Geochemical characteristics of the primary halo in boreholes and prospecting prediction of the Banchang Cu-Mo polymetallic deposit in Henan Province
-
摘要:
板厂铜钼多金属矿区处于秦岭造山带东段的北秦岭褶皱带内,位于区域深大断裂朱阳关—夏馆断裂带中段,为河南省发现的第一个大型铜矿床。为增储开展了预查、普查工作,先后投入2.36万m的钻探工作量,将板厂铜矿带的找矿深度延伸了近千米,主矿体最大厚度达285.95 m。通过系统采集板厂铜钼多金属矿床220~76勘探线共23个钻孔的岩矿样品,初步分析了矿床原生晕的分布特征,重点对施工钻孔最多的172勘探线开展了典型构造流体运移通道的解剖研究,印证流体运移成矿具有前铜后钼的分带特征,并采用格里戈良分带指数方法建立了矿区原生晕垂向分带序列为Sb-As-Pb-Bi-Zn-Ag-Sn-Cu-W-Au-Mo,总结了矿床异常元素的分带规律,结合172勘探线矿体空间展布情况,进一步建立4个分带指数作为评价隐伏矿体空间位置的指标,为深部找矿预测提供了地球化学依据。在172典型勘探线研究的基础上,全区钻孔原生晕并结合CSAMT剖面地球物理特征进行了地质、物探和化探综合分析,预测成矿母岩(燕山期花岗斑岩)赋存位置,认为深部存在可能比目前主矿体规模更大的矿体,圈定了找矿预测靶区,为后期深部及外围勘查工作指明了方向。
Abstract:The Banchang Cu-Mo polymetallic deposit is located in the middle section of the Zhuyangguan-Xiaguan regional fault, the North Qinling fold belt of the eastern Qinling orogenic belt. It is the first large copper deposit discovered in Henan Province. In the presurvey and general prospecting, a drilling workload of 23 600 meters was invested successively, extending the prospecting depth of the copper belt in Banchang by nearly kilometers, and the maximum thickness of the main ore body is 285.95 m. By systematical samples from 23 drilling holes of the No.220 to No.76 exploration line in the Banchang Cu-Mo polymetallic deposit, the primary halo characteristics were preliminarily studied. The geochemical primary halo obtained from the No.172 exploration line with the most construction drilling holes reveal the fluid transport channels. The study confirmed the zoning characteristic of fluid migration and mineralization-"Cu first and then Mo", and the vertical primary superimposed halo established by the Gregorian zoning index method is Sb-AS-Pb-Bi-Zn-Ag-Sn-Cu-W-Au-Mo in the mining area. Combined with the spatial distribution of ore bodies in the No.172 exploration line, four zonal indexes were further established as indicators for evaluating the spatial location of concealed ore bodies. All these factors provide a geochemical basis for deep prospecting.
-
图 1 板厂铜钼多金属矿矿区地质(a)及找矿预测(b)简图
1.新生界第四系;2.下古生界二郎坪群大庙组;3.古元古界秦岭岩群石槽沟组;4.古元古界秦岭岩群雁岭沟组;5.加里东晚期花岗岩;6.加里东晚期辉石闪长岩;7.斜长角闪岩;8.硅化角砾岩;9.构造破碎带;10.矿脉矿体位置及编号;11.断层;12.勘探线、钻孔位置及编号;13.CSAMT布设剖面及测量点位置;14.推测成矿斑岩体及岩体中心点位置;15.钻孔内燕山期岩脉投影至地表位置;16.增储区;17.找矿预测靶区
Figure 1. Geological (a) and prospecting prediction (b) map of the Banchang Cu-Mo polymetallic ore area
表 1 板厂矿区172勘探线岩石化学样品统计
Table 1. Petrochemical statistics of samples from the No.172 exploration line in the Banchang mining area
元素 样品数 算术平均值 中位数 标准离差 变异系数 最大值 最小值 浓集克拉克值 背景值 异常下限 w(Au)/10-9 555 3.62 1.1 8.53 2.36 123 0.5 0.88 1.6 5.5 Ag 555 1.68 0.32 3.22 1.92 20 0.04 0.03 0.69 2.4 Sn 555 3.69 2.46 4.11 1.12 34.6 0.96 0.9 2.71 5.2 As 555 11.69 4.98 20.65 1.77 221 0.35 6.15 6.72 17 Sb 555 1.26 0.51 2.15 1.7 19.4 0.11 8.42 0.67 4 Bi wB/10-6 555 3.22 0.53 11.8 3.66 151 0.15 25.38 0.77 5.5 Cu 555 1 043.23 161 3 726.21 3.57 65 580 1 27.45 324.59 1 200 Pb 555 70.31 11.8 378.69 5.39 6 725 0.7 4.69 16.68 120 Zn 555 129.03 54.4 401.26 3.11 6 475 1.3 1.5 66.96 135 W 555 32.22 7.31 97.06 3.01 1 177.92 0.45 13.42 11.05 40 Mo 555 127 4.25 369.85 2.91 4 321 0.45 63.5 41.14 200 表 2 172勘探线特征值、方差贡献
Table 2. Eigenvalue and variance contribution of the No.172 exploration line
主成分 特征值 方差贡献/% 总方差累计/% 1 5.175 47.046 47.046 2 1.935 17.591 64.637 3 1.072 9.742 74.379 表 3 172勘探线数据载荷
Table 3. Data of the No.172 exploration line
元素 F1 F2 F3 Au 0.708 0.124 0.026 Ag 0.902 -0.017 -0.139 Sn 0.538 -0.386 0.281 As 0.262 0.662 0.611 Sb 0.529 0.545 0.431 Bi 0.743 0.277 -0.347 Cu 0.909 -0.185 -0.151 Pb 0.188 0.735 -0.445 Zn 0.819 0.133 -0.155 W 0.811 -0.308 0.028 Mo 0.694 -0.521 0.215 表 4 ZK1724钻孔元素原生晕垂向分带指数
Table 4. Vertical zoning indexes of primary halos in the No.ZK1724 borehole
中段/m Au Ag Sn As Sb Bi Cu Pb Zn W Mo 300 0.092 4 0.022 6 0.031 5 0.131 6 0.069 5 0.008 2 0.001 1 0.038 0 0.022 5 0.030 6 0.000 3 200 0.035 4 0.015 4 0.064 2 0.042 3 0.040 5 0.049 5 0.004 2 0.045 3 0.035 9 0.015 7 0.000 5 100 0.045 7 0.010 9 0.019 6 0.059 3 0.027 0 0.010 1 0.001 6 0.020 1 0.009 5 0.004 4 0.000 2 0 0.044 1 0.009 5 0.029 5 0.037 5 0.022 7 0.008 0 0.002 6 0.024 2 0.027 7 0.004 1 0.000 4 -100 0.021 2 0.011 1 0.026 7 0.032 5 0.028 2 0.007 8 0.003 9 0.091 6 0.065 7 0.013 6 0.000 4 -200 0.021 8 0.030 9 0.014 6 0.045 8 0.053 9 0.070 5 0.008 0 0.094 2 0.032 4 0.009 5 0.001 0 -300 0.039 1 0.063 4 0.061 2 0.017 6 0.025 6 0.016 0 0.057 5 0.019 7 0.057 3 0.017 2 0.003 3 -400 0.062 2 0.150 5 0.051 0 0.040 6 0.102 2 0.086 4 0.183 1 0.165 6 0.201 3 0.069 6 0.088 4 -500 0.128 1 0.156 4 0.067 0 0.105 7 0.176 5 0.182 3 0.174 1 0.078 6 0.116 2 0.041 8 0.230 2 -600 0.057 6 0.228 8 0.115 0 0.040 0 0.037 6 0.314 2 0.279 2 0.037 4 0.094 9 0.141 2 0.283 4 -700 0.053 4 0.069 6 0.116 7 0.016 6 0.035 1 0.047 4 0.089 2 0.034 2 0.045 2 0.104 6 0.068 3 -800 0.047 2 0.087 9 0.142 0 0.072 4 0.051 9 0.070 9 0.085 5 0.015 7 0.079 9 0.320 8 0.115 7 -900 0.035 9 0.060 2 0.064 7 0.031 6 0.028 9 0.057 2 0.053 1 0.017 2 0.059 1 0.094 0 0.051 6 -1 000 0.057 4 0.041 1 0.063 9 0.053 9 0.107 2 0.020 4 0.030 4 0.054 0 0.051 8 0.037 8 0.127 0 -1 100 0.193 3 0.026 4 0.048 5 0.169 7 0.174 3 0.024 3 0.023 7 0.111 0 0.059 5 0.021 3 0.021 0 -1 200 0.040 6 0.008 8 0.048 7 0.079 7 0.011 6 0.010 0 0.001 4 0.048 1 0.026 7 0.005 8 0.006 3 -1 275 0.024 5 0.006 5 0.035 5 0.023 2 0.007 3 0.017 0 0.001 3 0.105 0 0.014 6 0.067 9 0.002 0 表 5 ZK1725钻孔元素原生晕垂向分带指数
Table 5. Vertical zoning indexes of primary halos in the No.ZK1725 borehole
中段/m Au Ag Sn As Sb Bi Cu Pb Zn W Mo 350 0.060 1 0.041 0 0.072 9 0.096 3 0.085 5 0.049 3 0.005 2 0.111 6 0.041 2 0.013 0 0.001 2 250 0.094 3 0.106 9 0.033 1 0.133 1 0.217 0 0.318 6 0.040 1 0.072 3 0.075 4 0.020 8 0.010 5 150 0.162 7 0.214 3 0.052 9 0.059 2 0.110 4 0.356 2 0.218 1 0.630 4 0.454 9 0.047 9 0.003 9 50 0.032 7 0.045 7 0.025 9 0.017 5 0.035 3 0.060 1 0.026 7 0.041 1 0.065 8 0.020 7 0.001 9 -50 0.029 1 0.060 5 0.034 1 0.036 8 0.037 9 0.036 0 0.073 7 0.010 5 0.046 3 0.010 1 0.010 9 -150 0.010 8 0.018 6 0.020 2 0.011 8 0.034 7 0.005 8 0.005 1 0.007 3 0.008 3 0.005 4 0.004 5 -250 0.028 8 0.036 3 0.040 0 0.031 4 0.030 5 0.025 1 0.026 9 0.012 8 0.018 4 0.019 6 0.084 1 -350 0.044 3 0.037 7 0.034 1 0.011 3 0.017 1 0.030 5 0.056 9 0.012 2 0.007 7 0.035 9 0.127 0 -450 0.100 6 0.096 7 0.188 7 0.034 4 0.030 5 0.010 4 0.114 2 0.003 1 0.038 0 0.281 5 0.134 9 -550 0.195 7 0.169 7 0.103 8 0.118 0 0.073 5 0.007 8 0.249 3 0.002 1 0.079 9 0.436 8 0.205 6 -650 0.173 6 0.124 7 0.115 2 0.026 7 0.140 5 0.006 8 0.169 0 0.003 5 0.047 3 0.086 4 0.400 7 -750 0.020 8 0.032 0 0.049 3 0.101 7 0.062 6 0.070 9 0.010 3 0.051 3 0.067 3 0.011 3 0.008 6 -850 0.023 1 0.007 4 0.045 7 0.086 0 0.081 2 0.005 2 0.002 3 0.007 7 0.011 9 0.004 6 0.002 6 -950 0.008 6 0.003 3 0.066 3 0.033 0 0.008 4 0.004 9 0.000 8 0.015 0 0.014 7 0.002 9 0.001 3 -1 050 0.006 0 0.001 9 0.061 5 0.094 7 0.012 7 0.007 1 0.000 9 0.008 6 0.012 1 0.001 6 0.001 3 -1 150 0.008 7 0.003 4 0.056 3 0.108 1 0.022 2 0.005 2 0.000 6 0.010 6 0.010 9 0.001 4 0.001 0 -
[1] Gong Q J, Yan T T, Li J Z, et al. Experimental simulation of element mass transfer and primary halo zone on water-rock interaction[J]. Applied Geochemistry, 2016, 69(4): 1-11. [2] Zou R G. Mineral exploration using subtle or negative geochemical anomalies[J]. Journal of Earth Science, 2021, 32(2): 439-454. doi: 10.1007/s12583-020-1079-2 [3] Beus A, Grigorian S V. Geochemical exploration methods for mineral deposits[M]. Moscow: Applied Publishing Ltd., 1977. [4] Levinson A A. Introduction to exploration geochemistry[M]. Calgary: Applied Publishing Ltd, 1974. [5] Rose A W, Hawkes H E, Webb J S. Geochemistry in mineral exploration[M]. 2nd ed. London: Academic Press, 1979. [6] Govett G J S. Rock geochemistry in mineral exploration[M]. Amsterdam: Elsevier Scientific Publishing Company, 1983. [7] 谢学锦. 区域化探[M]. 北京: 地质出版社, 1979.Xie X J. Regional geochemical exploration[M]. Beijing: Geological Publishing House, 1979(in Chinese). [8] 朱旭, 杨融, 陈永清, 等. 个旧老厂Sn-Cu矿床内外接触带矿体原生晕分带与深部矿体预测模型[J]. 地学前缘, 2021, 28(3): 112-127. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202103014.htmZhu X, Yang R, ChenY Q, et al. Primary halo zonation and a deep orebody prediction model for the inner-outer contact zone of the Laochang Sn-Cu deposit in Gejiu[J]. Earth Science Frontiers, 2021, 28(3): 112-127(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202103014.htm [9] 谢学锦. 勘查地球化学: 发展史·现状·展望[J]. 地质与勘探, 2002, 38(6): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT200206001.htmXie X J. Exploration geochemistry: Retrodpect and prospect[J]. Geology and Exploration, 2002, 38(6): 1-9(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT200206001.htm [10] 陈俊霖, 付乐兵, 赵江南, 等. 东昆仑东段果洛龙洼金矿床原生晕分带特征与深部找矿靶区圈定[J]. 地质科技情报, 2017, 36(1): 161-167, 225. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201701019.htmChen J L, Fu L B, Zhao J N, et al. Characteristics of primary geochemical halos and deep prospecting target delineation, Guoluolongwa gold deposit, East Kunlun Orogenic Belt[J]. Geological Science and Technology Information, 2017, 36(1): 161-167, 225(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201701019.htm [11] 李惠, 禹斌, 李德亮, 等. 不同类型金矿深部盲矿预测的构造叠加晕模型[J]. 矿产与地质, 2015, 29(5): 648-653, 658. doi: 10.3969/j.issn.1001-5663.2015.05.018Li H, Yu B, Li D L, et al. Structural superimposed halo model of different type gold deposit for deep blind ore prediction[J]. Mineral Resources and Geology, 2015, 29(5): 648-653, 658(in Chinese with English abstract). doi: 10.3969/j.issn.1001-5663.2015.05.018 [12] Hengameh H A, Alijan A. Vertical lithogeochemical halos and zoning vectors at Goushfil Zn-Pb deposit, Irankuh district, southwestern Isfahan, Iran: Implications for concealed ore exploration and genetic models[J]. Ore Geology Reviews, 2016, 72: 1004-1021. doi: 10.1016/j.oregeorev.2015.09.023 [13] 李志平, 余泽章, 罗大锋, 等. 云南会泽县麒麟厂铅锌矿床构造叠加晕特征及找矿意义[J]. 地质科技情报, 2018, 37(2): 109-117. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201802015.htmLi Z P, Yu Z Z, Luo D F, et al. Characteristics of structural superimposed halos and exploration significance of the Qilinchang Pb-Zn deposit, Huize, Yunnan[J]. Geological Science and Technology Information, 2018, 37(2): 109-117(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201802015.htm [14] 李胜利, 刘小照, 李堃, 等. 河南省内乡县板厂一带铜多金属矿普查报告[R]. 郑州: 河南省地质矿产勘查开发局第一地质勘查院, 2020.Li S L, Liu X Z, Li K, et al. The survey report on Cu-polymetallic deposit in the area of Banchang, Neixiang County, Henan Province[R]. Zhengzhou: NO. 1 Institute of Geological and Mineral Resources Exploration, Bureau of Geology and Mineral Exploration and Development of Henan Province, 2020(in Chinese). [15] 姚娟, 李胜利, 陈金铎, 等. 河南省内乡县板厂铜多金属矿床成矿机理研究及深部找矿预测[R]. 郑州: 河南省地质矿产勘查开发局第一地质勘查院, 2022.Yao J, Li S L, Chen J D, et al. Report on metallogenic mechanism and deep prospecting prediction of Banchang Cu-polymetallic deposit in Neixiang County, Henan Province[R]. Zhengzhou: No. 1 Institute of Geological and Mineral Resources Exploration, Bureau of Geology and Mineral Exploration and Development of Henan Province, 2022(in Chinese). [16] 刘小照. 河南东磨子沟金多金属矿地质特征及找矿方向[J]. 矿产勘查, 2019, 10(10): 2522-2528. https://www.cnki.com.cn/Article/CJFDTOTAL-YSJS201910009.htmLiu X Z. Geological characteristics and prospecting direction of the Dongmozigou gold-polymetallic deposit, Henan[J]. Mineral Exploration, 2019, 10(10): 2522-2528(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSJS201910009.htm [17] 谢国敏, 马庚杰, 陈静, 等. 东秦岭骆驼沟银多金属矿矿床地质特征[J]. 资源调查与环境, 2008, 29(2): 92-100. https://www.cnki.com.cn/Article/CJFDTOTAL-HSDZ200802002.htmXie G M, Ma G J, Chen J, et al. Geological characteristics of Luotuogou silver-polymetal deposit in East Qingling[J]. Resources Survey & Environment, 2008, 29(2): 92-100(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HSDZ200802002.htm [18] Kaiser H F, Rice J. Little jiffy, mark Ⅳ[J]. Educational and Psychological Measurement, 1974, 34(1): 111-117. [19] 贺昌坤, 陈诚, 许德如, 等. 广东京村金矿床原生晕分带特征对深部找矿预测的启示[J]. 地质学报, 2020, 94(12): 3761-3775. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202012016.htmHe C K, Chen C, Xu D R, et al. The characteristics of primary halos zoning of the Jingcun gold deposit in Guangdong Province: Implications for deep prospecting[J]. Acta Geologica Sinica, 2020, 94(12): 3761-3775(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202012016.htm [20] Wang C, Carranza E J M, Zhang S, et al. Characterization of primary geochemical haloes for gold exploration at the Huanxiangwa gold deposit, China[J]. Journal of Geochemical Exploration, 2013, 124: 40-58. [21] Hao J C, Jun L J, Jia L, et al. Primary halo research of the main ore zone in the Huachanggou gold deposit in Lueyang, Shaanxi Province[J]. Geoscience, 2013, 27(1): 1-12. [22] 庞绪成, 张凯涛, 郭跃闪, 等. 豫西龙门店银矿K4矿体原生晕特征及深部预测[J]. 物探与化探, 2015, 39 (5): 909-914. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201505006.htmPang X C, Zhang K T, Guo Y S, et al. Characteristics of primary halos of K4 orebody in the Longmendian silver deposit, western Henan Province, and deep orebody prediction[J]. Geophysical and Geochemical Exploration, 2015, 39 (5): 909-914(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201505006.htm [23] 伍宗华, 金仰芬. 元素分带及其在地质找矿中应用的几个问题[J]. 物探与化探, 1993, 17(1): 7-13. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH199301001.htmWu Z H, Jing Y F. Some problems concerning element zoning and its application to geological prospecting[J]. Geophysical and Geochemical Exploration, 1993, 17(1): 7-13(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH199301001.htm [24] 曾威, 许雅雯, 孙丰月, 等. 河南内乡县板厂铜多金属矿辉钼矿Re-Os年代学及硫、铅同位素地球化学特征[J]. 地球科学, 2019, 44(1): 109-122. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201901008.htmZeng W, Xu Y W, Sun F Y, et al. Molybdenite Re-Os geochronology and S, Pb isotopic characteristics of Banchang copper folymetallic deposit in Neixiang, Henan Province[J]. Earth Science, 2019, 44(1): 109-122(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201901008.htm [25] Beus A A, Grigorian S V. Geochemical exploration methods for mineral deposits[M]. Translated by Wilmette I L. Illinois: Applied Piblishing House, 1977. [26] 孙莉, 肖克炎, 高阳. 彩霞山铅锌矿原生晕地球化学特征及深部矿产评价[J]. 吉林大学学报: 地球科学版, 2013, 43(4): 1179-1189. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201304016.htmSun L, Xiao K Y, Gao Y. Primary halos characteristic of Caixiashan Pb-Zn deposit and prediction for deep mineralization[J]. Journal of Jilin University: Earth Science Edition, 2013, 43(4): 1179-1189(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201304016.htm [27] 杨融, 陈永清. 云南个旧Sn-Cu多金属矿田风流山矿段原生晕分带与深部成矿预测[J]. 地质与勘探, 2022, 58(1): 49 -60. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT202201005.htmYang R, Chen Y Q. Primary halo zoning and deep metallogenic prediction in the Fengliushan section of the Gejiu Sn -Cu polymetallic ore field, Yunnan Province[J]. Geology and Exploration, 2022, 58(1): 49 -60(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT202201005.htm [28] 李海, 李永军, 徐学义, 等. 西准噶尔达尔布特蛇绿岩带萨尔托海岩体深部结构、构造特征: 地质与地球物理证据[J]. 大地构造与成矿学, 2021, 45(4): 634-650. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202104002.htmLi H, Li Y J, Xu X Y, et al. Deep structure and texture of the Sartohay ophiolite in West Junggar, Xinjiang: New geological and geophysical evidence[J]. Geotectonica et Metallogenia, 2021, 45(4): 634-650(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202104002.htm [29] 孟小红, 王俊, 刘国峰, 等. 闽西南大排多金属矿区地球物理响应特征与找矿启示[J]. 地球物理学报, 2021, 64(3): 949-964. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202103017.htmMeng X H, Wang J, Liu G F, et al. Geophysical response characteristics of the Dapai polymetallic mining area insouthwestern Fujian Province and its prospecting implications[J]. Chinese J. Geophys., 2021, 64(3): 949-964(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202103017.htm