Experimental study of the soil water characteristic curve and unsaturated permeability coefficient based on the evaporation method and combined measuring instrument
-
摘要:
为确定以蒸发法为基础设计的土壤水分特征曲线和非饱和渗透系数联合测定仪的可靠性和适用范围, 选取粉黏壤土、壤土和壤砂土3种土样进行试验研究。在自然蒸发作用下, 利用联合测定仪获得蒸发通量、含水量和土柱表面下方5, 10 cm处的基质吸力, 以线性假设理论为基础处理实测数据, 利用HYDRUS-1D软件进行模拟和反演, 输入实测基质吸力和通量数据确定土壤水力参数, 利用RETC软件对已处理数据进行VG-Mualem模型拟合。结果表明, 含水率符合线性假设理论, 基质吸力线性变化不是很理想, 但除砂土之外的土样可以通过降低蒸发速率和缩短2次测量时间间隔来解决这个问题; 试验数据的拟合效果好, 与模拟结果的误差较小, 试验前期所测非饱和渗透系数与模拟值误差较大, 主要跟含水率接近饱和时水力梯度的精度不能得到保证有关, 可以忽略这些数据来改进。使用蒸发法和联合测定仪测定土壤水分特征曲线和非饱和渗透系数具有比较好的可靠性。
Abstract:Objective To determine the reliability and applicability of the soil water characteristic curve and unsaturated permeability coefficient combined measuring instrument designed on the evaporation method, three soil samples were selected: silty clay loam, loam and loamy sand.
Methods Under natural evaporation, the evaporation flux, water content, and matric suction at 5 and 10 cm below the surface of the soil column were obtained by using the combined measuring instrument. The measured data were processed based on the linear hypothesis. HYDRUS-1D was used for simulation and inversion, and measured matric suction and flux data were input to determine soil hydraulic parameters. VG-Mualem model was fitted to the processed data by using RETC program.
Results The results show that the moisture content accords with the theory of the linear hypothesis, and the linear variation in matric suction is not ideal. However, soil samples other than sandy soil can solve this problem by reducing the evaporation rate and shortening the interval between two measurements. The fitting effect of the test data is good, and the error is small with the simulation result. The unsaturated permeability coefficient measured in the early stage of the test has a large error with the simulated value, which is mainly due to the inability to ensure the accuracy of the hydraulic gradient when the water content is close to saturation. These data can be ignored for improvement.
Conclusion It is reliable to use the evaporation method and combined measuring instrument to measure the soil water characteristic curve and unsaturated permeability coefficient.
-
表 1 试验土的基本参数
Table 1. Basic parameters of the test soil
编号 饱和含水率 干密度/(g·cm-3) 颗粒组成/% 美国制定名 砂粒 粉粒 黏粒 1 0.491 0 1.315 0 65.60 34.40 粉黏壤土 2 0.482 3 1.444 49.86 36.00 14.14 壤土 3 0.512 4 1.381 83.54 7.97 8.49 壤砂土 表 2 土壤水力参数反演结果
Table 2. Inversion results of soil hydraulic parameters
编号 θr α/cm-1 n Ks/(cm·d-1) 1 0.065 0.009 1.488 12.640 2 0.090 0.005 1.663 6.776 3 0.158 0.012 1.288 4.593 注:Qr为残余土壤体积含水率;α为进气值的倒数;n为土壤孔隙尺寸分布参数;Ks为饱和导水率 表 3 土壤水力参数拟合结果
Table 3. Fitting results of soil hydraulic parameters
编号 θr α/cm-1 n Ks/(cm·d-1) 1 0.167 0.024 1.397 281.184 2 0.280 0.007 2.312 10.507 3 0.248 0.005 1.983 1.046 -
[1] 张人权, 梁杏, 靳孟贵, 等. 水文地质学基础[M]. 北京: 地质出版社, 2018.Zhang R Q, Liang X, Jin M G, et al. Fundamentals of hydrogeology[M]. Beijing: Geological Publishing House, 2018(in Chinese). [2] Fredlund D G, Rahardjo H. Soil mechanics for unsaturated soils[M]. New York: Wiley-Interscience, 1993. [3] 姚娇转, 刘廷玺, 王天帅, 等. 科尔沁沙地土壤水分特征曲线传递函数的构建与评估[J]. 农业工程学报, 2014, 30(20): 98-108. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201420013.htmYao J Z, Liu T X, Wang T S, et al. Development and evaluation of pedo-transfer functions of soil water characteristic curve in Horqin sandy land[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(20): 98-108(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201420013.htm [4] van Genuchten M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society America Journal, 1980, 44(5): 892-898. doi: 10.2136/sssaj1980.03615995004400050002x [5] 温天德. 非饱和土的渗透系数研究及其应用[D]. 辽宁大连: 大连理工大学, 2019.Wen T D. Investigation of unsaturated hydraulic conductivity and its application[D]. Dalian Liaoning: Dalian University of Technology, 2019(in Chinese with English abstract). [6] Fredlund D G, Xing A. Equations for the soil-water characteristic curve[J]. Canadian Geotechnical Journal, 1994, 31(4): 521-532. doi: 10.1139/t94-061 [7] Wind G P. Capillary conductivity data estimated by a simple method[C]//Rijtema R E, Wassink H. Water in the unsaturated zone. Wageningen, the Netherlands: Proc. UNESCO/IASH Symp, 1968: 181-191. [8] Schindler U. Ein Schnellverfahren zur Messung der Wasser-leitfähigkeit im teilgesättigten Boden an Stechzylinderproben[J]. Archiv. Acker-u. Pflanzenbau u. Bodenkd, 1980, 24(1): 1-7. [9] Wendroth O, Ehlers W, Hopmans J W, et al. Reevaluation of the evaporation method for determining hydraulic functions in unsaturated soils[J]. Soil Science Society of America Journal, 1993, 57(6): 1436-1443. doi: 10.2136/sssaj1993.03615995005700060007x [10] Ši$\stackrel{\circ}{\mathrm{m}}$unek J, Wendroth O, van Genuchten M T. Parameter estimation analysis of the evaporation method for determining soil hydraulic properties[J]. Soil Science Society of America Journal, 1998, 62(4): 894-905. doi: 10.2136/sssaj1998.03615995006200040007x [11] Schindler U, Müller L. Simplifying the evaporation method for quantifying soil hydraulic properties[J]. Journal of Plant Nutrition and Soil Science, 2006, 169(5): 623-629. doi: 10.1002/jpln.200521895 [12] Peters A, Durner W. Simplified evaporation method for determining soil hydraulic properties[J]. Journal of Hydrology, 2008, 356(1/2): 147-162. [13] 彭紫赟, 黄爽, 杨金忠, 等. HYPROP系统与快速离心法联合测定土壤水分特征曲线[J]. 灌溉排水学报, 2012, 31(5): 7-11. https://www.cnki.com.cn/Article/CJFDTOTAL-GGPS201205002.htmPeng Z Y, Huang S, Yang J Z, et al. Using HYPROP system and centrifugal method to measure soil water characteristic curve[J]. Journal of Irrigation and Drainage, 2012, 31(5): 7-11(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GGPS201205002.htm [14] 王晓蕾, 黄爽, 黄介生, 等. 利用HYPROP系统测定土壤水分参数的优缺点及改进[J]. 中国农村水利水电, 2012, 54(6): 4-7, 13. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNSD201206001.htmWang X L, Huang S, Huang J S, et al. Using HYPROP system to measure hydraulic conductivity and soil water characteristic curve[J]. China Rural Water and Hydropower, 2012, 54(6): 4-7, 13(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNSD201206001.htm [15] 王晓蕾. 土壤不同含碳量情况下水分特征曲线的拟合及修正[J]. 广东水利水电, 2013, 42(7): 23-27. https://www.cnki.com.cn/Article/CJFDTOTAL-GDSD201307013.htmWang X L. Fitting and modification of soil water characteristic curve under different carbon content[J]. Guangdong Water Resources and Hydropower, 2013, 42(7): 23-27 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GDSD201307013.htm [16] 王红兰, 唐翔宇, 鲜青松, 等. 紫色土水分特征曲线室内测定方法的对比[J]. 水科学进展, 2016, 27(2): 240-248. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201602010.htmWang H L, Tang X Y, Xian Q S, et al. Comparison of laboratory methods for determining water retention curves in purple soil[J]. Advances in Water Science, 2016, 27(2): 240-248(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201602010.htm [17] 周浩. 蒸发法测定土壤水分特征参数的试验及数值模拟[D]. 北京: 中国地质大学(北京), 2018.Zhou H. Experiments and numerical simulation on testing parameters of soil water characteristics with evaporation method[D]. Beijing: China University of Geosciences(Beijing), 2018(in Chinese with English abstract). [18] 王凤华. 基于掺砂膨润土的离子固化剂加固机理研究[D]. 武汉: 中国地质大学(武汉), 2018.Wang F H. Study on the mechanism of ionic soil stabilizer reinforcement based on sand-mixed bentonite[D]. Wuhan: China University of Geosciences(Wuhan), 2018(in Chinese with English abstract). [19] Satyanaga A, Rahardjo H, Koh Z H, et al. Measurement of a soil-water characteristic curve and unsaturated permeability using the evaporation method and the chilled-mirror method[J]. Journal of Zhejiang University: Science A(Applied Physics & Engineering), 2019, 20(5): 368-374. [20] 高晓飞, 刘刚. 低吸力段土壤持水特性测定方法的比较[J]. 灌溉排水学报, 2021, 40(增刊1): 72-76. https://www.cnki.com.cn/Article/CJFDTOTAL-GGPS2021S1015.htmGao X F, Liu G. Comparison of measuring methods for soil water holding characteristics in low suction stage[J]. Journal of Irrigation and Drainage, 2021, 40(S1): 72-76(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GGPS2021S1015.htm [21] Hernández V, Camila O M, Carlos R J, et al. Evaluation of water retention curves in soils with different fines content[J]. Arabian Journal of Geosciences, 2022, 15(9): 1-8. [22] Buckingham E. Studies on the movement of soil moisture[J]. Bureau of Soils Bulletin, 1907, 38(3): 81-107. [23] Mualem Y. A new model for predicting the hydraulic conductivity of unsaturated porous media[J]. Water Resources Research, 1976, 12(3): 513-522. [24] 王维早, 许强, 郑海君. 特大暴雨诱发平缓浅层滑坡堆积土饱和与非饱和水力学参数试验研究: 以王正塝滑坡为例[J]. 地质科技情报, 2017, 36(1): 202-207. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201701025.htmWang W Z, Xu Q, Zheng H J. Tests of saturated and unsaturated hydraulic parameters of accumulation soil in gently shallow landslide by the rainstorm: A case study of the Wangzhengbang landslide[J]. Geological Science and Technology Information, 2017, 36(1): 202-207(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201701025.htm [25] 王腾飞, 李远耀, 曹颖, 等. 降雨型浅层土质滑坡非饱和土-水作用特征试验研究[J]. 地质科技情报, 2019, 38(6): 181-188. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201906022.htmWang T F, Li Y Y, Cao Y, et al. Experimental study on unsaturated soil water interaction characteristics of rainfall-type shallow soil landslide[J]. Geological Science and Technology Information, 2019, 38(6): 181-188(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201906022.htm [26] 高志豪, 赵锐锐, 成建梅. 砂岩含水层CO2封存中考虑盐沉淀反馈作用的数值模拟: 以鄂尔多斯盆地为例[J]. 地质科技通报, 2022, 41(1): 269-277. doi: 10.19509/j.cnki.dzkq.2021.0073Gao Z H, Zhao R R, Cheng J M. Numerical simulation of CO2 sequestration in sandstone aquifers with feedback effect of salt precipitation: A case study of Ordos Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 269-277(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0073 [27] Farahani E, Mosaddeghi M R, Mahboubi A A, et al. Prediction of soil hard-setting and physical quality using water retention data[J]. Geoderma, 2019, 338: 343-354. [28] Sheng J L, Huang T, Ye Z Y, et al. Evaluation of van Genuchten-Mualem model on the relative permeability for unsaturated flow in aperture-based fractures[J]. Journal of Hydrology, 2019, 576: 315-324. [29] Su L J, Hou L F, Zhou B B, et al. Approximate analytical solution and parameter estimation for one-dimensional horizontal absorption based on the van Genuchten-Mualem model[J]. Soil Science Society of America Journal, 2021, 85(2): 217-234. [30] Kutilek M, Nielsen D R. Soil hydrology[M]. Cremlingen-Destedt: Catena Verlag, 1994.