留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于数字岩心技术的岩石孔渗特征研究: 以海外J油田孔隙型碳酸盐岩油藏为例

赵华伟 廉培庆 易杰 段太忠 张文彪 刘彦锋

赵华伟, 廉培庆, 易杰, 段太忠, 张文彪, 刘彦锋. 基于数字岩心技术的岩石孔渗特征研究: 以海外J油田孔隙型碳酸盐岩油藏为例[J]. 地质科技通报, 2023, 42(2): 347-355. doi: 10.19509/j.cnki.dzkq.tb20210522
引用本文: 赵华伟, 廉培庆, 易杰, 段太忠, 张文彪, 刘彦锋. 基于数字岩心技术的岩石孔渗特征研究: 以海外J油田孔隙型碳酸盐岩油藏为例[J]. 地质科技通报, 2023, 42(2): 347-355. doi: 10.19509/j.cnki.dzkq.tb20210522
Zhao Huawei, Lian Peiqing, Yi Jie, Duan Taizhong, Zhang Wenbiao, Liu Yanfeng. A study of petrophysical properties based on digital core technology: A case study of a porous carbonate reservoir in the overseas J Oilfield[J]. Bulletin of Geological Science and Technology, 2023, 42(2): 347-355. doi: 10.19509/j.cnki.dzkq.tb20210522
Citation: Zhao Huawei, Lian Peiqing, Yi Jie, Duan Taizhong, Zhang Wenbiao, Liu Yanfeng. A study of petrophysical properties based on digital core technology: A case study of a porous carbonate reservoir in the overseas J Oilfield[J]. Bulletin of Geological Science and Technology, 2023, 42(2): 347-355. doi: 10.19509/j.cnki.dzkq.tb20210522

基于数字岩心技术的岩石孔渗特征研究: 以海外J油田孔隙型碳酸盐岩油藏为例

doi: 10.19509/j.cnki.dzkq.tb20210522
基金项目: 

中国科学院战略先导A项目子课题 XDA14010204

中国石油化工股份有限公司科技项目 P20077kxjgz

详细信息
    作者简介:

    赵华伟(1989— ), 男,高级工程师,主要从事油藏工程及数值模拟方面的研究工作。E-mail: zhaohw_2011@163.com

  • 中图分类号: P628

A study of petrophysical properties based on digital core technology: A case study of a porous carbonate reservoir in the overseas J Oilfield

  • 摘要:

    走向海外是解决我国能源安全问题的必由之路。但海外油气藏评价往往缺乏第一手岩心资料, 使得储层孔隙结构和渗流规律认识不清, 影响评价效果。以海外J油田孔隙型碳酸盐岩油藏为例, 应用数字岩心技术开展油气藏孔渗特征研究。①以不同流动单元的铸体薄片图像作为输入数据, 经过中值滤波和阈值分割预处理后, 基于马尔科夫链蒙特卡洛数值重构算法构建数字岩心; ②分析孔喉分布、孔喉连通性、孔隙度特征; ③基于格子玻尔兹曼模拟方法开展单相和油水两相流动模拟, 计算数字岩心的绝对渗透率和相对渗透率曲线。结果表明, 构建的三维数字岩心能够刻画不同流动单元孔隙型碳酸盐岩的孔喉半径分布及孔喉连通程度的差异化特征。数字岩心孔隙度与铸体薄片孔隙度吻合度高, 数字岩心渗透率与真实岩心渗透率存在较好的正相关关系, 且符合真实岩心所属的流动单元。油水两相稳态流动模拟计算的相对渗透率曲线体现了不同流动单元的两相渗流能力差异, 可作为数值模拟输入条件, 以及估算油藏采收率。数字岩心分析与物理实验结果吻合良好, 证明了该方法的可靠性。为岩心资料稀缺条件下油气藏表征和渗流特征分析提供新的思路, 对油气藏精细描述具有重要的参考价值。

     

  • 图 1  研究区典型样品铸体薄片图像(蓝色表示孔隙)

    Figure 1.  Typical thin section images of target rock samples

    图 2  薄片分析孔隙度与岩心实测孔隙度交会图

    Figure 2.  Crossplot of thin section porosity and actual core porosity

    图 3  铸体薄片图像二值化分割处理

    Figure 3.  Binarized segmentation processing procedure of the thin section images

    图 4  MCMC算法邻域系统分解示意图(i, j, k表示x, y, z方向的网格坐标)

    Figure 4.  Schematic diagram of neighborhood segmentation in the MCMC algorithm

    图 5  重构的数字岩心三维结构和切片图

    Figure 5.  Three-dimensional structure and slices chart of the reconstructed digital core

    图 6  数字岩心孔喉半径分布图

    Figure 6.  Pore throat radius distribution graph of the digital cores

    图 7  数字岩心孔隙连通结构图

    Figure 7.  Connectivity structure chart of the digital cores

    图 8  数字岩心孔隙度特征

    Figure 8.  Porosity characteristics of the digital cores

    图 9  数字岩心渗透率及流动单元

    Figure 9.  Permeability and flow units of the digital cores

    图 10  不同流动单元的油水两相相对渗透率曲线

    Figure 10.  Oil-water two-phase relative permeability curves of different flow units

    表  1  铸体薄片的基本参数

    Table  1.   Fundamental parameters of selected thin section images

    序号 深度/m 流动单元 孔隙度/% 渗透率/10-3 μm2 水平像素数 垂直像素数 图像分辨率/mm
    1 5 126 16.7 432 868 650 0.025
    2 5 230 17.7 830 994 745 0.011
    3 5 310 25.1 3 620 870 652 0.025
    4 5 311 10.9 2 440 1 123 838 0.019
    5 5 409 21.5 3 330 850 636 0.025
    6 5 132 19.1 85.5 868 650 0.013
    7 5 162 14.1 19.0 868 650 0.025
    8 5 164 14.8 32.9 868 650 0.013
    9 5 309 23.4 852 870 652 0.025
    10 5 322 21.3 572 990 739 0.006
    11 5 351 21.8 917 870 652 0.025
    12 5 360 26.4 260 870 652 0.025
    13 5 363 20.2 360 870 652 0.025
    14 5 285 13.3 4.53 850 636 0.025
    15 5 306 14.1 5.35 870 652 0.013
    16 5 316 14.8 2.09 941 702 0.006
    下载: 导出CSV
  • [1] 王志刚, 蒋庆哲, 董秀成, 等. 中国油气产业发展分析与展望报告蓝皮书(2019-2020)[M]. 北京: 中国石化出版社, 2020.

    Wang Z G, Jiang Q Z, Dong X C, et al. Blue book of China's oil and gas industry development analysis and prospect report (2019-2020)[M]. Beijing: China Petrochemical Press, 2020 (in Chinese).
    [2] Blunt M J, Bijeljic B, Dong H, et al. Pore-scale imaging and modelling[J]. Advances in Water Resources, 2013, 51: 197-216. doi: 10.1016/j.advwatres.2012.03.003
    [3] Andhumoudine A B, Nie X, Zhou Q, et al. Investigation of coal elastic properties based on digital core technology and finite element method[J]. Advances in Geo-energy Research, 2021, 5(1): 53-63. doi: 10.46690/ager.2021.01.06
    [4] Ambrose R J, Hartman R C, Diaz Campos M, et al. New pore-scale considerations for shale gas in place calculations[C]//Anon. SPE unconventional gas conference, :, 2010.
    [5] Wildenschild D, Sheppard A P. X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems[J]. Advances in Water Resources, 2013, 51: 217-246. doi: 10.1016/j.advwatres.2012.07.018
    [6] 苏娜, 段永刚, 于春生. 微CT扫描重建低渗气藏微观孔隙结构: 以新场气田上沙溪庙组储层为例[J]. 石油与天然气地质, 2011, 32(5): 792-796. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201105024.htm

    Su N, Duan Y G, Yu C S. Reconstruction of microscopic pore structure in low permeability gas reservoir by micro-CT scanning: An example from the Upper Shaximiao Formation in Xinchang Gas Field[J]. Oil & Gas Geology, 2011, 32(5): 792-796(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201105024.htm
    [7] 陈浩, 黄继新, 聂志泉, 等. 基于全岩心CT的遗迹化石定量表征新方法: 以加拿大麦凯Ⅲ油砂区块为例[J]. 地质科技通报, 2021, 40(4): 252-259. doi: 10.19509/j.cnki.dzkq.2021.0419

    Chen H, Huang J X, Nie Z Q, et al. Quantitaive characterization of ichnology based on CT scan: A case study of Mackay-III oil sands, Canada[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 252-259(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0419
    [8] Liu X, Sun J, Wang H. Reconstruction of 3-D digital cores using a hybrid method[J]. Applied Geophysics, 2009, 6(2): 105-112. doi: 10.1007/s11770-009-0017-y
    [9] Wang M, Wang J, Pan N, et al. Mesoscopic predictions of the effective thermal conductivity for microscale random porous media[J]. Physical Review E, 2007, 75(3): 036702. doi: 10.1103/PhysRevE.75.036702
    [10] Wu K, Nunan N, Crawford J W, et al. An efficient Markov chain model for the simulation of heterogeneous soil structure[J]. Soil Science Society of America Journal, 2004, 68(2): 346-351. doi: 10.2136/sssaj2004.3460
    [11] Bryant S, Cade C, Mellor D. Permeability prediction from geologic models[J]. AAPG Bulletin, 1993, 77(8): 1338-1350.
    [12] Dong H, Blunt M J. Pore-network extraction from micro-computerized-tomography images[J]. Physical Review E, 2009, 80(3): 036307. doi: 10.1103/PhysRevE.80.036307
    [13] 朱可丹, 张友, 林彤, 等. 基于CT成像的白云岩储层孔喉非均质性分析: 以塔东古城地区奥陶系GC601井鹰三段为例[J]. 石油与天然气地质, 2020, 41(4): 862-873. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202004019.htm

    Zhu K D, Zhang Y, Lin T, et al. Pore-throat heterogeneity in dolomite reservoirs based on CT imaging: A case study of the 3rd Member of the Ordovician Yingshan Formation in Well GC601 in Gucheng area, eastern Tarim Basin[J]. Oil & Gas Geology, 2020, 41(4): 862-873(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202004019.htm
    [14] Chen S, Doolen G D. Lattice Boltzmann method for fluid flows[J]. Ann. Rev. Fluid Mech., 1998, 30(1): 329-364. doi: 10.1146/annurev.fluid.30.1.329
    [15] Chen L, Kang Q, Mu Y, et al. A critical review of the pseudopotential multiphase lattice Boltzmann model: Methods and applications[J]. International Journal of Heat & Mass Transfer, 2014, 76(6): 210-236.
    [16] 吴胜和, 蔡正旗, 施尚明. 油矿地质学[M]. 北京: 石油工业出版社, 2011.

    Wu S H, Cai Z Q, Shi S M. Oilfield geology[M]. Beijing: Petroleum Industry Press, 2011(in Chinese).
    [17] 廉培庆, 高文彬, 汤翔, 等. 基于CT扫描图像的碳酸盐岩油藏孔隙分类方法[J]. 石油与天然气地质, 2020, 41(4): 852-861. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202004018.htm

    Lian P Q, Gao W B, Tang X, et al. Workflow for pore-type classification of carbonate reservoirs based on CT scanned images[J]. Oil & Gas Geology, 2020, 41(4): 852-861(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202004018.htm
    [18] Sahiner B, Pezeshk A, Hadjiiski L M, et al. Deep learning in medical imaging and radiation therapy[J]. Medical Physics, 2019, 46(1): 1-36. doi: 10.1002/mp.13201
    [19] Zhao T, Zhao H, Ning Z, et al. Permeability prediction of numerical reconstructed multiscale tight porous media using the representative elementary volume scale lattice Boltzmann method[J]. International Journal of Heat & Mass Transfer, 2018, 118: 368-377.
    [20] Otsu N. A Threshold selection method from gray-level histograms[J]. IEEE Trans. Syst. Man. Cybern, 1979, 9(1): 62-66. doi: 10.1109/TSMC.1979.4310076
    [21] Schneider C A, Rasband W S, Eliceiri K W. NIH image to image J: 25 years of image analysis[J]. Nature Methods, 2012, 9(7): 671-675.
    [22] Wu K, Van Dijke M I, Couples G D, et al. 3D stochastic modelling of heterogeneous porous media: Applications to reservoir rocks[J]. Transport in Porous Media, 2006, 65(3): 443-467.
    [23] Chen L, Zhang L, Kang Q, et al. Nanoscale simulation of shale transport properties using the lattice Boltzmann method: Permeability and diffusivity[J]. Sci. Rep., 2015, 5: 8089.
    [24] 郭照立, 郑楚光. 格子Boltzmann方法的原理及应用[M]. 北京: 科学出版社, 2009.

    Guo Z L, Zheng C G. Theory and applications of lattice Boltzmann method[M]. Beijing: China Science Press, 2009: (in Chinese).
    [25] 赵华伟. 致密油储层微观孔隙结构及渗流规律研究[D]. 北京: 中国石油大学(北京), 2017.

    Zhao H W. Study on micro scale pore structure and flow mechanism of tight oil sandstones[D]. Beijing: China University of Petroleum (Beijing), 2017 (in Chinese with English abstract).
    [26] 汪新光, 张冲, 张辉, 等. 基于微观孔隙结构的低渗透砂岩储层分类评价[J]. 地质科技通报, 2021, 40(4): 93-103. doi: 10.19509/j.cnki.dzkq.2021.0429

    Wang X G, Zhang C, Zhang H, et al. Classification and evaluation of low-permeability sand reservoir based on micro-pore structure[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 93-103 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0429
    [27] 赵日新, 卢双舫, 薛海涛, 等. 扫描电镜分析参数对定量评价页岩微观孔隙的影响[J]. 石油与天然气地质, 2019, 40(5): 1141-1154. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201905019.htm

    Zhao R X, Lu S F, Xue H T, et al. Effect of SEM parameters on quantitative evaluation of shale micropores[J]. Oil & Gas Geology, 2019, 40(5): 1141-1154(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201905019.htm
    [28] 刘彦锋, 张文彪, 段太忠, 等. 深度学习油气藏地质建模研究进展[J]. 地质科技通报, 2021, 40(4): 235-241. doi: 10.19509/j.cnki.dzkq.2021.0417

    Liu Y F, Zhang W B, Duan T Z, et al. Progress of deep learning in oil and gas geological modeling[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 235-241 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0417
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  705
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-25

目录

    /

    返回文章
    返回