留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进FCM聚类算法的三维重力反演

刘乃征 朱培民 杜利明

刘乃征, 朱培民, 杜利明. 基于改进FCM聚类算法的三维重力反演[J]. 地质科技通报, 2023, 42(3): 338-349. doi: 10.19509/j.cnki.dzkq.tb20210606
引用本文: 刘乃征, 朱培民, 杜利明. 基于改进FCM聚类算法的三维重力反演[J]. 地质科技通报, 2023, 42(3): 338-349. doi: 10.19509/j.cnki.dzkq.tb20210606
Liu Naizheng, Zhu Peimin, Du Liming. Three-dimensional gravity inversion based on improved FCM clustering algorithm[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 338-349. doi: 10.19509/j.cnki.dzkq.tb20210606
Citation: Liu Naizheng, Zhu Peimin, Du Liming. Three-dimensional gravity inversion based on improved FCM clustering algorithm[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 338-349. doi: 10.19509/j.cnki.dzkq.tb20210606

基于改进FCM聚类算法的三维重力反演

doi: 10.19509/j.cnki.dzkq.tb20210606
基金项目: 

国家重点研发计划项目"城市地下空间开发地下全要素信息精准探测技术与装备" 2019YFC0605101

详细信息
    作者简介:

    刘乃征(1996—), 男, 现正攻读地球物理学专业硕士学位, 主要从事地球物理数据联合反演研究。E-mail: nzliu@cug.edu.cn

    通讯作者:

    朱培民(1963—), 男, 教授, 博士生导师, 主要从事地球物理反演和地震勘探的研究。E-mail: zhupm@cug.edu.cn

  • 中图分类号: P631.1+4

Three-dimensional gravity inversion based on improved FCM clustering algorithm

  • 摘要:

    在重力反演中, 传统的反演方法通常会生成平滑的反演结果, 即不同的地质单元之间没有明显的边界。为了提高反演结果的空间分辨率和反演精度, 采用模糊C均值聚类算法(fuzzy C-means, 简称FCM)解决上述问题。但当异常体体积远小于围岩体积以及目标函数FCM聚类项权重系数选择不当时, 该算法容易造成异常体反演结果均匀收缩, 导致反演精度降低, 甚至反演失败。反演失败的主要原因通常是因为异常体体积比围岩体积小很多。为此在反演的目标函数FCM聚类项中引入了缩放因子, 用以平衡模型参数对每个聚类的隶属度, 减小异常体体积远小于围岩体积的影响。通过建立缩放指数ek与归一化的聚类中心与实际聚类中心间距离Snormal的简单正相关关系, 使得缩放因子ρk随反演过程不断更新, 从而显著降低了目标函数FCM聚类项权重系数的选择难度, 避免了异常体反演结果均匀收缩的问题, 增强了反演的稳定性。理论重力异常数据反演数值试验和实际数据反演表明, 相比于此前的FCM方法, 改进算法有更高的反演稳定性和反演精度。

     

  • 图 1  FCM聚类例子

    a.模型参数空间分布图;b.FCM聚类后,模型参数被分为C1、C2和C3三类

    Figure 1.  An example of FCM clustering

    图 2  双块体模型及其观测数据

    Figure 2.  Model with two blocks and its observation data

    图 3  无聚类约束反演结果(黑色方框表示异常块体理论模型边界)

    Figure 3.  Inversion results without the clustering constraint

    图 4  反演中目标函数Φ值随迭代次数的变化

    Figure 4.  Change of objective function Φ with number of iteration in inversion

    图 5  FCM聚类约束反演结果(黑色方框表示异常块体理论模型边界)

    Figure 5.  Inversion results with the FCM clustering constraint

    图 6  改进FCM聚类约束反演结果(黑色方框表示异常块体理论模型边界)

    Figure 6.  Inversion results with the improved FCM clustering constraint

    图 7  反演结果网格数统计直方图

    a.无聚类约束反演;b.FCM聚类约束反演;c.改进FCM聚类约束反演

    Figure 7.  Histograms of grid number for inversion results

    图 8  “引导”聚类中心vk与实际聚类中心vreal, k随迭代次数增加的变化

    a.FCM聚类约束反演;b.改进FCM聚类约束反演

    Figure 8.  Change of guided cluster center vk and real cluster center vreal, k with the increaseing of iteration number

    图 9  目标靶区局部高重力异常和已控制矿体水平投影(粗白线包围区域)

    Figure 9.  Local high gravity anomaly in the target area and horizontal projection of controlled ore bodies surrounded by a thick white line

    图 10  目标靶区A-B地质剖面图[23]

    ZK1,ZK2,ZK3.钻孔编号;Qs.第四系;Om.奥陶纪马家沟组;Fe.磁铁矿;γδ.闪长岩

    Figure 10.  A-B geological profile in the target area

    图 11  无聚类约束反演结果

    a.三维透视图;b.A-B剖面图和地质剖面图;c.C-D剖面图;d.水平切片(z=350 m)和已控制矿体水平投影(白线包围区域)

    Figure 11.  Inversion results without the clustering constraint

    图 12  FCM聚类约束反演结果

    a.三维透视图;b.A-B剖面图和地质剖面图;c.C-D剖面图;d.水平切片(z=350 m)和已控制矿体水平投影(白线包围区域)

    Figure 12.  Inversion results with the FCM clustering constraint

    图 13  改进FCM聚类约束反演结果

    a.三维透视图;b.A-B剖面和地质剖面图;c.C-D剖面图;d.水平切片(z=350 m)和已控制矿体水平投影(白线包围区域)图

    Figure 13.  Inversion results with improved the FCM clustering constraint

    图 14  “引导”聚类中心vk与实际聚类中心vreal, k随迭代次数增加的变化

    a.FCM聚类约束反演;b.改进FCM聚类约束反演

    Figure 14.  Change of guided cluster center vk and real cluster center vreal, k with the increaseing of iteration number

    表  1  缩放指数ek不同取值对FCM聚类约束反演的影响(表中各物理量的含义见正文)

    Table  1.   Influence of different scaling exponent ek on improved FCM clustering constrained inversion

    缩放指数ek 方差 高密度异常体 低密度异常体
    var(snormal, 1) var(snormal, 2) var(snormal, 3) ahigh bhigh chigh Ahigh/% alow blow clow Alow/%
    0 0.008 0 0.009 7 4.14×10-8 32 28 64 38.3 30 26 64 35.2
    snormal, k2.5 0.005 0 0.005 4 4.43×10-8 56 50 64 69.8 51 47 64 67.7
    snormal, k2.3 0.003 8 0.004 0 4.08×10-8 66 59 64 82.4 64 59 64 85.0
    snormal, k2.0 0.002 4 0.002 5 4.01×10-8 85 61 64 68.4 84 63 64 73.8
    下载: 导出CSV
  • [1] Oldenburg D W. The inversion and interpretation of gravityanomalies[J]. Geophysics, 1974, 39(4): 526-536. doi: 10.1190/1.1440444
    [2] Li Y, Oldenburg D W. 3-D inversion of gravity data[J]. Geophysics, 1998, 63(1): 109-119. doi: 10.1190/1.1444302
    [3] 于炳飞, 罗恒, 李端, 等. 金牛火山岩盆地重磁异常综合分析及找矿预测[J]. 地质科技通报, 2022, 41(3): 282-299. doi: 10.19509/j.cnki.dzkq.2021.0029

    Yu B F, Luo H, Li D, et al. Comprehensive analysis of gravity and magnetic anomalies in Jinniu volcanic basin for prediction of ore deposits[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 282-299(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0029
    [4] 马杰, 王万银, 纪晓琳. 利用重力场研究塞萨尔盆地及邻区构造特征[J]. 地质科技情报, 2019, 38(1): 285-294. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201901033.htm

    Ma J, Wang W Y, Ji X L. Tectonic characteristics of Cesar Basin and its adjacent areas according to gravity field[J]. Geological Science and Technology Information, 2019, 38(1): 285-294(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201901033.htm
    [5] Portniaguine O, Zhdanov M S. Focusing geophysical inversion images[J]. Geophysics, 1999, 64(3): 874-887. doi: 10.1190/1.1444596
    [6] Zhdanov M S, Ellis R, Mukherjee S. Three-dimensional regularized focusing inversion of gravity gradient tensor component data[J]. Geophysics, 2004, 69(4): 925-937. doi: 10.1190/1.1778236
    [7] Zhdanov M S. New advances in regularized inversion of gravity and electromagnetic data[J]. Geophysical Prospecting, 2009, 57(4): 463-478. doi: 10.1111/j.1365-2478.2008.00763.x
    [8] Commer M. Three-dimensional gravity modelling and focusing inversion using rectangular meshes[J]. Geophysical Prospecting, 2011, 59(5): 966-979. http://publications.lbl.gov/islandora/object/ir:156804/datastream/PDF/view
    [9] Paasche H, Tronicke J, Holliger K, et al. Integration of diverse physical-property models: Subsurface zonation and petrophysical parameter estimation based on fuzzy C-means cluster analyses[J]. Geophysics, 2006, 71(3): 33-44. http://adsabs.harvard.edu/abs/2006Geop...71...33P
    [10] Lelièvre P G, Farquharson C G, Hurich C A. Joint inversion of seismic traveltimes and gravity data on unstructured grids with application to mineral exploration[J]. Geophysics, 2012, 77(1): K1-K15. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=SEGEAB000029000001001758000001&idtype=cvips&gifs=Yes
    [11] Sun J, Li Y. Joint inversion of multiple geophysical data: A petrophysical approach using guided fuzzy C-means clustering[M]//Anon. SEG Technical Program Expanded Abstracts 2012. [S. l. ]: Society of Exploration Geophysicists, 2012: 1-5.
    [12] Sun J, Li Y. Joint inversion of multiple geophysical data using guided fuzzy C-means clustering[J]. Geophysics, 2016, 81(3): 37-57. doi: 10.1190/geo2015-0457.1
    [13] Colombo D, Rovetta D. Coupling strategies in multiparameter geophysical joint inversion[J]. Geophysical Journal International, 2018, 215(2): 1171-1184. doi: 10.1093/gji/ggy341
    [14] Liu S, Jin S. 3-D gravity anomaly inversion based on improved guided fuzzy C-means clustering algorithm[J]. Pure and Applied Geophysics, 2020, 177(2): 1005-1027. doi: 10.1007/s00024-019-02306-0
    [15] Farquharson C G, Oldenburg D W. Non-linear inversion using general measures of data misfit and model structure[J]. Geophysical Journal International, 1998, 134(1): 213-227. doi: 10.1046/j.1365-246x.1998.00555.x
    [16] Peng G, Liu Z. 3D inversion of gravity data using reformulated Lp-norm model regularization[J]. Journal of Applied Geophysics, 2021: 104378. http://www.sciencedirect.com/science/article/pii/S0926985121001257
    [17] Kim H J, Kim Y H. A unified transformation function for lower and upper bounding constraints on model parameters in electrical and electromagnetic inversion[J]. Journal of Geophysics and Engineering, 2011, 8(1): 21-26. doi: 10.1088/1742-2132/8/1/004
    [18] Dunn J C. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters[J]. Journal of Cybernetics, 1973, 3(3): 32-57. doi: 10.1080/01969727308546046
    [19] Bezdek J C, Ehrlich R, Full W. FCM: The fuzzy C-means clustering algorithm[J]. Computers & Geosciences, 1984, 10(2/3): 191-203. http://www.u-aizu.ac.jp/course/bmclass/documents/FCM%20-%20The%20Fuzzy%20c-Means%20Clustering%20Algorithm.pdf
    [20] Pham D L. Spatial modelsfor fuzzy clustering[J]. Computer Vision and Image Understanding, 2001, 84(2): 285-297. doi: 10.1006/cviu.2001.0951
    [21] Davari A, Marhaban M H, Noor S B M, et al. Parameter estimation of K-distributed sea clutter based on fuzzy inference and Gustafson-Kessel clustering[J]. Fuzzy Sets and Systems, 2011, 163(1): 45-53. http://core.kmi.open.ac.uk/download/pdf/12226788.pdf
    [22] Li Y, Oldenburg D W. 3-D inversion of magnetic data[J]. Geophysics, 1996, 61(2): 394-408. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=SEGEAB000012000001000400000001&idtype=cvips&gifs=Yes
    [23] 杜利明. 基于重磁联合反演的金岭矿田深部找矿预测[D]. 武汉: 中国地质大学(武汉), 2020.

    Du L M. Deep prospecting and reserve prediction of Jinling Orefield based on gravity and magnetic joint inversion[D]. Wuhan: China University of Geosciences(Wuhan), 2020(in Chinese with English abstract).
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  624
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-08

目录

    /

    返回文章
    返回