留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中国北方农牧交错带土地沙化区典型植物的雨季水分来源

黄鹏 周爱国 马传明 刘左 张泽琛 白耀楠

黄鹏, 周爱国, 马传明, 刘左, 张泽琛, 白耀楠. 中国北方农牧交错带土地沙化区典型植物的雨季水分来源[J]. 地质科技通报, 2023, 42(2): 336-346. doi: 10.19509/j.cnki.dzkq.tb20210474
引用本文: 黄鹏, 周爱国, 马传明, 刘左, 张泽琛, 白耀楠. 中国北方农牧交错带土地沙化区典型植物的雨季水分来源[J]. 地质科技通报, 2023, 42(2): 336-346. doi: 10.19509/j.cnki.dzkq.tb20210474
Huang Peng, Zhou Aiguo, Ma Chuanming, Liu Zuo, Zhang Zechen, Bai Yaonan. Water sources of typical plants during the rainy season in desertification areas of the agro-pastoral ecotone in northern China[J]. Bulletin of Geological Science and Technology, 2023, 42(2): 336-346. doi: 10.19509/j.cnki.dzkq.tb20210474
Citation: Huang Peng, Zhou Aiguo, Ma Chuanming, Liu Zuo, Zhang Zechen, Bai Yaonan. Water sources of typical plants during the rainy season in desertification areas of the agro-pastoral ecotone in northern China[J]. Bulletin of Geological Science and Technology, 2023, 42(2): 336-346. doi: 10.19509/j.cnki.dzkq.tb20210474

中国北方农牧交错带土地沙化区典型植物的雨季水分来源

doi: 10.19509/j.cnki.dzkq.tb20210474
基金项目: 

中国地质调查局地质调查项目 DD20190820-W03

中央高校基本科研业务费 CUGCJ1822

详细信息
    作者简介:

    黄鹏(1996—),男,现正攻读地下水科学与工程博士学位,主要从事生态地质、同位素水文地质方面的研究工作。E-mail: hpses@cug.edu.cn

  • 中图分类号: X141

Water sources of typical plants during the rainy season in desertification areas of the agro-pastoral ecotone in northern China

  • 摘要:

    中国北方农牧交错带是中东部地区重要的生态安全屏障, 由于其系统结构脆弱、生态环境问题多发、土地沙化严重, 开展生态修复工作显得十分重要。植物-土壤水分关系作为土地沙化区生态水文过程的重要组成部分, 研究二者的转化过程对于了解植物吸水模式、确定生态修复的首选植物种非常关键。以河北省张家口市康保县北部为例, 基于雨季的大气降水、地下水、土壤水和植物水的氢氧同位素特征, 分析了主要植物的吸水层位、生态位宽度和水分竞争关系。结果表明, 柠条以吸收80~100 cm深度土壤水为主, 吸水比例最大可达87.7%, 油菜花以吸收0~20 cm深度土壤水为主, 吸水比例最大可达82.3%, 狼针的吸水层位与土壤含水率有关, 在含水率较高的深度吸水比例更大, 栉叶蒿的吸水深度较为均衡, 各植物种的生态位宽度均较大, 但部分植物间存在较强的水分竞争关系。本研究为中国北方农牧交错带土地沙化区的植物水源来源识别和生态修复提供了科学依据。

     

  • 图 1  康保县多年逐月平均气温与降水量分布图

    Figure 1.  Distribution of multi-year monthly average temperature and precipitation in Kangbao County

    图 2  研究区位置、高程与样方分布图

    Figure 2.  Map showing the location and elevation of the study area with quadrat distribution

    图 3  研究区浅层包气带结构照片

    Figure 3.  Photographs showing the structure of the shallow vadose zone in the study area

    图 4  土壤剖面含水率变化

    Figure 4.  Variation of soil water content across the soil profile

    图 5  研究区大气降水、地下水、土壤水、植物水样品的δD和δ18O关系

    Figure 5.  Relationships between δD and δ18O values of rainfall, groundwater, soil water, and plant xylem water samples in the study area

    图 6  不同生境地下水、土壤水、植物水样品和大气降水样品δD和δ18O组成

    Figure 6.  δD and δ18O values of groundwater, soil water, and plant xylem water samples from the four habitats and rainfall samples

    表  1  主要植物种特征

    Table  1.   Characteristics of the main plant species

    中文名 拉丁学名 属种 生长周期 分布范围
    狼针草 Stipa baicalensis Roshev. 禾本目针茅属 多年生草本植物,花期7-8月份,果期8-9月份 主要分布于温带干旱、半干旱地区草甸草原
    柠条锦鸡儿 Caragana korshinskii Kom. 蔷薇目锦鸡儿属 多年生木本植物,花期5月份,果期6月份 主要分布于干旱地区半固定、固定沙地
    油菜花 Brassica campestris L. 罂粟目芸薹属 一年生草本植物,花期1-3月份 主要分布于长江流域
    栉叶蒿 Neopallasia pectinata (Pall.) Poljak. 桔梗目栉叶蒿属 一年或多年生草本植物,花果期7-9月份 主要分布于荒漠、河谷砾石地与山坡荒地
    下载: 导出CSV

    表  2  样方的位置、优势植物与取样日期

    Table  2.   Location, dominant plants, and sampling date of each quadrat

    样方 坐标 生境 优势植物 取样日期
    Q1 114°36′21″E,42°06′03″N 轻度沙化低地 狼针、柠条、油菜花 2020年8月11日
    Q2 114°33′11″E,42°02′04″N 中度沙化沙丘 狼针、柠条、油菜花、栉叶蒿 2020年8月12日
    Q3 114°39′10″E,42°02′26″N 轻度沙化沙丘 狼针、柠条、油菜花 2020年8月14日
    Q4 114°40′40″E,42°09′40″N 中度沙化低地 狼针、柠条 2020年8月16日
    下载: 导出CSV

    表  3  各潜在水源对植物用水来源的贡献率

    Table  3.   Contribution of each potentiol water sources to plant water uptake

    样方 植物 δ18O/‰ 潜在水源的贡献率/%
    [0, 20) cm土壤水 [20, 40) cm土壤水 [40, 60) cm土壤水 [60, 80) cm土壤水 [80, 100] cm土壤水
    Q1 狼针 -4.47 12.2 12.5 17.4 25.4 32.6
    柠条 -2.08 3.6 3.9 5.8 8.2 78.5
    油菜花 0.59 37.4 36.7 13.9 8.1 4.0
    Q2 狼针 -6.03 21.4 24.8 25.1 18.7 9.9
    柠条 -1.65 2.1 2.7 2.9 4.5 87.7
    油菜花 -0.80 40.7 24.0 21.0 9.6 4.7
    栉叶蒿 -2.36 15.1 19.1 19.8 26.5 19.5
    Q3 狼针 -3.32 9.5 12.1 15.8 30.3 32.3
    柠条 -5.60 31.2 29.5 20.6 10.6 8.1
    油菜花 -1.66 82.3 9.2 4.8 2.1 1.6
    Q4 狼针 -6.05 70.5 25.0 2.4 1.2 0.9
    柠条 -2.29 5.9 6.2 11.3 31.2 45.4
    下载: 导出CSV

    表  4  各植物生态位宽度指数

    Table  4.   Ecological niche width index of each plant

    植物种类 狼针 柠条 油菜花 栉叶蒿
    NBI 0.36~0.93 0.26~0.82 0.29~0.72 0.97
    下载: 导出CSV

    表  5  各样方植物间的相似性比例指数

    Table  5.   Proportional similarity index among plants in each quadrat

    样方 Q1 Q2 Q3 Q4
    柠条与狼针 0.54 0.22 0.56 0.17
    柠条与油菜花 0.25 0.17 0.49 -
    狼针与油菜花 0.51 0.81 0.27 -
    栉叶蒿与柠条 - 0.32 - -
    栉叶蒿与狼针 - 0.83 - -
    栉叶蒿与油菜花 - 0.68 - -
    下载: 导出CSV
  • [1] 边俊景, 孙自永, 周爱国, 等. 干旱区植物水分来源的D、18O同位素示踪研究进展[J]. 地质科技情报, 2009, 28(4): 117-120. doi: 10.3969/j.issn.1000-7849.2009.04.021

    Bian J J, Sun Z Y, Zhou A G, et al. Advances in the D and 18O isotope of water source of plants in arid areas[J]. Geological Science and Technology Information, 2009, 28(4): 117-120(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7849.2009.04.021
    [2] Wang Y G, Li Y, Xiao D N. Catchment scale spatial variability of soil salt content in agricultural oasis, Northwest China[J]. Envrionmental Geology, 2008, 56(2): 439-446.
    [3] Huang Y, Wang Y D, Zhao Y, et al. Spatiotemporal distribution of soil moisture and salinity in the Taklimakan Desert highway shelterbelt[J]. Water, 2015, 7(8): 4343-4361.
    [4] Fan H X, Xu L G, Wang X L, et al. Relationship between vegetation community distribution patterns and environmental factors in typical wetlands of Poyang Lake, China[J]. Wetlands, 2019, 39(S1): 75-87. doi: 10.1007/s13157-017-0903-7
    [5] Cui Y Q, Niu L Q, Xiang J L, et al. Water uptake from different soil depths for desert plants in saline lands of Dunhuang, NW China[J]. Frontiers in Environmental Science, 2021, 8: 585464. doi: 10.3389/fenvs.2020.585464
    [6] Pan Y X, Wang X P, Ma X Z, et al. The stable isotopic composition variation characteristics of desert plants and water sources in an artificial revegetation ecosystem in Northwest China[J]. Catena, 2020, 189: 104499. doi: 10.1016/j.catena.2020.104499
    [7] Zhang R, Wang D, Yang Z Q, et al. Changes in rainfall partitioning and its effect on soil water replenishment after the conversion of croplands into apple orchards on the Loess Plateau[J]. Agriculture Ecosystems & Environment, 2021, 312: 107342.
    [8] 刘保清, 刘志民, 钱建强, 等. 科尔沁沙地南缘主要固沙植物旱季水分来源[J]. 应用生态学报, 2017, 28(7): 2093-2101. doi: 10.13287/j.1001-9332.201707.030

    Liu B Q, Liu Z M, Qian J Q, et al. Water sources of dominant sand-bindong plants in dry season in southern Horqin Sandy Land, China[J]. Chinese Journal of Applied Ecology, 2017, 28(7): 2093-2101(in Chinese with English abstract). doi: 10.13287/j.1001-9332.201707.030
    [9] Yang L, Wei W, Chen L D, et al. Response of temporal variation of soil moisture to vegetation restoration in semi-arid Loess Plateau, China[J]. Catena, 2014, 115: 123-133. doi: 10.1016/j.catena.2013.12.005
    [10] Priyadarshini K V R, Prins H H T, de Bie S, et al. Seasonality of hydraulic redistribution by trees to grasses and changes in their water-source use that change tree-grass interactions[J]. Ecohydrology, 2016, 9(2): 218-228. doi: 10.1002/eco.1624
    [11] 吕婷. 黄土丘陵区典型天然灌丛和人工灌丛优势植物土壤水分利用策略[D]. 陕西咸阳: 西北农林科技大学, 2017.

    Lü T. Soil water use strategy of dominant species in typical natural and planted shrubs in loess hilly region[D]. Xianyang Shaanxi: Northwest A & F University, 2017(in Chinese with English abstract).
    [12] Rossatto D R, Sternberg L D L, Franco A C. The partitioning of water uptake between growth forms in a Neotropical savanna: Do herbs exploit a third water source niche?[J]. Plant Biology, 2013, 15(1): 84-92. doi: 10.1111/j.1438-8677.2012.00618.x
    [13] Geissler K, Heblack J, Uugulu S, et al. Partitioning of water between differently sized shrubs and potential groundwater recharge in a semiarid savanna in Namibia[J]. Frontiers in Plant Science, 2019, 10: 1411. doi: 10.3389/fpls.2019.01411
    [14] Churakova-Sidorova O V, Lienert S, Timofeeva G, et al. Measured and modelled source water delta O-18 based on tree-ring cellulose of larch and pine trees from the permafrost zone[J]. Iforest-Biogeosciences and Forestry, 2020, 13: 224-229. doi: 10.3832/ifor3212-013
    [15] Zhu Y J, Wang G J, Xin Z M, et al. Water use strategy of Ammopiptanthus mongolicus community in a drought year on the Mongolian Plateau[J]. Journal of Plant Ecology, 2020, 13(6): 793-800. doi: 10.1093/jpe/rtaa064
    [16] Liu J Z, Wu H W, Cheng Y, et al. Stable isotope analysis of soil and plant water in a pair of natural grassland and understory of planted forestland on the Chinese Loess Plateau[J]. Agricultural Water Management, 2021, 249: 106800. doi: 10.1016/j.agwat.2021.106800
    [17] Ding Y L, Nie Y P, Chen H S, et al. Water uptake depth is coordinated with leaf water potential, water-use efficiency and drought vulnerability in karst vegetation[J]. New Phytologis, 2021, 229(3): 1339-1353. doi: 10.1111/nph.16971
    [18] Chen Z X, Wang G H, Pan Y H, et al. Water use patterns differed notably with season and slope aspect for Caragana korshinskii on the Loess Plateau of China[J]. Catena, 2021, 198: 1050258.
    [19] Zeng X M, Xu X L, Yi R Z, et al. Sap flow and plant water sources for typical vegetation in a subtropical humid karst area of Southwest China[J]. Hydrological Processes, 2021, 35(3): e14090.
    [20] 聂云鹏, 陈洪松, 王克林. 土层浅薄地区植物水分来源研究方法[J]. 应用生态学报, 2010, 21(9): 2427-2433. doi: 10.13287/j.1001-9332.2010.0320

    Nie Y P, Chen H S, Wang K L. Methods for determining plant water source in thin soil region: A review[J]. Chinese Journal of Applied Ecology, 2010, 21(9): 2427-2433(in Chinese with English abstract). doi: 10.13287/j.1001-9332.2010.0320
    [21] Ehleringer J R, Dawson T E. Water-uptake by plants-perspectives from stable isotope composition[J]. Plant Cell and Environment, 1992, 15(9): 1073-1082. doi: 10.1111/j.1365-3040.1992.tb01657.x
    [22] 邓文平, 余新晓, 贾国栋, 等. 雨季北京山区3种典型植物的水分来源[J]. 干旱区研究, 2014, 31(4): 649-657. doi: 10.13866/j.azr.2014.04.10

    Deng W P, Yu X X, Jia G D, et al. Water sources of three typical plants in the Beijing mountain areas in rainy season[J]. Arid Zone Research, 2014, 31(4): 649-657(in Chinese with English abstract). doi: 10.13866/j.azr.2014.04.10
    [23] 聂云鹏, 陈洪松, 王克林, 等. 采用稳定同位素技术判定喀斯特地区植物水分来源的挑战与可能应对方案[J]. 应用生态学报, 2017, 28(7): 2361-2368. doi: 10.13287/j.1001-9332.201707.017

    Nie Y P, Chen H S, Wang K L, et al. Challenges and probable solutions for using stable isotope techniques to identify plant water sources in karst regions: A review[J]. Chinese Journal of Applied Ecology, 2017, 28(7): 2361-2368(in Chinese with English abstract). doi: 10.13287/j.1001-9332.201707.017
    [24] 曾巧, 马剑英. 黑河流域不同生境植物水分来源及环境指示意义[J]. 冰川冻土, 2013, 35(1): 148-155. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201301018.htm

    Zeng Q, Ma J Y. Plant water sources of different habitats and its environmental indication in Heihe River Basin[J]. Journal of Glaciology and Geocryology, 2013, 35(1): 148-155(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201301018.htm
    [25] 李盼根, 王震洪, 李赫, 等. 基于稳定氢氧同位素的黄土高原不同生长年限油用牡丹水分来源研究[J]. 水土保持通报, 2020, 40(1): 108-115. doi: 10.13961/j.cnki.stbctb.2020.01.016

    Li P G, Wang Z H, Li H, et al. Analysis on sources of soil water absorbed by oil peonies of different ages based on stable isotopes of hydrogen and oxygen found on Loess Plateau[J]. Bulletin of Soil and Water Conservation, 2020, 40(1): 108-115(in Chinese with English abstract). doi: 10.13961/j.cnki.stbctb.2020.01.016
    [26] 孙自永, 王俊友, 葛孟琰, 等. 基于水稳定同位素的地下水型陆地植被识别: 研究进展、面临挑战及未来研究展望[J]. 地质科技通报, 2020, 39(1): 11-20. doi: 10.19509/j.cnki.dzkq.2020.0102

    Sun Z Y, Wang J Y, Ge M Y, et al. Isotopic approaches to identify groundwater dependent terrestrial vegetation: Progress, challenges, and prospects for future research[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 11-20(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0102
    [27] 刘冰. 基于稳定性同位素技术荒漠植物红砂水分来源的研究[D]. 呼和浩特: 内蒙古农业大学, 2017.

    Liu B. Research on water source of Reaumuria soongorica based on the stable isotope technique[D]. Hohhot: Inner Mongolia Agricultural University, 2017(in Chinese with English abstract).
    [28] Phillips D L, Inger R, Bearhop S, et al. Best practices for use of stable isotope mixing models in food-web studies[J]. Canadian Journal of Zoology, 2014, 92(10): 823-835. doi: 10.1139/cjz-2014-0127
    [29] Phillips D L, Gregg J W. Source partitioning using stable isotopes: Coping with too many sources[J]. Oecologia, 2003, 136(2): 261-269. doi: 10.1007/s00442-003-1218-3
    [30] 赵春, 张勇勇, 赵文智, 等. 稳定同位素在干旱区水分传输过程的研究进展[J]. 生态科学, 2020, 39(5): 256-264. https://www.cnki.com.cn/Article/CJFDTOTAL-STKX202005031.htm

    Zhao C, Zhang Y Y, Zhao W Z, et al. Application of stable isotopes on water exchange in the arid region: A review[J]. Ecological Science, 2020, 39(5): 256-264(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-STKX202005031.htm
    [31] 黄晓宇. 基于稳定同位素技术的宁夏河东沙地柠条水分利用策略研究[D]. 银川: 宁夏大学, 2020.

    Huang X Y. Study on water use strategies of Caragana korshinskii in Ningxia Hedong sandy land based on stable isotope technology[D]. Yinchuan: Ningxia University, 2020(in Chinese with English abstract).
    [32] Zhao L, Li W J, Yang G, et al. Moisture, temperature, and salinity of a typical desert plant (Haloxylon ammodendron) in an arid oasis of Northwest China[J]. Sustainability, 2021, 13(4): 1908. doi: 10.3390/su13041908
    [33] 牛家昱. 旱地冬小麦品种更替过程中根系吸水能力的变化及其机制[D]. 陕西咸阳: 西北农林科技大学, 2021.

    Niu J Y. Change of water uptake by roots and its mechanism during the replacement process of dry-land winter wheat[D]. Xianyang Shaanxi: Northwest A & F University, 2021(in Chinese with English abstract).
    [34] 李会杰. 黄土高原林地深层土壤根系吸水过程及其对水分胁迫和土壤碳输入的影响[D]. 陕西咸阳: 西北农林科技大学, 2019.

    Li H J. Root water uptake process in deep soil for forest growing on the loess plateau and its effect on water stress and soil carbon input[D]. Xianyang Shaanxi: Northwest A & F University, 2019(in Chinese with English abstract).
    [35] 古力米热·哈那提, 王光焰, 张音, 等. 干旱区间歇性生态输水对地下水位与植被的影响机理研究[J]. 干旱区地理, 2018, 41(4): 726-733. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL201804007.htm

    Hanati G, Wang G Y, Zhang Y, et al. Influence mechanism of intermittent ecological water conveyance on groundwater level and vegetation in arid land[J]. Arid Land Geography, 2018, 41(4): 726-733(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL201804007.htm
    [36] Huo G P, Zhao X N, Gao X D, et al. Seasonal water use patterns of rainfed jujube trees in stands of different ages under semiarid plantations in China[J]. Agriculture Ecosystem & Environment, 2018, 265: 392-401.
    [37] Huang X T, Luo G P, Lü N N, et al. Spatio-temporal patterns of grassland evapotranspiration and water use efficiency in arid areas[J]. Ecological Research, 2017, 32(4): 523-535. doi: 10.1007/s11284-017-1463-2
    [38] Nippert J B, Butler J J. Kluitenberg G J, et al. Patterns of Tamarix water use during a record drought[J]. Oecologia, 2010, 162(2): 283-292. doi: 10.1007/s00442-009-1455-1
    [39] 农业部. 农业部关于北方农牧交错带农业结构调整的指导意见[EB/OL]. http://www.moa.gov.cn/nybgb/2016/shierqi/201711/t20171125_5919525.htm,2017-11-25/2021-5-5.

    Ministry of Agriculture and Rural Affairs. Opinions about adjustment of agricultural structure of the farming-pasture zone in North China[EB/OL]. http://www.moa.gov.cn/nybgb/2016/shierqi/201711/t20171125_5919525.htm,2017-11-25/2021-5-5(in Chinese).
    [40] 裴宏伟, 王飞枭, 张红娟. 中国北方农牧交错带水资源问题荟萃分析[J]. 河北建筑工程学院学报, 2020, 38(4): 83-90. https://www.cnki.com.cn/Article/CJFDTOTAL-HBJZ202004016.htm

    Pei H W, Wang F X, Zhang H J. Review on water resources evolution of farming-pastoral ecotone in North China[J]. Journal of Hebei Institute of Architecture and Civil Engineering, 2020, 38(4): 83-90(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HBJZ202004016.htm
    [41] 卢远, 华璀, 王娟. 东北农牧交错带典型区土地利用变化及其生态效应[J]. 中国人口·资源与环境, 2006, 16(2): 58-62. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGRZ200602012.htm

    Lu Y, Hua C, Wang J. Land use change and its ecologic effect in typical region of the farming-pasture zone in northeastern China[J]. China Population·Resources and Environment, 2006, 16(2): 58-62(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGRZ200602012.htm
    [42] Xiang D, Verbruggen E, Hu Y J, et al. Land use influences arbuscular mycorrhizal fungal communities in the farming-pastoral ecotone of northern China[J], New Phytologist, 2014, 204(4): 968-978.
    [43] 徐露, 张丹, 向宇国, 等. 季节性干旱区紫色土坡耕地土壤水分对降雨的响应[J]. 水土保持学报, 2020, 34(6): 37-45. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS202006006.htm

    Xu L, Zhang D, Xiang Y G, et al. Response of soil moisture to rainfall in sloping farmland with purple soil in the seasonal arid area[J]. Journal of Soil and Water Conservation, 2020, 34(6): 37-45(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS202006006.htm
    [44] 刘孟竹, 张红娟, 王彦芳, 等. 基于土地利用的北方农牧交错带生境质量研究[J]. 水土保持研究, 2021, 28(3): 156-162. https://www.cnki.com.cn/Article/CJFDTOTAL-STBY202103023.htm

    Liu M Z, Zhang H J, Wang Y F, et al. Characteristics of habitat quality in the agro-pastoral ecotone of northern China based on land use[J]. Research of Soil and Water Conservation, 2021, 28(3): 156-162(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-STBY202103023.htm
    [45] 苑依笑. 坝上地区风蚀对农田土壤理化性质的影响: 以康保县为例[D]. 石家庄: 河北师范大学, 2018.

    Yuan Y X. Influence of wind erosion on physicochemical properties of farmland soil in Bashang District: A case study on Kangbao County[D]. Shijiazhuang: Hebei Normal University, 2018(in Chinese with English abstract).
    [46] 董大鹏, 徐青, 马佳明, 等. 康保县土地沙漠化动态监测研究[J]. 林业与生态科学, 2020, 35(2): 157-163. https://www.cnki.com.cn/Article/CJFDTOTAL-HBLY202002005.htm

    Dong D P, Xu Q, Ma J M, et al. Research on dynamic monitoring of land desertification in Kangbao County[J]. Forestry and Ecological Sciences, 2020, 35(2): 157-163(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HBLY202002005.htm
    [47] 白耀楠, 刘宏伟, 马震, 等. 康保县北部土地沙化特征及其地质影响因素[J]. 地质调查与研究, 2020, 43(3): 212-217. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ202003002.htm

    Bai Y N, Liu H W, Ma Z, et al. Characteristics of land desertification and its geological influencing factors in northern Kangbao County[J]. Geological Survey and Research, 2020, 43(3): 212-217(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ202003002.htm
    [48] 李晓敏. 河北省康保县浅层土壤地球化学特征及其环境地质意义[D]. 石家庄: 河北地质大学, 2017.

    Li X M. Shallow soil geochemical characteristics and environment geological significance of Kangbao in Hebei[D]. Shijiazhuang: Hebei GEO University, 2017(in Chinese with English abstract).
    [49] 吴云霞, 蔡奎, 吕凤军, 等. 冀西北农牧交错带表层土壤营养元素特征研究: 以河北省康保县为例[J]. 干旱区资源与环境, 2019, 33(1): 84-89. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH201901013.htm

    Wu Y X, Cai K, Lü F J, et al. Characteristics of nutrition elements in ecotone of agriculture animal husbandry in KangbaoCounty, Hebei Province[J]. Journal of Arid Land Resources and Environment, 2019, 33(1): 84-89(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH201901013.htm
    [50] 陈松, 孙华, 陈振雄, 等. 基于混合像元分解方法的康保县植被覆盖度估测[J]. 中南林业调查规划, 2019, 38(1): 39-44. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLDF201901010.htm

    Chen S, Sun H, Chen Z X, et al. Estimation of vegetation coverage of Kangbao County based on spectral unmixing analysis methods[J]. Central South Forest and Planning, 2019, 38(1): 39-44(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZLDF201901010.htm
    [51] 董佳慧, 陈涛, 王西平. 康保县1987-2016年植被覆盖度动态变化分析[J]. 地理空间信息, 2020, 18(2): 99-102, 8. https://www.cnki.com.cn/Article/CJFDTOTAL-DXKJ202002028.htm

    Dong J H, Chen T, Wang X P. Dynamic change analysis of vegetation coverage in Kangbao County from 1987 to 2016[J]. Geospatial Information, 2020, 18(2): 99-102, 8(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXKJ202002028.htm
    [52] Shi Y, Jia W X, Zhu G F, et al. Hydrogen and oxygen isotope characteristics of water and the recharge sources in subalpine of Qilian Mountains, China[J]. Polish Journal of Environmental Studies, 2021, 30(3): 2325-2339.
    [53] 马斌, 梁杏, 林丹, 等. 应用2H、18O同位素示踪华北平原石家庄包气带土壤水入渗补给及年补给量确定[J]. 地质科技情报, 2014, 33(3): 163-168. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201403023.htm

    Ma B, Liang X, Lin D. Application of continuous wavelet transform to correct barometric and tidal response in the water table[J]. Geological Science and Technology Information, 2014, 33(3): 163-168(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201403023.htm
    [54] 傅思华, 胡顺军, 李浩, 等. 古尔班通古特沙漠南缘梭梭(Haloxylon ammodendron)群落优势植物水分来源[J]. 中国沙漠, 2018, 38(5): 1024-1032. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSS201805015.htm

    Fu S H, Hu S J, Li H. et al. Water sources of dominant plants in Haloxylon ammodendron community at the southern edge of Gurbantunggut Desert[J]. Journal of Desert Research, 2018, 38(5): 1024-1032(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSS201805015.htm
    [55] 郭少峰, 贾德彬, 王蓉, 等. 内蒙古正蓝旗大气降水氢氧稳定同位素特征分析[J]. 中国科技论文, 2015, 10(21): 2580-2584. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKZX201521022.htm

    Guo S F, Jia D B, Wang R, et al. Analysis of precipitation characteristics of hydrogen and oxygen stable isotope in Zhenglanqi area of Inner Mongolia[J]. China Science Paper, 2015, 10(21): 2580-2584(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZKZX201521022.htm
    [56] 苏鹏燕. 基于氢氧稳定同位素的黄河兰州段河岸植物水分来源研究[D]. 兰州: 西北师范大学, 2021.

    Su P Y. Research on water sources of riparian plants based on stable hydrogen and oxygen isotopes in Lanzhou section of the Yellow River, China[D]. Lanzhou: Northwest Normal University, 2021(in Chinese with English abstract).
    [57] Moreno-Gutierrez C, Dawson T E, Nicolas E, et al. Isotopes reveal contrasting water use strategies among coexisting plant species in a Mediterranean ecosystem[J]. New Phytologist, 2012, 196(2): 489-496.
    [58] Tang K L, Feng X H, The effect of soil hydrology on the oxygen and hydrogen isotopic compositions of plants' source water[J]. Earth and Planetary Science Letters, 2001, 185(3/4): 355-367.
    [59] Levins R, Evolution in changing environments[M]. Princeton: Princeton University Press, 1968.
    [60] Pannek A, Manthey M, Diemann M. Comparing resource-based and co-occurrence-based methods for estimating species niche breadth[J]. Journal of Vegetation Science, 2016, 27(3): 596-605.
    [61] Granot I, Shenkar N, Belmaker J. Habitat niche breadth predicts invasiveness in solitary ascidians[J]. Ecology and Evolution, 2017, 7(19): 7838-7847.
    [62] Yang B, Wen X F, Sun X M, et al. Seasonal variations in depth of water uptake for a subtropical coniferous plantation subjected to drought in an East Asian monsoon region[J]. Agricultural and Forest Meteorology, 2015, 201: 218-228.
    [63] West A G, Dawson T E, February E C, et al. Diverse functional responses to drought in a Mediterranean-type shrubland in South Africa[J]. New Phytologist, 2012, 195(2): 396-407.
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  609
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-02

目录

    /

    返回文章
    返回