New progress in the metallogenic chronology of the Chishan REE deposit in Weishan County, Shandong Province
-
摘要:
山东省微山县郗山稀土矿床位于华北板块东南缘,是一个以轻稀土为主的岩浆热液型稀土矿床,目前为我国第三大轻稀土矿床,对其成矿年龄还存在争议。为此,以郗山稀土矿最新勘探钻孔矿石样品为研究对象,通过野外调查、矿物学和年代学研究,采用氟碳铈矿Th-Pb同位素定年精确厘定了郗山稀土矿的成矿年代。5件氟碳铈矿Th-Pb同位素定年结果表明,郗山稀土矿床成矿时代可分为2期:早期为(125.5±0.5)~(122.2±0.5)Ma,晚期为(112.3±0.6)Ma,其中早期年龄与前人得出的矿床成矿年龄基本一致,而晚期成矿年龄则是首次报道,表明郗山稀土矿床可能存在2期成矿活动,值得关注并开展进一步工作。
-
关键词:
- 郗山稀土矿床 /
- Th-Pb同位素定年 /
- 氟碳铈矿 /
- 微山县 /
- 山东省
Abstract:Objective The Chishan rare earth deposit in Weishan County, Shandong Province is located on the southeastern edge of the North China Plate. It is a magmatic hydrothermal rare earth deposit mainly composed of light rare earths, and is currently the third largest light rare earth deposit in China. There is still controversy over its mineralization age.
Methods Therefore, taking the latest exploration borehole ore samples from Chishan rare earth deposit as the research object, the mineralization age of Chishan rare earth deposit was accurately determined through field investigation, mineralogy, and chronology research, using Th-Pb isotope dating of fluorocarbon cerium ore.
Results The Th-Pb isotope dating results of 5 fluorocarbon cerium deposits indicate that the mineralization age of the Chishan rare earth deposit can be divided into two periods: the early period is (125.5±0.5)-(122.2±0.5)Ma, and the late period is (112.3±0.6) Ma.
Conclusion The early age is basically consistent with the mineralization age of the deposit determined by previous studies, while the late mineralization age is the first report, indicating that there may be two periods of mineralization activity in the Chishan rare earth deposit, which is worthy of attention and further work.
-
Key words:
- Chishan REE deposit /
- Th-Pb dating /
- bastnasite /
- Weishan County /
- Shandong Province
-
图 1 鲁西区域地质简图(底图据文献[20]修改)
Figure 1. Geological sketch of the Luxi Block
图 2 郗山稀土矿床地质图(含本次勘探线及钻孔位置) (底图据文献[31]修改)
Figure 2. Geological map of the Chishan REE deposit
表 1 郗山稀土矿床氟碳铈矿Th-Pb同位素定年结果
Table 1. Th-Pb isotope test results of cerium fluorocarbonate from the Chishan rare earth deposit
分析点号 Pb Th U 同位素比值 同位素年龄/Ma wB/10-6 207Pb/206Pb 1σ 208Pb/232Th 1σ 208Pb/232Th 1σ ZK5-2-426 m-04 169.73 31 712 21.62 0.152 9 0.025 0 0.006 1 0.000 1 122.1 1 ZK5-2-426 m-06 80.03 14 978 28.34 0.159 9 0.025 0 0.006 1 0.000 1 122.3 1 ZK5-2-426 m-08 82.88 15 731 25.97 0.140 7 0.018 4 0.006 0 0.000 1 121.3 1 ZK5-2-426 m-11 89.62 16 830 19.36 0.191 6 0.023 5 0.006 1 0.000 1 123.5 1 ZK5-2-426 m-12 82.77 15 545 28.47 0.175 3 0.025 1 0.006 1 0.000 1 122.6 1 ZK5-2-426 m-13 71.68 13 515 30.20 0.179 3 0.026 6 0.006 1 0.000 1 122.3 1 ZK5-2-426 m-14 109.87 20 792 31.86 0.213 4 0.023 5 0.006 1 0.000 1 122.9 1 ZK5-2-426 m-16 92.98 17 566 31.14 0.144 6 0.016 6 0.006 1 0.000 1 122.9 1 ZK5-2-426 m-18 121.20 23 202 22.83 0.172 9 0.030 6 0.006 1 0.000 1 122.3 1 ZK5-2-426 m-19 125.20 23 866 26.05 0.163 7 0.032 7 0.006 1 0.000 1 123.3 1 ZK5-2-426 m-20 66.91 12 926 17.46 0.192 5 0.031 6 0.006 1 0.000 1 122.3 1 ZK5-2-426 m-22 93.37 17 931 23.56 0.237 3 0.038 5 0.006 0 0.000 1 121.4 1 ZK5-2-426 m-24 115.94 22 023 23.86 0.234 8 0.038 8 0.006 1 0.000 1 123.4 1 ZK5-2-426 m-25 122.14 23 246 21.58 0.119 8 0.023 5 0.006 1 0.000 1 123.0 1 ZK5-2-426 m-26 66.20 12 733 21.04 0.190 3 0.035 9 0.006 0 0.000 1 121.0 1 ZK5-2-426 m-27 106.78 20 452 24.80 0.156 2 0.022 1 0.006 0 0.000 1 121.6 1 ZK5-2-426 m-28 153.59 29 552 23.96 0.211 7 0.030 4 0.006 0 0.000 1 121.2 1 ZK5-2-426 m-29 109.20 20 519 18.03 0.177 6 0.033 2 0.006 1 0.000 1 123.3 1 ZK5-2-426 m-30 207.57 39 797 63.79 0.146 8 0.014 3 0.006 0 0.000 1 121.5 1 ZK5-2-426 m-31 144.59 27 670 54.04 0.101 8 0.010 3 0.006 0 0.000 1 121.5 1 ZK5-2-426 m-32 77.54 14 606 33.32 0.204 0 0.023 0 0.006 1 0.000 1 122.6 1 ZK5-2-426 m-34 121.49 23 240 34.99 0.150 9 0.017 2 0.006 0 0.000 1 121.2 1 ZK5-2-426 m-35 123.77 23 784 22.47 0.245 6 0.035 7 0.006 0 0.000 1 120.7 1 ZK13-2-116 m-05 109.35 20 883 342.46 0.072 5 0.003 7 0.005 6 0.000 0 111.9 1 ZK13-2-116 m-06 101.81 19 060 289.58 0.141 6 0.006 3 0.005 7 0.000 1 114.1 1 ZK13-2-116 m-07 302.22 60 903 251.06 0.115 9 0.005 2 0.005 5 0.000 0 110.7 1 ZK13-2-116 m-11 395.75 81 395 106.57 0.223 8 0.013 9 0.005 5 0.000 1 110.0 1 ZK13-2-116 m-13 182.07 33 255 855.38 0.059 9 0.002 3 0.005 7 0.000 1 114.7 1 ZK13-2-116 m-14 276.79 55 157 185.27 0.188 6 0.010 5 0.005 6 0.000 0 112.4 1 ZK13-2-116 m-15 130.93 25 449 333.54 0.119 0 0.006 3 0.005 5 0.000 0 111.8 1 ZK13-2-116 m-16 281.57 56 600 195.61 0.097 1 0.005 6 0.005 6 0.000 0 111.9 1 ZK13-2-116 m-17 177.11 34 722 253.47 0.078 0 0.005 1 0.005 6 0.000 0 113.3 1 ZK13-2-116 m-18 370.98 76 067 92.72 0.136 1 0.017 0 0.005 5 0.000 0 111.3 1 ZK13-2-116 m-19 264.75 52 612 257.87 0.083 6 0.005 0 0.005 6 0.000 0 113.7 1 ZK13-2-116 m-20 133.94 25 202 487.28 0.068 2 0.003 1 0.005 6 0.000 0 113.5 1 ZK13-2-116 m-21 142.58 27 089 560.73 0.0603 0.002 6 0.005 5 0.000 0 111.5 1 ZK13-2-116 m-22 269.79 54 743 205.44 0.079 6 0.005 1 0.005 5 0.000 0 110.8 1 ZK13-2-116 m-23 235.59 46 987 150.72 0.130 5 0.012 0 0.005 6 0.000 0 113.0 1 ZK13-2-116 m-24 191.67 37 228 403.45 0.096 0 0.004 0 0.005 6 0.000 0 112.7 1 ZK13-2-116 m-29 299.06 59 755 260.20 0.103 7 0.006 2 0.005 6 0.000 1 112.7 1 ZK13-2-402 m-01 37.75 7 085 6.40 0.606 9 0.090 3 0.006 1 0.000 1 122.6 1 ZK13-2-402 m-02 22.41 4 244 8.78 0.483 2 0.072 4 0.006 0 0.000 1 120.7 1 ZK13-2-402 m-03 21.64 4 032 9.17 0.356 9 0.058 1 0.006 1 0.000 1 122.9 1 ZK13-2-402 m-04 30.85 5 588 12.76 0.725 4 0.094 8 0.006 2 0.000 1 125.5 1 ZK13-2-402 m-06 26.80 5 041 11.34 0.278 0 0.038 5 0.006 1 0.000 1 122.6 1 ZK13-2-402 m-08 24.99 4 731 5.64 0.793 4 0.124 4 0.006 0 0.000 1 121.4 1 ZK13-2-402 m-10 23.13 4 227 9.04 0.797 6 0.105 6 0.006 2 0.000 1 124.0 1 ZK13-2-402 m-11 31.96 5 922 9.98 0.523 0 0.086 0 0.006 2 0.000 1 124.1 1 ZK13-2-402 m-12 21.74 3 969 7.23 0.834 6 0.110 3 0.006 2 0.000 1 125.3 1 ZK13-2-402 m-13 37.47 6 933 10.42 0.204 2 0.035 7 0.006 2 0.000 1 125.1 1 ZK13-2-402 m-14 24.51 4 591 9.10 0.466 5 0.073 9 0.006 1 0.000 1 123.2 2 ZK13-2-402 m-16 23.04 4 340 13.20 0.674 4 0.098 0 0.006 0 0.000 1 121.6 2 ZK13-2-402 m-18 40.98 7 456 4.54 0.995 5 0.093 6 0.006 2 0.000 1 124.7 2 ZK13-2-402 m-19 23.91 4 474 9.03 0.537 4 0.103 1 0.006 1 0.000 1 122.8 1 ZK13-2-402 m-20 26.26 4 881 8.11 0.720 8 0.105 5 0.006 1 0.000 1 122.9 1 ZK13-2-402 m-21 28.81 5 108 11.60 0.706 2 0.052 9 0.006 3 0.000 1 126.0 1 ZK13-2-402 m-24 29.84 5 612 9.61 0.402 0 0.052 5 0.006 1 0.000 1 122.5 1 ZK13-2-402 m-25 75.82 13 883 14.67 0.566 1 0.065 6 0.006 2 0.000 1 125.8 1 ZK13-2-402 m-26 40.69 7 538 4.45 0.367 0 0.061 2 0.006 2 0.000 1 124.8 1 ZK13-2-402 m-27 29.76 5 503 8.35 0.851 5 0.131 1 0.006 1 0.000 1 122.9 1 ZK13-2-402 m-30 37.49 6 847 8.66 0.908 8 0.054 6 0.006 1 0.000 1 122.0 1 ZK13-2-402 m-33 43.66 8 132 6.21 0.348 6 0.054 2 0.006 2 0.000 1 124.6 1 ZK13-2-402 m-35 47.13 8 701 9.04 0.510 6 0.070 1 0.006 2 0.000 1 125.0 1 ZK11-1-379 m-01 105.59 19 182 7.05 0.664 0 0.055 2 0.006 2 0.000 1 124.8 1 ZK11-1-379 m-03 113.78 20 587 9.90 0.694 1 0.070 2 0.006 2 0.000 1 125.3 1 ZK11-1-379 m-04 59.00 10 639 14.30 0.677 3 0.082 5 0.006 3 0.000 1 126.3 1 ZK11-1-379 m-07 87.66 15 911 9.60 0.829 5 0.087 8 0.006 2 0.000 1 125.6 2 ZK11-1-379 m-08 222.80 41 099 54.83 0.141 2 0.010 7 0.006 2 0.000 1 124.0 2 ZK11-1-379 m-09 173.10 31 776 12.03 0.441 9 0.057 4 0.006 2 0.000 1 125.4 2 ZK11-1-379 m-10 129.58 23 688 4.35 0.896 8 0.090 9 0.006 2 0.000 1 125.1 2 ZK11-1-379 m-11 60.02 10 814 16.76 0.743 8 0.093 3 0.006 3 0.000 1 127.6 2 ZK11-1-379 m-12 76.39 13 858 11.47 0.775 0 0.063 9 0.006 2 0.000 1 125.4 1 ZK11-1-379 m-13 86.23 16 008 6.85 0.587 3 0.114 8 0.006 2 0.000 1 124.3 1 ZK11-1-379 m-15 47.49 8 748 19.71 0.489 7 0.051 7 0.006 3 0.000 1 126.2 2 ZK11-1-379 m-16 186.35 34 545 9.17 0.582 6 0.069 9 0.006 3 0.000 1 125.9 1 ZK11-1-379 m-18 174.30 32 015 53.08 0.191 1 0.015 0 0.006 3 0.000 1 127.3 1 ZK11-1-379 m-19 332.72 63 297 64.01 0.169 1 0.018 4 0.006 2 0.000 1 125.1 2 ZK11-1-379 m-20 346.23 64 157 63.69 0.155 1 0.012 4 0.006 3 0.000 1 127.6 1 ZK11-1-379 m-22 417.94 77 323 105.74 0.216 6 0.011 0 0.006 3 0.000 1 127.2 1 ZK11-1-379 m-24 106.66 19 794 25.08 0.385 3 0.045 0 0.006 2 0.000 1 125.2 1 ZK11-1-379 m-25 86.77 16 181 3.26 0.867 0 0.121 9 0.006 2 0.000 1 124.7 1 ZK11-1-379 m-26 87.90 16 204 8.48 0.426 4 0.067 4 0.006 2 0.000 1 125.5 1 ZK11-1-379 m-27 423.09 78 096 88.39 0.183 7 0.012 0 0.006 2 0.000 1 125.5 1 ZK11-1-379 m-28 163.98 30 423 6.06 0.855 8 0.093 2 0.006 2 0.000 1 125.2 1 ZK11-1-379 m-29 111.39 20 459 9.51 0.564 6 0.070 0 0.006 2 0.000 1 125.6 1 ZK11-1-379 m-31 163.49 29 910 24.16 0.321 7 0.033 2 0.006 3 0.000 1 126.7 2 ZK11-1-379 m-32 292.56 54 666 21.20 0.534 3 0.033 1 0.006 1 0.000 1 123.8 1 ZK11-1-379 m-33 90.64 16 301 21.14 0.700 7 0.046 2 0.006 3 0.000 1 126.7 2 ZK11-1-379 m-34 119.21 21 803 18.15 0.746 1 0.042 6 0.006 2 0.000 1 124.9 1 ZK11-1-379 m-36 86.29 16 001 5.71 0.864 2 0.094 1 0.006 1 0.000 1 123.6 1 ZK11-1-628 m-06 154.70 28 199 25.34 0.619 7 0.036 0 0.006 2 0.000 1 124.3 1 ZK11-1-628 m-07 121.40 22 632 86.35 0.214 9 0.013 1 0.006 1 0.000 1 122.1 1 ZK11-1-628 m-08 164.29 30 261 57.80 0.123 9 0.011 1 0.006 2 0.000 1 124.3 1 ZK11-1-628 m-12 121.90 22 711 18.43 0.509 6 0.044 1 0.006 1 0.000 1 122.6 1 ZK11-1-628 m-17 101.47 18 694 16.02 0.241 9 0.026 6 0.006 3 0.000 1 125.9 1 ZK11-1-628 m-19 129.40 24 081 25.87 0.371 1 0.042 1 0.006 3 0.000 1 125.8 1 ZK11-1-628 m-20 72.46 13 594 11.42 0.396 0 0.047 0 0.006 3 0.000 1 126.6 1 ZK11-1-628 m-25 85.39 16 227 36.94 0.701 2 0.055 7 0.006 1 0.000 1 122.1 1 ZK11-1-628 m-29 107.05 21 539 18.44 0.818 8 0.082 9 0.006 0 0.000 1 120.4 1 ZK11-1-628 m-32 93.06 17 772 68.23 0.281 3 0.021 7 0.006 1 0.000 1 122.9 1 ZK11-1-628 m-34 78.60 14 962 16.45 0.598 4 0.063 0 0.006 2 0.000 1 125.1 1 ZK11-1-628 m-35 110.10 21 089 89.53 0.116 7 0.012 2 0.006 1 0.000 1 123.1 1 -
[1] 李童斐, 夏庆霖, 汪新庆, 等. 中国稀土矿资源成矿地质特征与资源潜力分析[J]. 地学前缘, 2018, 25(3): 95-106.LI T F, XIA Q L, WANG X Q, et al. Geological characteristics and resource potential of rare earth ore resources in China[J]. Earth Science Frontiers, 2018, 25(3): 95-106. (in Chinese with English abstract) [2] 范宏瑞, 牛贺才, 李晓春, 等. 中国内生稀土矿床类型、成矿规律与资源展望[J]. 科学通报, 2020, 65(33): 3778-3793.FAN H R, NIU H C, LI X C, et al. Types, metallogenic regularities and resource prospects of endogenetic rare earth deposits in China[J]. Chinese Science Bulletin, 2020, 65(33): 3778-3793. (in Chinese with English abstract) [3] 李文昌, 李建威, 谢桂青, 等. 中国关键矿产现状、研究内容与资源战略分析[J]. 地学前缘, 2022, 29(1): 1-13.LI W C, LI J W, XIE G Q, et al. Present situation, research content and resource strategy analysis of key minerals in China [J]. Earth Science Frontiers, 2022, 29(1): 1-13. (in Chinese with English abstract) [4] 傅太宇, 李葆华, 董晓燕, 等. 我国稀土矿床分布、分类及特征分析[J]. 河南科技, 2015(14): 124-126.FU T Y, LI B H, DONG X Y, et al. Distribution, classification and characteristics analysis of rare earth deposits in China [J]. Henan Science and Technology, 2015(14): 124-126. (in Chinese with English abstract) [5] 宋文磊, 许成, 王林均, 等. 与碳酸岩-碱性杂岩体相关的内生稀土矿床成矿作用研究进展[J]. 北京大学学报(自然科学版), 2013, 49(4): 725-740.SONG W L, XU C, WANG L J, et al. Research progress on mineralization of endogenous rare earth deposits related to carbonate-alkaline complex[J]. Journal of Peking University(Natural Science Edition), 2013, 49(4): 725-740. (in Chinese with English abstract) [6] CHAKHMOURADIAN A R, COOPER M A, REGUIR E P, et al. Carbocernaite from Bear Lodge, Wyoming: Crystal chemistry, paragenesis, and rare-earth fractionation on a microscale[J]. American Mineralogist, 2017, 102(6): 1340-1352. doi: 10.2138/am-2017-6046 [7] 欧阳怀, 刘琰. 四川冕宁木落寨稀土矿床稀土矿化与围岩特征[J]. 地球学报, 2018, 39(3): 329-341.OUYANG H, LIU Y. Rare earth mineralization and surrounding rock characteristics of Muluozhai rare earth deposit in Mianning, Sichuan [J]. Acta Geoscientia Sinica, 2018, 39(3): 329-341. (in Chinese with English abstract) [8] JIA Y H, LIU Y. REE enrichment during magmatic-hydrothermal processes in carbonatite-related REE deposits: A case study of the Weishan REE deposit, China[J]. Minerals, 2019, 10(1): 25. [9] 杨建星. 川西地区牦牛坪稀土矿床浅表特征及成岩成矿作用研究[D]. 广州: 中国科学院大学(中国科学院广州地球化学研究所), 2020.YANG J X. Study on shallow surface characteristics and diagenesis and mineralization of Yakniuping REE deposit in western Sichuan [D]. Guangzhou: University of Chinese Academy of Sciences(Guangzhou Institute of Geochemistry, Chinese Academy of Sciences), 2020. (in Chinese with English abstract) [10] 冯玺平. 山东省微山稀土矿床地质特征与成矿预测[D]. 北京: 中国地质大学(北京), 2020.FENG X P. Geological characteristics and metallogenic prediction of Weishan REE deposit in Shandong Province [D]. Beijing: China University of Geosciences(Beijing), 2020. (in Chinese with English abstract) [11] 贾玉衡, 刘琰. 碳酸岩型稀土矿床成因与矿化多样性的控制因素: 以川西冕宁-德昌矿带为例[C]//佚名. 首届全国矿产勘查大会论文集. 出版地不详: 出版者不详, 2021: 823-824.JIA Y H, LIU Y. Genesis and controlling factors of mineralization diversity of carbonate type rare earth deposits: Taking Mianning-Dechang ore belt in western Sichuan as an example [C]//Anon. Proceedings of the first national congress of mineral exploration. [S. l. ]: [s. n. ], 2021: 823-824. (in Chinese with English abstract) [12] 张云峰, 张鹏, 刘敬杰, 等. 山东省微山县郗山内生型轻稀土矿找矿及研究新进展[J]. 山东国土资源, 2022, 38(1): 19-25.ZHANG Y F, ZHANG P, LIU J J, et al. New progress in prospecting and research of endogenous light rare earth deposits in Chishan County, Shandong Province [J]. Shandong Land Resources, 2022, 38(1): 19-25. (in Chinese with English abstract) [13] 陈彪, 贾晓琪, 魏威, 等. 内蒙古白云鄂博矿床年代学特征及其地质意义[J]. 地质科技通报, 2024, 43(1): 222-232. doi: 10.19509/j.cnki.dzkq.tb20230255CHEN B, JIA X Q, WEI W, et al. Chronological characteristics and geological Significance of Bayan Obo deposit, Inner Mongolia[J]. Bulletin of Geological Science and Technology, 2024, 43(1): 222-232. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20230255 [14] 秦志军, 周豹, 苌笙任, 等. 鄂西北杀熊洞铌-稀土矿床烧绿石矿物学及地球化学特征及其形成机理[J/OL]. 地质科技通报, 2023, 42(5): 150-160.QIN Z J, ZHOU B, CHANG S R, et al. Mineralogy and geochemistry of pyrochlore from the Shaxiongdong Nb-REE deposit, northwestern Hubei Province: Implications for the niobium enrichment mechanism in carbonatites[J]. Bulletin of Geological Science and Technology, 2023, 42(5): 150-160. (in Chinese with English abstract) [15] 蓝廷广, 范宏瑞, 胡芳芳, 等. 山东微山稀土矿矿床成因: 来自云母Rb-Sr年龄、激光Nd同位素及流体包裹体的证据[J]. 地球化学, 2011, 40(5): 428-442.LAN T G, FAN H R, HU F F, et al. Genesis of Shandong Weishan rare earth deposit: Evidence from mica Rb-Sr age, laser Nd isotope and fluid inclusion [J]. Geochemistry, 2011, 40(5): 428-442. (in Chinese with English abstract) [16] 李建康, 袁忠信, 白鸽, 等. 山东微山稀土矿床成矿流体的演化及对成矿的制约[J]. 矿物岩石, 2009, 29(3): 60-68.LI J K, YUAN Z X, BAI G, et al. Evolution of ore-forming fluids and constraints on mineralization in Weishan REE deposit, Shandong[J]. Mineral Rocks, 2009, 29(3): 60-68. (in Chinese with English abstract) [17] 周伟伟, 蔡剑辉, 阎国翰. 山东郗山碱性杂岩体地球化学特征及其意义[J]. 西北地质, 2013, 46(4): 93-105. doi: 10.3969/j.issn.1009-6248.2013.04.009ZHOU W W, CAI J H, YAN G H. Geochemical characteristics and significance of Chishan alkaline complex in Shandong[J]. Northwest Geology, 2013, 46(4): 93-105. (in Chinese with English abstract) doi: 10.3969/j.issn.1009-6248.2013.04.009 [18] 梁雨薇, 赖勇, 胡弘, 等. 山东省微山稀土矿正长岩类锆石U-Pb年代学及地球化学特征研究[J]. 北京大学学报(自然科学版), 2017, 53(4): 652-666.LIANG Y W, LAI Y, HU H, et al. The zircon U-Pb geochronology and geochemical characteristics of syenites from Weishan rare earth deposits in Shandong Province[J]. Journal of Peking University(Natural Science Edition), 2017, 53(4): 652-666. (in Chinese with English abstract) [19] WANG C, LIU J C, ZHANG H D, et al. Geochronology and mineralogy of the Weishan carbonatite in Shandong Province, eastern China[J]. Geoscience Frontiers, 2019, 10(2): 769-785 doi: 10.1016/j.gsf.2018.07.008 [20] 张锡明, 张岳桥, 季玮. 山东鲁西地块断裂构造分布型式与中生代沉积-岩浆-构造演化序列[J]. 地质力学学报, 2007, 13(2): 163-172.ZHANG X M, ZHANG Y Q, JI W. Shandong Luxi block fault structure distribution and Mesozoic sedimentary-magmatic-tectonic evolution sequence[J]. Journal of Geomechanics, 2007, 13(2): 163-172. (in Chinese with English abstract) [21] WEI P F, YU X, LI D, et al. Geochemistry, zircon U-Pb geochronology, and Lu-Hf isotopes of the Chishan alkaline complex, western Shandong, China[J]. Minerals, 2019, 9(5): 293. doi: 10.3390/min9050293 [22] 张剑, 李三忠, 李玺瑶, 等. 鲁西地区燕山期构造变形: 古太平洋板块俯冲的构造响应[J]. 地学前缘, 2017, 24(4): 226-238.ZHANG J, LI S Z, LI X Y, et al. The Yanshanian tectonic deformation in Luxi area: Tectonic response to the subduction of the ancient Pacific plate[J]. Earth Science Frontiers, 2017, 24(4): 226-238. (in Chinese with English abstract) [23] 刘松岩. 鲁西中生代杂岩体岩浆源区及形成机制[D]. 北京: 中国地质大学(北京), 2020.LIU S Y. Luxi Mesozoic complex magmatic source area and formation mechanism[D]. Beijing: China University of Geosciences(Beijing), 2020. (in Chinese with English abstract) [24] 胡华斌. 鲁西平邑地区浅成低温热液金矿床成矿流体及成矿作用[D]. 北京: 中国地质大学(北京), 2005.HU H B. Luxi Pingyi area epithermal gold deposit metallogenic fluid and mineralization[D]. Beijing: China University of Geosciences (Beijing), 2005. (in Chinese with English abstract) [25] 王伟. 鲁西七星台地区花岗-绿岩带形成演化[D]. 北京: 中国地质科学院, 2010.WANG W. Formation and evolution of granite-greenstone belt in Qixingtai area, Luxi[D]. Beijing: Chinese Academy of Geological Sciences, 2010. (in Chinese with English abstract) [26] 赵利. 鲁西隆起-济阳坳陷晚中生代以来断层伸展与走滑关系研究[D]. 山东青岛: 中国石油大学(华东), 2015.ZHAO L. Relationship between fault extension and strike-slip in Luxi uplift-Jiyang Depression since Late Mesozoic [D]. Qingdao Shandong: China University of Petroleum(East China), 2015. (in Chinese with English abstract) [27] 付帅. 山东省微山县郗山稀土矿地质特征与成因分析[J]. 世界有色金属, 2018(18): 253-254.FU S. Geological characteristics and genetic analysis of Chishan rare earth deposit in Weishan County, Shandong Province [J]. World Non-ferrous Metals, 2018(18): 253-254. (in Chinese with English abstract) [28] 张旭, 张照荷, 何平. 山东微山稀土矿床成矿预测分析[J]. 山东国土资源, 2019, 35(10): 9-16.ZHANG X, ZHANG Z H, HE P. Shandong Weishan rare earth deposit metallogenic prediction analysis [J]. Shandong Land Resources, 2019, 35(10): 9-16. (in Chinese with English abstract) [29] 张鹏, 兰君. 鲁西地区稀土矿成矿模式及矿床成因探讨[J]. 山东国土资源, 2020, 36(3): 15-19.ZHANG P, LAN J. Study on metallogenic model and genesis of rare earth deposits in western Shandong[J]. Shandong Land Resource, 2020, 36(3): 15-19. (in Chinese with English abstract) [30] 张鹏, 兰君. 山东省微山县郗山地区稀土矿深部及外围调查评价报告[R]. 山东泰安: 山东省地质矿产勘查开发局第五地质大队, 2020.ZHANG P, LAN J. Investigation and evaluation report on the deep and periphery of rare earth mines in Chishan District, Weishan County, Shandong Province [R]. Tai'an Shandong: Fifth Geological Team, Shandong Bureau of Geology and Mineral Exploration and Development, 2020. (in Chinese with English abstract) [31] 李衣鑫. 山东省微山县郗山稀土矿床成因研究[D]. 广西桂林: 桂林理工大学, 2022.LI Y X. Genesis of the Chishan rare earth deposit in Weishan Country, Shandong Province[D]. Guilin Guangxi: Guilin University of Technology, 2022. (in Chinese with English abstract) [32] LIU Y S, HU Z C, GAO S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257: 34-43. doi: 10.1016/j.chemgeo.2008.08.004 [33] LUDWIG K R. Users manual for isoplot 3.00: A geochronological toolkit for Microsoft excel [M]. Berkeley: Berkeley Geochronology Center, 2003. [34] WANG C, LIU J C, ZHANG H D, et al. Geochronology and mineralogy of the Weishan carbonatite in Shandong Province, eastern China[J]. Geoscience Frontiers, 2019, 10(2): 769-785 doi: 10.1016/j.gsf.2018.07.008 [35] JIA Y H, LIU Y. REE enrichment during magmatic-hydrothermal processes in carbonatite-related REE deposits: A case study of the Weishan REE deposit, China[J]. Minerals, 2019, 10(1): 25. [36] 田京祥, 张日田, 范跃春, 等. 山东郗山碱性杂岩体地质特征及与稀土矿的关系[J]. 山东地质, 2002(1): 21-25.TIAN J X, ZHANG R T, FAN Y C, et al. Geological characteristics of alkaline complex and its relationship with rare earth deposits in Xishan, Shandong[J]. Shandong Geology, 2002(1): 21-25. . (in Chinese with English abstract) [37] YANG Y H, WU F Y, LI Q L, et al. In situ U-Th-Pb dating and Sr-Nd isotope analysis of bastnsite by LA-(MC)-ICP-MS[J]. Geostandards and Geoanalytical Research, 2019, 43(4): 543-565. doi: 10.1111/ggr.12297