留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于高压电脉冲破岩损伤模型的破岩过程研究

肖一标 段隆臣 李昌平 康积锋 李傲

肖一标, 段隆臣, 李昌平, 康积锋, 李傲. 基于高压电脉冲破岩损伤模型的破岩过程研究[J]. 地质科技通报, 2023, 42(3): 323-330. doi: 10.19509/j.cnki.dzkq.tb20210625
引用本文: 肖一标, 段隆臣, 李昌平, 康积锋, 李傲. 基于高压电脉冲破岩损伤模型的破岩过程研究[J]. 地质科技通报, 2023, 42(3): 323-330. doi: 10.19509/j.cnki.dzkq.tb20210625
Xiao Yibiao, Duan Longchen, Li Changping, Kang Jifeng, Li Ao. Study on the rock-breaking process based on a high-voltage electropulse boring damage model[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 323-330. doi: 10.19509/j.cnki.dzkq.tb20210625
Citation: Xiao Yibiao, Duan Longchen, Li Changping, Kang Jifeng, Li Ao. Study on the rock-breaking process based on a high-voltage electropulse boring damage model[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 323-330. doi: 10.19509/j.cnki.dzkq.tb20210625

基于高压电脉冲破岩损伤模型的破岩过程研究

doi: 10.19509/j.cnki.dzkq.tb20210625
基金项目: 

国家自然科学基金项目 42272366

岩土钻掘与防护教育部工程研究中心开放研究基金项目 202206

油气钻采工程湖北省重点实验室开放基金资助项目 YQZC202207

详细信息
    作者简介:

    肖一标(1996—), 男, 助理工程师, 主要从事水利水电工程管理方面的工作。E-mail: 572704430@qq.com

    通讯作者:

    李昌平(1990—), 男, 工程师, 主要从事高压电脉冲破岩钻头及地质装备研究工作。E-mail: lichangpingcug@126.com

  • 中图分类号: P634

Study on the rock-breaking process based on a high-voltage electropulse boring damage model

  • 摘要:

    高压电脉冲破岩钻进是目前比较具有潜力和接近工业化的一种新型破岩钻进方式。已有的基于PFC2D的高压电脉冲破岩损伤模型未对破岩试验所用的岩石进行参数标定, 无法保证模拟的模型与实际破岩试验的岩石力学性质一致。基于室内单轴压缩和巴西劈裂试验的数据结果对天然岩石进行了参数标定, 通过标定所得的微观参数建立了与高压电脉冲破岩试验尺寸一致的几何模型, 并对高压电脉冲破岩过程进行了仿真研究。仿真结果表明高压电脉冲破岩过程中, 以产生剪切破坏为主, 同时伴随着一定数量的拉张破坏。之后, 利用高压电脉冲破岩试验系统进行了电脉冲破岩试验, 得到了直径60 mm、深度22.5 mm的不规则破碎孔, 并通过点云软件将破碎效果可视化, 放电破岩试验的结果验证了标定所得参数的有效性。最后, 通过标定参数建立的几何模型研究了裂隙对高压电脉冲破岩效果的影响, 结果表明裂隙的存在会降低破岩过程中的能量消耗, 且破碎过程中的破碎区域有向裂隙方向发展的趋势。

     

  • 图 1  各相介质与脉冲上升时间的关系

    Figure 1.  Relationship between different media and rising time of pulse voltage

    图 2  单轴压缩和巴西劈裂室内试验和模拟结果

    a.室内单轴压缩试验; b.单轴压缩模拟结果; c.室内巴西劈裂试验; d.巴西劈裂模拟结果

    Figure 2.  Laboratory test and simulation results of uniaxial compression and Brazilian splitting

    图 3  室内试验及模拟所得的应力-应变曲线

    Figure 3.  Stress-strain curves obtained from laboratory tests and simulations

    图 4  高压电脉冲破岩损伤模型示意图

    Figure 4.  Schematic diagram for the damage model of a high-voltage electropulse boring(EPB)

    图 5  等效回路模型

    1.液体绝缘介质; 2.岩石;C.储能电容;S.电路的转换开关;Rz.回路的自有电阻,包括电容器上的电阻、连接线上的电阻和电容器上的电阻、转换开关上的电阻;L.回路的电感,包括电容器上的电感、连接线上的电感和放电通道的电感;Rtd.等离子体通道的阻抗;U0.储能电容C上的电压

    Figure 5.  Equivalent circuit model

    图 6  冲击波曲线

    a.滤波后的破碎红砂岩试验测得的电流曲线;b.冲击波曲线

    Figure 6.  Shock wave curve

    图 7  高压电脉冲破岩钻进红砂岩损伤几何模型

    a.高压电脉冲破碎红砂岩表面损伤模型;b.高压电脉冲破碎红砂岩内部损伤模型

    Figure 7.  Damage geometric model of high-voltage EPB drilling of red sandstone

    图 8  高压电脉冲钻进红砂岩不同时刻的破碎效果

    a.4 μs时红砂岩表面破碎效果;b.8 μs时红砂岩表面破碎效果;c.4 μs时红砂岩内部破碎效果;d.8 μs时红砂岩内部破碎效果

    Figure 8.  Crushing effect of high-voltage EPB drilling of red sandstone at different times

    图 9  高压电脉冲破岩表面及内部损伤模型的裂纹数量曲线

    a.表面损伤模型;b.内部损伤模型;Ⅰ, Ⅱ, Ⅲ为冲击波破岩阶段的编号

    Figure 9.  Crack number curve of the surface and internal damage model of the high-voltage EPB

    图 10  高压电脉冲破岩试验系统

    Figure 10.  High-voltage EPB rock-breaking test system

    图 11  红砂岩破碎效果

    Figure 11.  Crushing effect of red sandstone

    图 12  裂隙位置示意图

    Figure 12.  Schematic diagram of fracture location

    图 13  裂隙影响下的颗粒位移云图

    Figure 13.  Cloud diagram of particle displacement under the influence of fracture

    表  1  标定所得微观参数组合

    Table  1.   Combination of microparameters obtained from calibration

    颗粒刚度比kn 颗粒接触模量En/GPa 法向黏结强度σc*/MPa 摩擦系数μ 接触刚度比k*
    2.4 2.8 15.9 0.5 2.4
    平衡黏结模量E*/GPa 黏聚应力c*/MPa 摩擦角φ/(°) 半径乘子λ
    2.8 15.9 68 1
    下载: 导出CSV

    表  2  室内试验及模拟所得宏观参数大小

    Table  2.   Macro parameters obtained from laboratory test and simulations

    室内试验实测参数 ν E/GPa UCS/MPa TS/MPa
    大小 0.253 3.668 15.584 1.167
    模拟所得宏观参数 泊松比ν* E*/GPa UCS*/MPa TS*/MPa
    大小 0.258 3.533 15.847 1.126
    二者误差/% 1.976 3.821 1.688 3.641
    注:ν为泊松比;E为弹性模量;UCS为单轴抗压强度;TS为抗拉强度
    下载: 导出CSV
  • [1] 张辉, 蔡志翔, 姜敞, 等. 深部岩石高效破碎方法研究[J]. 西部探矿工程, 2018, 30(9): 75-79. doi: 10.3969/j.issn.1004-5716.2018.09.027

    Zhang H, Cai Z X, Jiang C, et al. Study on efficient crushing method of deep rock[J]. West-China Exploration Engineering, 2018, 30(9): 75-79(in Chinese with English abstract). doi: 10.3969/j.issn.1004-5716.2018.09.027
    [2] 闫铁, 杜婕妤, 李玮, 等. 高效破岩前沿钻井技术综述[J]. 石油矿场机械, 2012, 41(1): 50-55. https://www.cnki.com.cn/Article/CJFDTOTAL-SKJX201201013.htm

    Yan T, Du J Y, Li W, et al. Synthesizing comment on efficient rock fragmentation method in frontier drilling technology[J]. Oil Field Equipment, 2012, 41(1): 50-55(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKJX201201013.htm
    [3] Hu W, Bao J, Hu B. Trend and progress in global oil and gas exploration[J]. Petroleum Exploration and Development, 2013, 40(4): 439-443. doi: 10.1016/S1876-3804(13)60055-5
    [4] 李昌平, 契霍特金V F, 段隆臣. 电脉冲破岩钻进技术研究进展[J]. 地质科技情报, 2018, 37(6): 298-304. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201806038.htm

    Li C P, Chikhotkin V F, Duan L C. Research progress of electro pulse boring rock breaking technology[J]. Geological Science and Technology Information, 2018, 37(6): 298-304(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201806038.htm
    [5] Zhu X, Luo Y, Liu W, et al. On the mechanism of high-voltage pulsed fragmentation from electrical breakdown process[J]. Rock Mechanics and Rock Engineering, 2021, 54(9): 4593-4616. doi: 10.1007/s00603-021-02537-5
    [6] Kusaiynov K, Nussupbekov B R, Shuyushbayeva N N, et al. On electric-pulse well drilling and breaking of solids[J]. Technical Physics, 2017, 62(6): 867-870. doi: 10.1134/S1063784217060184
    [7] Schiegg H O, Rødland A, Zhu G, et al. Electro-pulse-boring (EPB): Novel super-deep drilling technology for low cost electricity[J]. Journal of Earth Science, 2015, 26(1): 37-46. doi: 10.1007/s12583-015-0519-x
    [8] Li C, Duan L, Wu L, et al. Experimental and numerical analyses of electro-pulse rock-breaking drilling[J]. Journal of Natural Gas Science and Engineering, 2020, 77: 103263. doi: 10.1016/j.jngse.2020.103263
    [9] Li C, Duan L, Tan S, et al. Influences on high-voltage electro pulse boring in granite[J]. Energies, 2018, 11(9): 2461. doi: 10.3390/en11092461
    [10] 陈鹏宇, 孔莹, 余宏明. 岩石单轴压缩PFC2D模型细观参数标定研究[J]. 地下空间与工程学报, 2018, 14(5): 1240-1249. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201805013.htm

    Chen P Y, Kong Y, Yu H M. Research on the calibration method of microparameters of a uniaxial compression PFC2D model for rock[J]. Chinese Journal of Underground Space and Engineering, 2018, 14(5): 1240-1249(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201805013.htm
    [11] 赵国彦, 戴兵, 马驰. 平行黏结模型中细观参数对宏观特性影响研究[J]. 岩石力学与工程学报, 2012, 31(7): 1491-1498. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201207024.htm

    Zhao G Y, Dai B, Ma C. Study of effects of microparameters on macroproperties for parallel bonded model[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(7): 1491-1498(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201207024.htm
    [12] 陈鹏宇, 余宏明. 平直节理黏结颗粒材料宏细观参数关系及细观参数的标定[J]. 土木建筑与环境工程, 2016, 38(5): 74-84. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201605010.htm

    Chen P Y, Yu H M. Relationship between macroparameters and microparameters of flat-jointed bonded-particle material and calibration of microparameters[J]. Journal of Civil and Environmental Engineering, 2016, 38(5): 74-84(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201605010.htm
    [13] 武鑫星, 黄兴, 王俊杰, 等. 考虑岩石细观结构的PFC模型及一种新的标定流程[J]. 河南科学, 2021, 39(2): 266-275. https://www.cnki.com.cn/Article/CJFDTOTAL-HNKX202102014.htm

    Wu X X, Huang X, Wang J J, et al. PFC model considering rock microstructure and a new calibration process[J]. Henan Science, 2021, 39(2): 266-275(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HNKX202102014.htm
    [14] Cho N, Martin C D, Sego D C. A clumped particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(7): 997-1010. http://www.sciencedirect.com/science/article/pii/S1365160907000172
    [15] Castro-Filgueira U, Alejano L R, Arzúa J, et al. Sensitivity analysis of the micro-parameters used in a PFC analysis towards the mechanical properties of rocks[J]. Procedia Engineering, 2017, 191: 488-495. http://www.sciencedirect.com/science/article/pii/S1877705817323482/pdf?md5=f503e639aa7eacbddf1e9bb2504a6536&pid=1-s2.0-S1877705817323482-main.pdf&_valck=1
    [16] Li C, Duan L, Tan S, et al. Damage model and numerical experiment of high-voltage electro pulse boring in granite[J]. Energies, 2019, 12(4): 727. http://www.xueshufan.com/publication/2916163010
    [17] Zhu X, Luo Y, Liu W. On the rock-breaking mechanism of plasma channel drilling technology[J]. Journal of Petroleum Science and Engineering, 2020, 194: 107356.
    [18] Cho S H, Cheong S S, Yokota M, et al. The dynamic fracture process in rocks under high-voltage pulse fragmentation[J]. Rock Mechanics & Rock Engineering, 2016, 49(10): 1-13. http://www.onacademic.com/detail/journal_1000039526902110_c4a3.html
    [19] 孙婧, 何佩珊, 齐梦菊. 关于颗粒流软件PFC的离散元数值模拟参数标定[J]. 山东工业技术, 2016(10): 42. https://www.cnki.com.cn/Article/CJFDTOTAL-SDGJ201610040.htm

    Sun J, He P S, Qi M J. On the calibration of discrete element numerical simulation parameters of particle flow software PFC[J]. Shandong Industrial Technology, 2016(10): 42(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SDGJ201610040.htm
    [20] 刘畅, 陈晓雪, 张文, 等. PFC数值模拟中平行黏结细观参数标定过程研究[J]. 价值工程, 2017, 36(26): 204-207. https://www.cnki.com.cn/Article/CJFDTOTAL-JZGC201726086.htm

    Liu C, Chen X X, Zhang W, et al. Study on the calibration process of parallel bonding meso-structure parameter in PFC numerical simulation[J]. Value Engineering, 2017, 36(26): 204-207(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JZGC201726086.htm
    [21] Potyondy D O, Cundall P A. A bonded-particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8): 1329-1364. http://www.nstl.gov.cn/paper_detail.html?id=b8cf93b3df102aa14c559af2499d44c2
    [22] 何理, 谢先启, 韩传伟, 等. 基于地震波频谱分析与线性叠加的电子雷管延时优选[J]. 金属矿山, 2021(11): 41-48. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS202111007.htm

    He L, Xie X Q, Han C W, et al. Delay time interval optimization of electronic detonator based on spectrum analysis and linear superposition of seismic wave[J]. Metal Mine, 2021(11): 41-48(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS202111007.htm
    [23] He M, Jiang J, Huang G, et al. Disintegration of rocks based on magnetically isolated high voltage discharge[J]. Review of Scientific Instruments, 2013, 84(2): 61-70. http://www.onacademic.com/detail/journal_1000035857317810_068b.html
    [24] 官东林, 文国军, 王玉丹, 等. 基于线激光扫描的岩石激光钻孔的三维重建和可视化[J]. 地质科技通报, 2021, 40(3): 173-183. doi: 10.19509/j.cnki.dzkq.2021.0310

    Guan D L, Wen G J, Wang Y D, et al. 3D reconstruction and visualization for laser drilling hole on rock based on line laser scanning[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 173-183(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0310
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  434
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-18

目录

    /

    返回文章
    返回