of Geophysical Research, 2013, 118: 2067-2084.
    [41] Holdsworth R E. Weak faults—rotten core[J]. Science, 2004, 303(5655): 181-182. doi: 10.1126/science.1092491
    [42] Collettini C, Niemeijer A, Viti C, et al. Fault zone fabric and fault weakness[J]. Nature, 2009, 462: 907-910. doi: 10.1038/nature08585
    [43] Evans K A, Bickle M J, Skelton D L, et al. Reductive deposition of graphite at lithological margins in East Central Vermont: A Sr, C and O isotope study[J]. Journal of Metamorphic Geology, 2002, 20: 781-798. doi: 10.1046/j.1525-1314.2002.00403.x
    [44] Luque F J, Ortega L, Barrenechea J F, et al. Deposition of highly crystalline graphite from moderate-temperature fluids[J]. Geology, 2009, 37: 275-278.
    [45] Zulauf G, Palm S, Petschick R, et al. Element mobility and volumetric strain in brittle and brittle-viscous shear zones of the superdeep well KTB (Germany)[J]. Chemical Geology, 1999, 156: 135-149. doi: 10.1016/S0009-2541(98)00189-2
    [46] Galvez M E, Beyssac O, Martinez I, et al. Graphite formation by carbonate reduction during subduction[J]. Nature Geoscience, 2013, 6: 473-477. doi: 10.1038/ngeo1827
    [47] Hayes J M, Waldbauer J R. The carbon cycle and associated redox processes through time[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2006, 361(1470): 931-950. doi: 10.1098/rstb.2006.1840
    [48] Cesare B. Graphite precipitation in C-O-H fluid inclusions: Closed system compositional and density changes, and thermobarometric implications[J]. Contributions to Mineralogy and Petrology, 1995, 122: 25-33. doi: 10.1007/s004100050110
    [49] Ague J J, Nicolescu S. Carbon dioxide released from subduction zones by fluid-mediated reactions[J]. Nature Geosciences, 2014, 7: 355-360. doi: 10.1038/ngeo2143
    [50] Crespo E, Luque J, Barrenechea J F, et al. Mechanical graphite transport in fault zones and the formation of graphite veins[J]. Mineralogical Magazine, 2005, 69: 463-470. doi: 10.1180/0026461056940266
    [51] Cesare B, Meli S, Nodari L, et al. Fe3+ reduction during biotite melting in graphitic metapelites: Another origin of CO2 in granulites[J]. Contributions to Mineralogy and Petrology, 2005, 149: 129-140.
    [52] Dasgupta R, Hirschmann M M. The deep carbon cycle and melting in Earth's interior[J]. Earth Planetary Science Letters, 2010, 298: 1-13.
    [53] 高中亮, 王艳飞, 雷胜兰, 等. 珠江口盆地CO2分布特征与成藏机制浅析[J]. 地质科技通报, 2022, 41(4): 57-68. doi: 10.19509/j.cnki.dzkq.2022.0204

    Gao Z L, Wang Y F, Lei S L, et al. Distribution characteristics and accumulation mechanism of carbon dioxide gas reservoirs in the Pearl River Mouth Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(4): 57-68(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0204
    [54] Tarantola A, Mullis J, Vennemallu T, et al. Oxidation of methane at the CH4/H2O-(CO2) transition zone in the external part of the Central Alps, Switzerland: Evidence from stable isotope investigations[J]. Chemical Geology, 2007, , 237(3): 329-357.
    [55] Frost B R. Mineral equilibria involving mixed-volatiles in a C-O-H fluid phase; the stabilities of graphite and siderite[J]. American Journal of Science, 1979, 279(9): 1033-1059.
    [56] Caciagli N, Manning C. The solubility of calcite in water at 6-16 kbar and 500-800℃[J]. Contributions to Mineralogy and Petrology, 2003, 146(3): 275-285.
    [57] Frezzotti M L, Selverstone J, Sharp Z D, et al. Carbonate dissolution during subduction revealed by diamond-bearing rocks from the Alps[J]. Nature Geoscience, 2011, 4(10): 703-706.
    [58] Vitale Brovarone A, Martinez I, Elmaleh A, et al. Massive production of abiotic methane during subduction evidenced in metamorphosed ophicarbonates from the Italian Alps[J]. Nature Communication, 2017, 8: 14134.
    [59] Tao R B, Zhang L F, Tian M, et al. Formation of abiotic hydrocarbon from reduction of carbonate in subduction zones: Constraints from petrological observation and experimental simulation[J]. Geochimica et Cosmochimica Acta, 2018, 239: 390-408.
    [60] Zhu J J, Zhang L F, Tao R B, et al. The formation of graphite-rich eclogite vein in S.W. Tianshan (China) and its implication for deep carbon cycling in subduction zone[J]. Chemical Geology, 2020, 533: 119430.
  • 加载中
图(8)
计量
  • 文章访问数:  612
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-06
  • 网络出版日期:  2022-11-10

目录

    /

    返回文章
    返回