Analysis of the pore structure of tight sandstone by high-pressure mercury injection combined with fractal theory: A case study of the Heshui area in the Ordos Basin
-
摘要:
孔隙结构是致密砂岩储层的关键要素,制约油气在储层中的储集与流动,而储层孔隙结构是目前非常规油气勘探开发研究的重点和难点。选取鄂尔多斯盆地合水地区上三叠统延长组长7段10块致密岩心样品,开展高压压汞和X-衍射等实验,运用分形理论研究储层孔喉分形特征,并分析分形维数与储层物性、孔隙结构参数与矿物含量之间的关系。研究结果表明:根据压汞曲线形态和孔隙结构参数将储层分为Ⅰ、Ⅱ、Ⅲ类,其储集性能和渗流能力依次递减,微观非均质性依次增强。不同类型的储层具有不同的分形特点:根据分形曲线存在的拐点0.05和0.02 μm,将实际情况和IUPAC提出的孔隙大小划分标准结合,Ⅰ类储层孔隙分为大孔(>50 nm)和中孔(50~6 nm);Ⅱ、Ⅲ类储层据拐点分为中孔A段(50~20 nm)和中孔B段(20~6 nm);平均分形维数依次增大,分别为2.619 3,2.745 4,2.852 6,非均质性逐渐增强。较少的大孔贡献了主要的渗透率,分形维数反映的主要是孔隙大小非均质性。分形维数与部分矿物存在较好的相关性,矿物成分及其含量是决定分形维数大小的内在因素,进而影响储层的质量和孔隙结构特征。
Abstract:Pore structure is the key element of tight sandstone reservoirs, which restricts the accumulate and flow of oil and gas in reservoirs. The pore structure is one of the key and difficult point of unconventional oil and gas exploration and development. In this paper, ten dense core samples from the Upper Triassic Yanchang Group 7 section in the Heshui area of the Ordos Basin are selected to carry out experiments, including high-pressure mercury pressure and X-diffraction. Fractal theory is used to analyze the characteristics of pore throats, then the relationship between fractal dimension and reservoir physical properties, pore structure and mineral content is analyzed. The results show that according to the mercury pressure curve and pore structure, the reservoir is divided into categories Ⅰ, Ⅱ and Ⅲ, its reservoir performance and seepage capacity decrease in turn, and the microheterogeneity is enhanced. Different types of reservoirs have different fractal characteristics: according to the inflection points of fractal curves 0.05 and 0.02 μm. The pore size of class Ⅰ reservoirs is divided into large pores (> 50 nm) and medium pores (50-6 nm) by combining the actual situation with the standard of pore size division proposed by IUPAC. According to the inflection point, the reservoirs of classes Ⅱ and Ⅲ can be divided into medium pores a (50-20 nm) and mesoporous B (20-6 nm). The average fractal dimension increased, which was 2.619 3, 2.745 4 and 2.852 6, respectively, and the heterogeneity gradually increased. The main permeability is contributed by fewer large pores, and the fractal dimension mainly reflects the heterogeneity of pore size. The fractal dimension is related to some minerals. Mineral composition and content are the internal factors that determine the fractal dimension and then affect the quality and pore structure of reservoirs.
-
Key words:
- high-pressure mercury injection /
- tight sandstone /
- pore structure /
- fractal dimension /
- heterogeneity
-
表 1 岩样基本物性参数
Table 1. Basic physical parameters of rock samples
岩样编号 深度/m 直径/m 长度/cm 岩样密度/(g·cm-3) 孔隙度/% 渗透率/10-3 μm2 L23_1 1 645.40 2.515 2.320 2.380 10.30 0.156 L23_2 1 672.03 2.508 2.346 2.460 7.60 0.055 L205_1 1 636.90 2.524 2.304 2.420 9.10 0.049 L205_2 1 645.20 2.525 2.317 2.340 11.90 0.093 N181_1 1 613.60 2.525 2.270 2.570 3.50 0.017 N181_2 1 659.66 2.520 2.415 2.590 2.60 0.011 Z143_1 1 842.67 2.525 2.320 2.480 6.80 0.028 Z143_2 1 835.57 2.520 2.339 2.340 11.60 0.119 Z225_1 1 772.90 2.525 2.320 2.350 11.40 0.078 Z225_2 1 775.04 2.525 2.323 2.650 0.90 0.008 表 2 研究区砂岩储层岩石学特征
Table 2. Petrological characteristics of sandstone reservoirs in the study area
岩样编号 石英 钾长石 斜长石 方解石 白云石 黏土矿物 黏土矿物相对含量/% wB/% 伊利石 绿泥石 伊蒙混层 L23_1 52.7 8.1 16.2 2.4 2.6 18.0 38.0 20.0 42.0 L23_2 56.5 2.9 14.0 2.8 2.5 20.7 33.0 27.0 40.0 L205_1 55.5 4.9 14.6 1.2 2.9 18.6 34.0 22.0 44.0 L205_2 53.2 13.4 13.6 1.4 3.5 10.9 44.0 25.0 31.0 N181_1 48.2 6.0 15.7 11.6 3.5 15.0 32.0 13.0 55.0 N181_2 43.6 6.4 11.8 14.4 8.7 12.1 45.0 14.0 41.0 Z143_1 47.4 6.3 28.3 1.6 3.9 11.9 48.0 28.0 24.0 Z143_2 58.1 14.5 9.8 3.7 2.5 10.7 38.0 31.0 31.0 Z225_1 58.9 6.0 14.2 2.6 1.7 16.2 38.0 35.0 27.0 Z225_2 45.4 4.1 13.6 2.7 9.9 23.5 37.0 24.0 39.0 平均值 52.0 7.3 15.2 4.4 4.2 15.8 38.7 23.9 37.4 表 3 鄂尔多斯盆地合水地区孔隙结构特征参数
Table 3. Characteristic parameters of pore structure in the Heshui area of the Ordos Basin
岩样编号 分类 中值孔隙半径/μm 最大进汞饱和度/% 排驱压力/MPa 分选系数 歪度 L23_1 Ⅰ 0.067 68.302 1.148 1.563 0.280 L23_2 Ⅰ 0.029 62.615 3.983 1.494 0.102 L205_1 Ⅰ 0.036 66.904 3.977 1.837 0.038 L205_2 Ⅰ 0.059 72.844 2.939 1.319 0.324 Z143_1 Ⅰ 0.010 61.204 2.947 2.361 0.032 Z143_2 Ⅰ 0.007 72.820 3.979 1.556 0.053 Z225_1 Ⅰ 0.024 72.267 2.943 2.604 0.140 均值 0.045 68.137 3.131 1.819 0.078 N181_1 Ⅱ 0.010 53.509 7.573 3.269 0.612 N181_2 Ⅱ 0.007 52.459 7.571 2.369 0.402 均值 0.009 52.984 7.572 2.819 0.507 Z225_2 Ⅲ / 35.717 10.323 2.463 0.551 表 4 Ⅰ类样品分形维数计算结果
Table 4. Fractal dimension of class Ⅰ samples
样品编号 大孔 中孔 Dp ra/μm Dp-1 Ф1/% K1/10-3μm2 R2 Dp-2 Ф2/% K2/10-3μm2 R2 L23_1 2.598 7 9.01 0.156 0.993 7 2.830 8 1.29 0.000 08 0.999 6 2.627 7 0.05 L23_2 2.687 5 6.29 0.050 0.919 9 2.787 6 1.31 0.000 25 0.974 8 2.704 8 0.05 L205_1 2.606 8 7.53 0.049 0.958 2 2.773 3 1.57 0.000 22 0.991 5 2.635 4 0.05 L205_2 2.534 6 10.31 0.093 0.979 3 2.772 6 1.59 0.000 18 0.994 3 2.566 5 0.05 Z143_1 2.614 5 5.51 0.028 0.986 6 2.814 2 1.29 0.000 10 0.999 6 2.652 2 0.05 Z143_2 2.533 6 9.28 0.119 0.973 0 2.761 6 2.32 0.000 74 0.999 6 2.579 2 0.05 Z225_1 2.533 6 9.62 0.078 0.973 0 2.761 6 1.78 0.000 19 0.996 0 2.569 2 0.05 平均值 2.587 0 8.22 0.082 0.969 1 2.786 0 1.59 0.000 25 0.993 6 2.619 3 0.05 注:Dp为样品的平均分形维数;Dp-1为大孔段的分形维数;Dp-2为中孔段的分形维数;Φ1为大孔的孔隙占比;Φ2为中孔的孔隙占比;K1为大孔的渗透率贡献值;K2为中孔的渗透率贡献值;ra为拐点孔隙半径 表 5 Ⅱ类分形维数计算结果
Table 5. Calculation results of class Ⅱ fractal dimension
样品编号 中孔A段(50~20 nm) 中孔B段(20~6 nm) Dp ra/μm Dp-2-Ⅰ Φ3/% K3/10-3μm2 R2 Dp-2-Ⅱ Φ4/% K4/10-3μm2 R2 N181_1 2.670 5 1.72 0.002 0.991 8 2.826 0 0.24 0.000 03 0.979 7 2.689 4 0.02 N181_2 2.822 5 1.58 0.002 0.958 1 2.697 5 0.32 0.000 05 0.987 7 2.801 3 0.02 均值 2.746 5 1.65 0.002 0.974 9 2.761 8 0.28 0.000 04 0.983 7 2.745 4 0.02 注:Dp-2-Ⅰ为中孔A段的分形维数;Dp-2-Ⅱ为中孔B段的分形维数;Φ3为中孔A段的孔隙占比;Φ4为中孔B段的孔隙占比。K3为中孔A段的渗透率贡献值;K4为中孔B段的渗透率贡献值 表 6 Ⅲ类分形维数计算结果
Table 6. Calculation results of class Ⅲ fractal dimension
样品编号 中孔A段(50~20 nm) 中孔B段(20~6 nm) Dp ra/μm Dp-2-Ⅰ Φ3/% K3/10-3μm2 R2 Dp-2-Ⅱ Φ4/% K4/10-3μm2 R2 Z225_2 2.9095 0.46 0.001 0.9813 2.7443 0.24 0.00010 0.9866 2.8526 0.02 表 7 孔隙度频率分布与渗透率贡献率
Table 7. Porosity frequency distribution and permeability contribution rate
样品编号 分类 大孔(>50 nm) 中孔(50~6 nm) 孔隙频率分布/% 渗透率贡献率/% 孔隙频率分布/% 渗透率贡献率/% L23_1 Ⅰ 87.476 99.949 12.524 0.051 L23_2 Ⅰ 82.763 99.502 17.237 0.498 L205_1 Ⅰ 82.747 99.553 17.253 0.447 L205_2 Ⅰ 86.639 99.807 13.361 0.193 Z143_1 Ⅰ 81.029 99.644 18.971 0.356 Z143_2 Ⅰ 80.000 99.382 20.000 0.618 Z225_1 Ⅰ 84.386 99.757 15.614 0.243 均值 83.577 99.656 16.423 0.344 N181_1 Ⅱ 44.100 86.121 55.900 13.879 N181_2 Ⅱ 26.800 78.665 73.200 21.335 均值 35.450 82.393 64.550 17.607 Z225_2 Ⅲ 22.222 86.250 77.778 13.750 -
[1] 付金华, 郭正权, 邓秀芹. 鄂尔多斯盆地西南地区上三叠统延长组沉积相及石油地质意义[J]. 古地理学报, 2005, 7(1): 34-44. doi: 10.3969/j.issn.1671-1505.2005.01.004Fu J H, Guo Z Q, Deng X Q. Sedimentary facies and petroleum geological significance of Yanchang Formation of Upper Triassic in southwest Ordos Basin[J]. Journal of Paleogeography, 2005, 7(1): 34-44(in Chinese with English abstract). doi: 10.3969/j.issn.1671-1505.2005.01.004 [2] 杨华, 李士祥, 刘显阳. 鄂尔多斯盆地致密油、页岩油特征及资源潜力[J]. 石油学报, 2013, 34(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201301000.htmYang H, Li S X, Liu X Y. Characteristics and resource prospects of tight oil and shale oil in Ordos Basin[J]. Acta Petrolei Sinica, 2013, 34(1): 1-11(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201301000.htm [3] 邹才能, 赵政璋, 杨华, 等. 陆相湖盆深水砂质碎屑流成因机制与分布特征: 以鄂尔多斯盆地为例[J]. 沉积学报, 2009, 27(6): 1065-1075. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200906007.htmZou C N, Zhao Z Z, Yang H, et al. Genetic mechanism and distribution of sandy debris flows in terrestrial lacustrine basin: Taking Ordos Basin as an example[J]. Acta Sedimentologica Sinica, 2009, 27(6): 1065-1075(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200906007.htm [4] 白斌, 朱如凯, 吴松涛, 等. 非常规油气致密储层微观孔喉结构表征新技术及意义[J]. 中国石油勘探, 2014, 19(3): 78-86. doi: 10.3969/j.issn.1672-7703.2014.03.010Bai B, Zhu R K, Wu S T, et al. New micro-throat structural characterization techniques for unconventional tight hydrocarbon reservoir[J]. China Petroleum Exploration, 2014, 19(3): 78-86(in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2014.03.010 [5] 周江羽, 袁艳斌, 李星. 地学分形研究中值得注意的几个问题[J]. 地质科技情报, 1999, 18(2): 93-96. doi: 10.3969/j.issn.1000-7849.1999.02.023Zhou J Y, Yuan Y B, Li X. Some noticeable problems in the study of geoscience fractal[J]. Geological Science and Technology Information, 1999, 18(2): 93-96 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-7849.1999.02.023 [6] 何琰, 吴念胜. 确定孔隙结构分形维数的新方法[J]. 石油实验地质, 1999, 21(4): 372-375. doi: 10.3969/j.issn.1001-6112.1999.04.018He Y, Wu N S. A new method for determining the fractal dimension of pore structure[J]. Petroleum Geology & Experiment, 1999, 21(4): 372-375(in Chinese with English abstract). doi: 10.3969/j.issn.1001-6112.1999.04.018 [7] 杨海, 孙卫, 明红霞, 等. 分形几何在致密砂岩储层微观孔隙结构研究中的应用: 以苏里格气田东南部上石盒子组盒8段为例[J]. 石油地质与工程, 2015, 29(6): 103-107. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHN201506028.htmYang H, Sun W, Ming H X, et al. Application of fractal geometry in the study of micro pore structure of tight sandstone reservoir: Taking He8 member of upper Shihezi Formation in the southeast of Sulige gas field as an example[J]. Petroleum Geology and Engineering, 2015, 29(6): 103-107(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYHN201506028.htm [8] 王瑞飞, 陈明强, 孙卫. 鄂尔多斯盆地延长组超低渗透砂岩储层微观孔隙结构特征研究[J]. 地质论评, 2008, 54(2): 270-277. doi: 10.3321/j.issn:0371-5736.2008.02.015Wang R F, Chen M Q, Sun W. The research of micro-pore structure in super-low permeability sandstone reservior of the Yanchang Formation in Ordos Basin[J]. Geological Review, 2008, 54(2): 270-277(in Chinese with English abstract). doi: 10.3321/j.issn:0371-5736.2008.02.015 [9] 尹志军, 盛国君, 王春光. 基于压汞法的煤岩各段孔隙的分形特征[J]. 金属矿山, 2011(9): 54-57. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201109018.htmYin Z J, Sheng G J, Wang C G. Fractal dimension of varied pore within coal based Mercury intrusion method[J]. Metal Mines, 2011(9): 54-57(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201109018.htm [10] 杨峰, 宁正福, 孔德涛, 等. 高压压汞法和氮气吸附法分析页岩孔隙结构[J]. 天然气地球科学, 2013, 24(3): 450-455. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201303002.htmYang F, Ning Z F, Kong D T, et al. Analysis of shale pore structure by high pressure mercury injection method and nitrogen adsorption method[J]. Natural Gas Geoscience, 2013, 24(3): 450-455(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201303002.htm [11] 刘凯, 石万忠, 王任, 等. 鄂尔多斯盆地杭锦旗地区盒1段致密砂岩孔隙结构分形特征及其与储层物性的关系[J]. 地质科技通报, 2021, 40(1): 57-68. doi: 10.19509/j.cnki.dzkq.2021.0102Liu K, Shi W Z, Wang R, et al. Pore structure fractal characteristics and its relationship with resevior properties of the first member of lower Shihezi Formation tight sandstone in Hangjinqi area, Ordos Basin[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 57-68(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0102 [12] Sing K S W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity(Recommendations 1984)[M]. [S. l. ]: Wiley-VCH Verlag GmbH & Co. KGaA, 1990. [13] 杨胜来. 油层物理学[M]. 北京: 石油工业出版社, 2004.Yang S L. Reservoir physics[M]. Beijing: Petroleum Industry Press, 2004(in Chinese). [14] 王伟, 宋渊娟, 黄静, 等. 利用高压压汞实验研究致密砂岩孔喉结构分形特征[J]. 地质科技通报, 2021, 40(4): 22-30. doi: 10.19509/j.cnki.dzkq.2021.0402Wang W, Song Y J, Huang J, et al. Fractal characteristics of pore-throat structurein tight sandstone using high-pressure mercury intrusion pososimetry[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 22-30(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0402 [15] Haber J. Manual on catalyst characterization(Recommendations 1991)[J]. Pure & Applied Chemistry, 1991, 63(9): 1227-1246. [16] Mandelbrot B B. On the geometry of homogeneous turbulence, with stress on the fractal dimension of the iso-surfaces of scalars[J]. Journal of Fluid Mechanics, 1975, 72(3): 401. [17] 王欣, 齐梅, 胡永乐, 等. 高压压汞法结合分形理论分析页岩孔隙结构[J]. 大庆石油地质与开发, 2015, 34(2): 165-169. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK201502033.htmWang X, Qi M, Hu Y L, et al. Analysis of shale pore structure by high pressure mercury injection combined with fractal theory[J]. Petroleum Geology & Oilfield Development in Daqing, 2015, 34(2): 165-169(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK201502033.htm [18] 张全培, 吴文瑞, 刘丽萍, 等. 鄂尔多斯盆地镇北地区延长组超低渗透储层孔隙结构及其分形特征[J]. 油气地质与采收率, 2020, 27(3): 20-31. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202003004.htmZhang Q P, Wu W R, Liu L P, et al. Pore structure and fractal characteristics of ultra-low permeability reservoir of Yanchang Formation inZhenbei area of Ordos Basin[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(3): 20-31(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202003004.htm [19] 吴浩, 刘锐娥, 纪友亮, 等. 致密气储层孔喉分形特征及其与渗流的关系: 以鄂尔多斯盆地下石盒子组盒8段为例[J]. 沉积学报, 2017, 35(1): 151-162. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201701015.htmWu H, Liu R E, Ji Y L, et al. Pore throat fractal characteristics of tight gas reservoir and its relationship with seepage: Taking He 8 member of Lower Shihezi Formation in Ordos Basin as an example[J]. Acta Sedimentologica Sinica, 2017, 35(1): 151-162(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201701015.htm [20] 曾联波, 高春宇, 漆家福, 等. 鄂尔多斯盆地陇东地区特低渗透砂岩储层裂缝分布规律及其渗流作用[J]. 中国科学: 地球科学, 2008, 38(增1): 41-47. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2008S1005.htmZeng L B, Gao C Y, Qi J F, et al. Fracture distribution law and seepage effect of ultra-low permeability sandstone reservoir in Longdong area of Ordos Basin[J]. Chinese Science : Geoscience, 2008, 38(S1): 41-47(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2008S1005.htm [21] Zhang Z, Weller A. Fractal dimension of pore-space geometry of an Eocene sandstone formation[J]. Geophysics, 2014, 79(6): D377-D387. [22] Lai J, Wang G, Wang Z, et al. A review on pore structure characterization in tight sandstones[J]. Earth-Science Reviews, 2018, 177: 436-457. [23] 黄金亮, 董大忠, 李建忠, 等. 陆相页岩储层孔隙分形特征: 以四川盆地三叠系须家河组为例[J]. 天然气地球科学, 2016, 27(9): 1611-1618. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201609007.htmHuang J L, Dong D Z, Li J Z, et al. Reservoir fractal characteristics of continentalshale: An example from Triassic Xujiahe Formation shale, Sichuan Basin, China[J]. Natural Gas Geoscience, 2016, 27(9): 1611-1618(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201609007.htm [24] 贺伟钟, 孚勋, 贺承祖, 等. 储层岩石孔隙的分形结构研究和应用[J]. 天然气工业, 2000, 20(2): 67-70. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200002024.htmHe W Z, Fu X, He C Z, et al. Research and application of fractal structure of reservoir rock pores[J]. Natural Gas Industry, 2000, 20(2): 67-70(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200002024.htm [25] 纪发华, 张一伟. 分形几何学在储层非均质性描述中的应用[J]. 石油大学学报: 自然科学版, 1994, 18(5): 161-168. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX405.030.htmJi F H, Zhang Y W. Application offractal geometry in reservoir heterogeneity description[J]. Journal of China University of Petroleum : Natural Science Edition, 1994, 18(5): 161-168 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX405.030.htm [26] 马新仿, 张士诚, 郎兆新. 储层岩石孔隙结构的分形研究[J]. 中国矿业, 2003, 12(9): 46-48. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA200309013.htmMa X F, Zhang S C, Lang Z X. Fractal research on pore structure in reservoir rock[J]. China Mining Magazine, 2003, 12(9): 46-48(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA200309013.htm [27] 赵会涛, 郭英海, 杜小伟, 等. 鄂尔多斯盆地高桥地区本溪组砂岩储层微观孔隙多重分形特征[J]. 地质科技通报, 2020, 39(6): 175-184. doi: 10.19509/j.cnki.dzkq.2020.0614Zhao H T, Guo Y H, Du X W, et al. Micro-pore multifractal characteristics of Benxi Formation sandstone reservoir in Gaoqiao area, Ordos Basin[J]. Bulletin of Geological Science and Technology, 2020, 39(6): 175-184(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0614 [28] Rouquerol J, Avnir D, Fairbridge C W, et al. Recommendations for the characterization of porous solids[J]. Pure and Applied Chemistry, 1994, 66(8): 1739-1758. [29] 王域辉. 分形在石油勘探开发中的应用[J]. 地质科技情报, 1993, 12(1): 101-104. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ199301023.htmWang Y H. Application of fractal in petroleum exploration and development[J]. Geological Science and Technology Information, 1993, 12(1): 101-104 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ199301023.htm