留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

岩石圈结构成像方法的进展与展望

单斌 周万里

单斌, 周万里. 岩石圈结构成像方法的进展与展望[J]. 地质科技通报, 2022, 41(5): 112-121. doi: 10.19509/j.cnki.dzkq.2022.0241
引用本文: 单斌, 周万里. 岩石圈结构成像方法的进展与展望[J]. 地质科技通报, 2022, 41(5): 112-121. doi: 10.19509/j.cnki.dzkq.2022.0241
Shan Bin, Zhou Wanli. Methods and prospects for lithospheric structure imaging[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 112-121. doi: 10.19509/j.cnki.dzkq.2022.0241
Citation: Shan Bin, Zhou Wanli. Methods and prospects for lithospheric structure imaging[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 112-121. doi: 10.19509/j.cnki.dzkq.2022.0241

岩石圈结构成像方法的进展与展望

doi: 10.19509/j.cnki.dzkq.2022.0241
基金项目: 

国家重点研发计划项目 201YFC1500302

国家自然科学基金项目 41674106

详细信息
    作者简介:

    单斌(1982—),男,教授,博士生导师,主要从事地震的应力相互作用与岩石圈温度、化学组分结构成像研究工作。E-mail: binshan@cug.edu.cn

  • 中图分类号: P631

Methods and prospects for lithospheric structure imaging

  • 摘要:

    近年来,随着观测数据的增加、观测精度的提升、物理化学理论的不断完善以及计算机技术的显著提升,使得人们对岩石圈物理化学性质的认识发生了重大改变。介绍了目前关于岩石圈结构成像的相关方法以及它们的优缺点,并以华南地区4个具有代表性的区域(四川盆地、江南造山带、下扬子克拉通以及华夏块体)为例,利用地形、大地水准面、地表热流、地震面波频散曲线等观测资料,通过热动力学模拟和概率密度反演方法,给出了该地区岩石圈温度、化学组分结构。结果显示,华南块体东部岩石圈较薄,岩石圈地幔以饱满型橄榄岩为主,太平洋板块由东往西的平俯冲作用可能是华南东部岩石圈减薄的主要动力学机制。结合现今岩石圈结构的研究现状,提出了岩石圈结构成像存在的问题,并对未来岩石圈结构成像研究进行了展望。

     

  • 图 1  华南地区构造分区及地形图

    Figure 1.  Tectonic division and topographic map of South China

    图 2  L1剖面地形与选取点的岩石圈温度、厚度结构图

    a.L1剖面地形图,红色五角星代表选取点位置;b~e.四川盆地(SB02、SB01)、江南造山带(JO02)以及华夏块体(HX02)反演收敛后的3 000个岩石圈温度、厚度集合,紫色虚线为1 250℃等温面,红色线段为岩石圈温度结构平均值;LAB为岩石圈底界面;LABStd为反演LAB深度的标准差

    Figure 2.  Lithospheric temperature and thickness structure of L1 profile topography and selected points

    图 3  L2剖面地形与选取点的岩石圈温度、厚度结构图

    a.L2剖面地形图,红色五角星代表选取点位置;b~e.四川盆地(SB01)、江南造山带(JO01)以及下扬子克拉通(LY01、LY02)反演收敛后的3 000个岩石圈温度、厚度集合,紫色虚线为1 250℃等温面,红色线段为岩石圈温度结构平均值

    Figure 3.  Lithospheric temperature and thickness structure of L2 profile topography and selected points

    图 4  华南地区选取的8个点的岩石圈厚度概率密度分布

    Figure 4.  Probability density distribution of lithospheric thickness at eight selected points in South China

    图 5  华南地区选取的8个点的岩石圈地幔Mg#概率密度分布

    Figure 5.  Mg# probability density distribution of lithospheric mantle at eight selected points in South China

    表  1  不同的岩石圈定义和其主要特点

    Table  1.   Definitions and main characteristics of lithospheres

    概念 主要特点
    力学、流变学 水平应变率无明显垂直梯度(即无内部变形),在地质时间尺度上与对流地幔有效隔离的区域[1]
    地震学 覆盖于上地幔低速带之上的高速物质区域[2]
    热学 热量主要通过传导传递的区域[3]
    弹性 地球坚固的外壳,可以弹性支撑施加的载荷,而不会永久变形[4]
    电学 通常是电阻性的,覆盖在更具导电性的物质之上的区域[5]
    地球化学 与下伏对流地幔相比,能够保留明显的地球化学和同位素特征的物质的时间更长[6]
    岩石学 上地幔中角闪石表现出稳定状态的区域[7]
    下载: 导出CSV
  • [1] Burov E B. Rheology and strength of the lithosphere[J]. Marine and Petroleum Geology, 2011, 28(8): 1402-1443. doi: 10.1016/j.marpetgeo.2011.05.008
    [2] Fischer K M, Ford H A, Abt D L, et al. The lithosphere-asthenosphere boundary[J]. Annual Review of Earth and Planetary Sciences, 2010, 38: 551-575. doi: 10.1146/annurev-earth-040809-152438
    [3] Turcotte D L, Schubert G. Geodynamics[M]. 3rd edn, [S. l.]: [s. n.]: 2014.
    [4] Watts A B. Isostasy and flexure of the lithosphere[M]. Cambridge: Cambridge Univ. Press, 2001.
    [5] Jones A G. Imaging the continental upper mantle using electromagnetic methods[J]. Lithos, 1999, 48(1/4): 57-80.
    [6] Griffin W L, O'Reilly S Y, Ryan C G. The composition and origin of sub-continental lithospheric mantle[J]. Geochemical Society Spec. Publ., 1999, 6: 13-45.
    [7] Green D H, Hibberson W O, Kovács I, et al. Water and its influence on the lithosphere-asthenosphere boundary[J]. Nature, 2010, 467(7314): 448-451. doi: 10.1038/nature09369
    [8] Ranalli G. Rheology of the Earth[M]. Springer Science & Business Media, 1995.
    [9] Pearson D G, Canil D, Shirey S B. Mantle samples included in volcanic rocks: Xenoliths and diamonds[J]. Treatise on Geochemistry, 2003, 2: 568.
    [10] Furlong K P, Chapman D S. Heat flow, heat generation, and the thermal state of the lithosphere[J]. Annual Review of Earth and Planetary Sciences, 2013, 41: 385-410. doi: 10.1146/annurev.earth.031208.100051
    [11] Griffin W L, O'Reilly S Y. Cratonic lithospheric mantle: Is anything subducted?[J]. Episodes Journal of International Geoscience, 2007, 30(1): 43-53.
    [12] Carlson R W, Pearson D G, James D E. Physical, chemical, and chronological characteristics of continental mantle[J]. Reviews of Geophysics, 2005, 43(1): 156-179.
    [13] Jordan T H. Structure and formation of the continental tectosphere[J]. Journal of Petrology, 1988 (1): 11-37.
    [14] Afonso J C, Ranalli G, Fernàndez M, et al. On the vp/vs-Mg# correlation in mantle peridotites: Implications for the identification of thermal and compositional anomalies in the upper mantle[J]. Earth and Planetary Science Letters, 2010, 289(3/4): 606-618.
    [15] Afonso J C, Schutt D L. The effects of polybaric partial melting on density and seismic velocities of mantle restites[J]. Lithos, 2012, 134: 289-303.
    [16] Herzberg C. Geodynamic information in peridotite petrology[J]. Journal of Petrology, 2004, 45(12): 2507-2530. doi: 10.1093/petrology/egh039
    [17] Afonso J C, Ben-Mansour W, O'Reilly S Y, et al. Thermochemical structure and evolution of cratonic lithosphere in central and southern Africa[J]. Nature Geoscience, 2022, 15(5): 405-410. doi: 10.1038/s41561-022-00929-y
    [18] Stracke A, Bourdon B. The importance of melt extraction for tracing mantle heterogeneity[J]. Geochimica et Cosmochimica Acta, 2009, 73(1): 218-238. doi: 10.1016/j.gca.2008.10.015
    [19] Karato S, Jung H. Water, partial melting and the origin of the seismic low velocity and high attenuation zone in the upper mantle[J]. Earth and Planetary Science Letters, 1998, 157(3/4): 193-207.
    [20] Yu Y, Chen Y J. Seismic anisotropy beneath the southern Ordos block and the Qinling-Dabie orogen, China: Eastward Tibetan asthenospheric flow around the southern Ordos[J]. Earth and Planetary Science Letters, 2016, 455: 1-6. doi: 10.1016/j.epsl.2016.08.026
    [21] Yu Y, Chen Y J, Feng Y, et al. Asthenospheric flow channel from northeastern Tibet imaged by seismic tomography between Ordos block and Yangtze craton[J]. Geophysical Research Letters, 2021, 48(17): e2021GL093561.
    [22] Bao X, Sun X, Xu M, et al. Two crustal low-velocity channels beneath SE Tibet revealed by joint inversion of Rayleigh wave dispersion and receiver functions[J]. Earth and Planetary Science Letters, 2015, 415: 16-24. doi: 10.1016/j.epsl.2015.01.020
    [23] 张智奇, 姚华建, 杨妍. 青藏高原东南缘地壳上地幔三维S波速度结构及动力学意义[J]. 中国科学: 地球科学, 2020, 50(9): 1278-1293. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202009007.htm

    Zhang Z Q, Yao H J, Yang Y. Shear wave velocity structure of the crust and upper mantle in southeastern Tibet and its geodynamic implications[J]. Science China Earth Sciences, 2020, 63(9): 1278-1293(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202009007.htm
    [24] He R, Shang X, Yu C, et al. A unified map of Moho depth and Vp/Vs ratio of continental China by receiver function analysis[J]. Geophysical Journal International, 2014, 199(3): 1910-1918. doi: 10.1093/gji/ggu365
    [25] Xu M, Huang Z, Wang L, et al. Sharp lateral Moho variations across the SE Tibetan margin and their implications for plateau growth[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(5): e2019JB018117.
    [26] Zhao Y, Guo L, Guo Z, et al. High resolution crustal model of SE Tibet from joint inversion of seismic P-wave travel-times and Bouguer gravity anomalies and its implication for the crustal channel flow[J]. Tectonophysics, 2020, 792: 228580. doi: 10.1016/j.tecto.2020.228580
    [27] Bai D, Unsworth M J, Meju M A, et al. Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging[J]. Nature Geoscience, 2010, 3(5): 358-362. doi: 10.1038/ngeo830
    [28] Li X, Ma X, Chen Y, et al. A plume-modified lithospheric barrier to the southeastward flow of partially molten Tibetan crust inferred from magnetotelluric data[J]. Earth and Planetary Science Letters, 2020, 548: 116493. doi: 10.1016/j.epsl.2020.116493
    [29] 单斌, 周万里, 肖阳. 多地球物理观测联合反演华南岩石圈温度和化学组分结构[J]. 中国科学: 地球科学, 2021, 51(1): 120-133. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202101010.htm

    Shan B, Zhou W L, Xiao Y. Lithospheric thermal and compositional structure of South China jointly inverted from multiple geophysical observations[J]. Science China Earth Sciences, 2021, 64(1): 148-160(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202101010.htm
    [30] Lachenbruch A H, Morgan P. Continental extension, magmatism and elevation; formal relations and rules of thumb[J]. Tectonophysics, 1990, 174(1/2): 39-62.
    [31] 谢媛, 李永东, 熊熊. 控制龙门山地区地形的动力学机制[J]. 中国科学: 地球科学, 2020, 50(1): 79-89. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202001005.htm

    Xie Y, Li Y D, Xiong X. Dynamic mechanisms controlling the topography of Longmenshan area[J]. Science China Earth Sciences, 2020, 63(1): 121-131(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202001005.htm
    [32] Fullea J, Fernandez M, Zeyen H. FA2BOUG-A FORTRAN 90 code to compute Bouguer gravity anomalies from gridded free-air anomalies: Application to the Atlantic-Mediterranean transition zone[J]. Computers & Geosciences, 2008, 34(12): 1665-1681.
    [33] Bowin C. Mass anomaly structure of the Earth[J]. Reviews of Geophysics, 2000, 38(3): 355-387. doi: 10.1029/1999RG000064
    [34] Guo Z, Afonso J C, Qashqai M T, et al. Thermochemical structure of the North China Craton from multi-observable probabilistic inversion: Extent and causes of cratonic lithosphere modification[J]. Gondwana Research, 2016, 37: 252-265. doi: 10.1016/j.gr.2016.07.002
    [35] Rawlinson N, Reading A M, Kennett B L N. Lithospheric structure of Tasmania from a novel form of teleseismic tomography[J]. Journal of Geophysical Research: Solid Earth, 2006, 111: B02301.
    [36] Shapiro N M, Campillo M, Stehly L, et al. High-resolution surface-wave tomography from ambient seismic noise[J]. Science, 2005, 307(5715): 1615-1618. doi: 10.1126/science.1108339
    [37] Yang Y, Ritzwoller M H, Lin F C, et al. Structure of the crust and uppermost mantle beneath the western United States revealed by ambient noise and earthquake tomography[J]. Journal of Geophysical Research: Solid Earth, 2008, 113: B12310. doi: 10.1029/2008JB005833
    [38] Kind R, Yuan X, Kumar P. Seismic receiver functions and the lithosphere-asthenosphere boundary[J]. Tectonophysics, 2012, 536: 25-43.
    [39] Jones, Alan G. Waves of the future: Superior inferences from collocated seismic and electromagnetic experiments[J]. Tectonophysics, 1998, 286(1/4): 273-298.
    [40] Afonso J C, Fernandez M, Ranalli G, et al. Integrated geophysical-petrological modeling of the lithosphere and sublithospheric upper mantle: Methodology and applications[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(5): Q05008.
    [41] Afonso J C, Fullea J, Griffin W L, et al. 3-D multi-observable probabilistic inversion for the compositional and thermal structure of the lithosphere and upper mantle. Ⅰ: A priori petrological information and geophysical observables[J]. Journal of Geophysical Research: Solid Earth, 2013, 118(5): 2586-2617. doi: 10.1002/jgrb.50124
    [42] Afonso J C, Fullea J, Yang Y, et al. 3-D multi-observable probabilistic inversion for the compositional and thermal structure of the lithosphere and upper mantle. Ⅱ: General methodology and resolution analysis[J]. Journal of Geophysical Research: Solid Earth, 2013, 118(4): 1650-1676. doi: 10.1002/jgrb.50123
    [43] Cammarano F, Tackley P, Boschi L. Seismic, petrological and geodynamical constraints on thermal and compositional structure of the upper mantle: Global thermochemical models[J]. Geophysical Journal International, 2011, 187(3): 1301-1318. doi: 10.1111/j.1365-246X.2011.05223.x
    [44] Khan A, Zunino A, Deschamps F. Upper mantle compositional variations and discontinuity topography imaged beneath Australia from Bayesian inversion of surface-wave phase velocities and thermochemical modeling[J]. Journal of Geophysical Research: Solid Earth, 2013, 118(10): 5285-5306. doi: 10.1002/jgrb.50304
    [45] 王恺, 熊熊, 周宇明, 等. 联合多种资料确定华北岩石圈三维热-流变结构: 对裂陷形成的意义[J]. 中国科学: 地球科学, 2020, 50(7): 946-961. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202007006.htm

    Wang K, Xiong X, Zhou Y M, et al. Three-dimensional thermo-rheological structure of the lithosphere in the North China Craton determined by integrating multiple observations: Implications for the formation of rifts[J]. Science China Earth Sciences, 2020, 63(7): 969-984(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202007006.htm
    [46] Fullea J, Lebedev S, Agius M R, et al. Lithospheric structure in the Baikal-central Mongolia region from integrated geophysical-petrological inversion of surface-wave data and topographic elevation[J]. Geochemistry, Geophysics, Geosystems, 2012, 13: Q0AK09.
    [47] Shan B, Afonso J C, Yang Y, et al. The thermochemical structure of the lithosphere and upper mantle beneath south China: Results from multiobservable probabilistic inversion[J]. Journal of Geophysical Research: Solid Earth, 2014, 119(11): 8417-8441. doi: 10.1002/2014JB011412
    [48] Yang X, Li Y, Afonso J C, et al. Thermochemical state of the upper mantle beneath South China from multi-observable probabilistic inversion[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(5): e2020JB021114.
    [49] Shan B, Xiong X, Zhao K F, et al. Crustal and upper-mantle structure of South China from Rayleigh wave tomography[J]. Geophysical Journal International, 2017, 208(3): 1643-1654.
    [50] Pavlis N K, Holmes S A, Kenyon S C, et al. The development and evaluation of the Earth Gravitational Model 2008(EGM2008)[J]. Journal of Geophysical Research: Solid Earth, 2012, 117: B04406.
    [51] Jiang G, Hu S, Shi Y, et al. Terrestrial heat flow of continental China: Updated dataset and tectonic implications[J]. Tectonophysics, 2019, 753: 36-48. doi: 10.1016/j.tecto.2019.01.006
    [52] Zlotnik S, Afonso J C, Díez P, et al. Small-scale gravitational instabilities under the oceans: Implications for the evolution of oceanic lithosphere and its expression in geophysical observables[J]. Philosophical Magazine, 2008, 88(28/29): 3197-3217.
    [53] Lu J, Zuo Z, Shi Z, et al. Characteristics of Permian volcanism in the western Sichuan Basin and its natural gas exploration potential[J]. Natural Gas Industry B, 2019, 6(5): 444-451. doi: 10.1016/j.ngib.2019.02.002
    [54] Fullea J, Rodríguez-González J, Charco M, et al. Perturbing effects of sub-lithospheric mass anomalies in GOCE gravity gradient and other gravity data modelling: Application to the Atlantic-Mediterranean transition zone[J]. International Journal of Applied Earth Observation and Geoinformation, 2015, 35: 54-69. doi: 10.1016/j.jag.2014.02.003
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  561
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-16
  • 网络出版日期:  2022-11-10

目录

    /

    返回文章
    返回