留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于遥感技术的嘉黎江巴变形体稳定性评价与分析

张占忠 陈富强 刘亚林 李丹 杜世回 张晓宇

张占忠, 陈富强, 刘亚林, 李丹, 杜世回, 张晓宇. 基于遥感技术的嘉黎江巴变形体稳定性评价与分析[J]. 地质科技通报, 2023, 42(3): 28-37. doi: 10.19509/j.cnki.dzkq.2022.0246
引用本文: 张占忠, 陈富强, 刘亚林, 李丹, 杜世回, 张晓宇. 基于遥感技术的嘉黎江巴变形体稳定性评价与分析[J]. 地质科技通报, 2023, 42(3): 28-37. doi: 10.19509/j.cnki.dzkq.2022.0246
Zhang Zhanzhong, Chen Fuqiang, Liu Yaling, Li Dan, Du Shihui, Zhang Xiaoyu. Stability evaluation and analysis of the Jiangba deformed body in Jiali County based on remote sensing technology[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 28-37. doi: 10.19509/j.cnki.dzkq.2022.0246
Citation: Zhang Zhanzhong, Chen Fuqiang, Liu Yaling, Li Dan, Du Shihui, Zhang Xiaoyu. Stability evaluation and analysis of the Jiangba deformed body in Jiali County based on remote sensing technology[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 28-37. doi: 10.19509/j.cnki.dzkq.2022.0246

基于遥感技术的嘉黎江巴变形体稳定性评价与分析

doi: 10.19509/j.cnki.dzkq.2022.0246
基金项目: 

中铁第一勘察设计院集团有限公司重点专项研发项目“铁路智能勘测及数据管理关键技术研究” 2021KY73ZD(ZDZX)-1

详细信息
    作者简介:

    张占忠(1977—),男,高级工程师,主要从事遥感技术应用研究等方面的工作。E-mail: cfq12344321@126.com

  • 中图分类号: P642.22

Stability evaluation and analysis of the Jiangba deformed body in Jiali County based on remote sensing technology

  • 摘要:

    江巴变形体位于西藏嘉黎县尼屋乡江巴村下游约5 km处的易贡藏布右岸, 遥感影像中可见多处地表崩滑痕迹, 存在山体不稳定、发生崩滑堵江的威胁。为了查明该坡体的稳定性、整体变形特征以及可能存在的灾害威胁, 达到提前预防、未雨绸缪的目的,采用“多期次影像遥感解译监测+InSAR形变分析+现场调查”的综合研究评价方法, 对该变形体坡面进行了详细的解译分析, 显示变形体目前处于“整体稳定、局部崩滑”状态。近年来变形体范围边界未发生明显变化, 在其南侧及东侧坡脚区域发生过多期次小规模崩滑现象, 在外部环境变化影响下, 变形体中上部仍然存在高位崩塌-碎屑流的可能。

     

  • 图 1  江巴变形体位置示意图

    Figure 1.  Schematic diagram of the location of the Jiangba deformed body

    图 2  研究区地质构造分布图

    AnOl.前奥陶纪雷龙库岩组石英岩; C2P1l.石炭纪-二叠纪来姑组石英砂岩; Kηγ.晚燕山期二长花岗岩; Eηγ.喜山期二长花岗岩; Q3gl.晚更新世冰积物; Q4al.全新世冲积物; Q4pl.全新世洪积物;下同

    Figure 2.  Distribution of geological formations in the study area

    图 3  巴变形体地质遥感解译图(a, b)及照片(c)

    Q3-4pl.上更新统-全新统洪积物; F2/f2.断裂构造及次级构造编号

    Figure 3.  Geological remote sensing interpretation map (a, b) and photos (c) of the Jiangba deformed body

    图 4  江巴变形体遥感动态监测影像

    Figure 4.  Remote sensing dynamic monitoring image of the Jiangba deformed body

    图 5  江巴变形体局部形变对比图

    Figure 5.  Comparison of the local deformation of the Jiangba deformed body

    图 6  江巴变形体InSAR监测形变速率及分区图(2016.10-2020.11)

    Figure 6.  InSAR monitoring deformation rate and zoning map of the Jiangba deformed body

    图 7  江巴变形体现场调查照片

    Figure 7.  Photos of the Jiangba deformed body site investigation

    表  1  江巴变形体遥感动态监测影像数据一览

    Table  1.   List of remote sensing dynamic monitoring image data of the Jiangba deformed body

    序号 1 2 3 4 5 6
    数据时相 1988.10 1994.04 2000.09 2006.05 2015.11 2020.10
    影像类型 TM5 TM5 ETM7 Quickbird GF-2 GF-2
    分辨率/m 30 30 15 0.6 0.8 0.8
    下载: 导出CSV
  • [1] 刘伟. 西藏易贡巨型超高速远程滑坡地质灾害链特征研析[J]. 中国地质灾害与防治学报, 2002, 13(3): 11-20. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH200203001.htm

    Liu W. Study on the characteristics of huge scale-super highspeed-long distance landslide chain in Yigong, Tibet[J]. The Chinese Journal of Geological Hazard and Control, 2002, 13(3): 11-20(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH200203001.htm
    [2] 王哲, 赵超英, 刘晓杰, 等. 西藏易贡滑坡演化光学遥感分析与InSAR形变监测[J]. 武汉大学学报: 信息科学版, 2021, 46(10): 1569-1578. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202110015.htm

    Wang Z, Zhao C Y, Liu X J, et al. Evolution analysis and deformation monitoring of Yigong landslide in Tibet with optical remote sensing and InSAR[J]. Geomatics and Information Science of Wuhan University, 2021, 46(10): 1569-1578(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202110015.htm
    [3] 黄勇, 孟祥连, 胡卸文, 等. 雅安至林芝交通廊道重大工程地质问题与对策研究[J]. 工程地质学报, 2021, 29(2): 307-325.

    Huang Y, Meng X L, Hu X W, et al. Major engineering geological problems and countermeasures along traffic corridor from Ya'an to Nyingchi[J]. Journal of Engineering Geology, 2021, 29(2): 307-325(in Chinese with English abstract).
    [4] 袁浩, 郭长宝, 吴瑞安, 等. 西藏易贡高位远程滑坡研究进展与展望[J/OL]. 地质通报. http://kns.cnki.net/kcms/detail/11.4648.P.20211227.1821.004.html.

    Yuan H, Guo C B, Wu R A, et al. Research progress and prospects of the giant Yigong long run-out landslide, Tibetan Plateau, China[J/OL]. Geological Bulletin of China. http://kns.cnki.net/kcms/detail/11.4648.P.20211227.1821.004.html(in Chinese with English abstract).
    [5] 刘文, 王猛, 宋班, 等. 基于光学遥感技术的冰崩隐患遥感调查及链式结构研究: 以西藏自治区藏东南地区为例[J]. 自然资源遥感, 2022, 34(1): 265-276. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG202201030.htm

    Liu W, Wang M, Song B, et al. Surveys and chain structure study of potential hzzards of ice avalanches based om optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG202201030.htm
    [6] 黄润秋, 裴向军, 李天斌. 汶川地震触发大光包巨型滑坡基本特征及形成机理分析[J]. 工程地质学报, 2008, 16(6): 730-741. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200806002.htm

    Huang R Q, Pei X J, Li T B. Basic characteristics and formation mechanism of the largest scale landslide at Daguangbao occurred during the Wenchuan Earthquake[J]. Journal of Engineering Geology, 2008, 16(6): 730-741(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200806002.htm
    [7] 殷跃平. 斜倾厚层山体滑坡视向滑动机制研究: 以重庆武隆鸡尾山滑坡为例[J]. 岩石力学与工程学报, 2010, 29(2): 217-226. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201002002.htm

    Yin Y P. Mechanism of apparent dip slide of inclined bedding rockslide: A case study of Jiweishan rockslide in Wulong, Chongqing[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(2): 217-226(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201002002.htm
    [8] Baum R L, Coe J A, Godt J W, et al. Regional landslide-hazard assessment for Seattle, Washington, UGA[J], Landslide, 2005, 4: 266-279. http://www.cosis.net/members/meetings/abstracts/file.php/20/47701/jpdf/EGU05-J-02190.pdf
    [9] 许强, 汤明高, 徐开祥, 等. 滑坡时空演化规律及预警预报研究[J]. 岩石力学与工程学报, 2008, 27(6): 1104-1112. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200806005.htm

    Xu Q, Tang M G, Xu K X, et al. Research on space-time evolution lows and early warning-prediction of landslides[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(6): 1104-1112(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200806005.htm
    [10] 张衡, 徐团伟, 裴顺平, 等. 利用分布式光纤声传感设备开展青藏高原易贡湖浅层结构探测[J]. 地学前缘, 2021, 28(6): 227-234. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202106021.htm

    Zhang H, Xu T W, Pei S P, et al. An application of the distributed acoustic sensing in the Yigong Lake, Tibet[J]. Earth Science Frontiers, 2021, 28(6): 227-234(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202106021.htm
    [11] 李澜宇. 基于多源遥感数据的易贡藏布流域冰川变化与物质平衡研究[D]. 南京: 南京大学, 2017.

    Li L Y. Study on variation and mass balance estimations of glacier in Yigong Zangbu Basin, Tibet using multi-source remote sensing data[D]. Nanjing: Nanjing University, 2017(in Chinese with English abstract).
    [12] 涂继耀, 季建清, 钟大赉, 等. 帕隆藏布江中游地壳剥露特征[J]. 地质科技通报, 2022, 41(4): 292-300. doi: 10.19509/j.cnki.dzkq.2021.0260

    Tu J Y, Ji J Q, Zhong D L, et al. Crust erosion characteristics in the middle reach of the Purlungtsangpo River[J]. Bulletin of Geological Science and Technology, 2022, 41(4): 292-300(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0260
    [13] 李生伟, 韦梅华, 刘强. 西藏阿里仲巴地块公珠错片麻岩锆石U-Pb年代学及其地质意义[J]. 地质科技通报, 2023, 42(1): 191-203. doi: 10.19509/j.cnki.dzkq.2021.0085

    Li S W, Wei M H, Liu Q. Zircon U-Pb geochronology of the Gongzhu Cogneiss in the Zhongba Block from Ali, Tibet and its geological significance[J]. Bulletin of Geological Science and Technology, 2023, 42(1): 191-203(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0085
    [14] 万佳威, 褚宏亮, 李滨, 等. 西藏嘉黎断裂带沿线高位链式地质灾害发育特征分析[J]. 中国地质灾害与防治学报, 2021, 32(3): 51-60. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH202103007.htm

    Wan J W, Chu H L, Li B, et al. Characteristics, types, main causes and development of high-position geohazard chains along the Jiali fault zone, Tibet, China[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(3): 51-60(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH202103007.htm
    [15] 黄健, 贺子城, 黄祥, 等. 基于地貌特征的滑坡堰塞坝形成敏感性研究[J]. 地质科技通报, 2021, 40(5): 253-262. doi: 10.19509/j.cnki.dzkq.2021.0040

    Huang J, He Z C, Huang X, et al. Formation sensitivitf of landslide dam based on geomorphic chcharacteristics[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 253-262(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0040
    [16] 李婉秋. 基于Sentinel-1数据的SBAS-InSAR技术在地表形变监测中的研究[D]. 成都: 成都理工大学, 2018.

    Li W Q. A research of SBAS-InSAR technology based on Sentinel-1 data in surface deformation monitoring[D]. Chengdu: Chengdu University of Technology, 2018(in Chinese with English abstract).
    [17] 闫怡秋, 郭长宝, 张永双, 等. 基于SBAS-InSAR技术的西藏雄巴古滑坡变形特征[J]. 地质学报, 2021, 95(11): 3556-3570. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202111027.htm

    Yan Y Q, Guo C B, Zhang Y S, et al. Study on the deformation characteristics of Xiongba ancient landslide based on SBAS-InSAR methed, Tibet, China[J]. Acta Geologica Sinica, 2021, 95(11): 3556-3570(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202111027.htm
    [18] 董佳慧, 牛瑞卿, 亓梦茹, 等. InSAR技术和孕灾背景指标相结合的地灾隐患识别[J]. 地质科技通报, 2022, 41(2): 187-196. doi: 10.19509/j.cnki.dzkq.2022.0024

    Dong J H, Niu R Q, Qi M R, et al. Identification of geological azards based on the combination of InSAR technology and disaster background indicators[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 187-196(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0024
    [19] 李振洪, 宋闯, 余琛, 等. 卫星雷达遥感在滑坡灾害探测和监测中的应用: 挑战与对策[J]. 武汉大学学报: 信息科学版, 2019, 44(7): 967-979. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201907003.htm

    Li Z H, Song C, Yu C, et al. Application of satellite radar remote sensing to landslite detection and monitoring: Challenges and solutions[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 967-979(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201907003.htm
    [20] 仝德富, 谭飞, 苏爱军, 等. 基于多源数据的谭家湾滑坡变形机制及稳定性评价[J]. 地质科技通报, 2021, 40(4): 162-170. doi: 10.19509/j.cnki.dzkq.2021.0432

    Tong D F, Tan F, Su A J, et al. Deformation mechanism and stability evaluation of Tanjiawan landslide based on multi-sources datas[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 162-170(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0432
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  613
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-29

目录

    /

    返回文章
    返回