留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含氧官能团修饰的石墨表面润湿性及其对气水分布的影响

熊健 唐俊方 周雪 刘向君 梁利喜

熊健, 唐俊方, 周雪, 刘向君, 梁利喜. 含氧官能团修饰的石墨表面润湿性及其对气水分布的影响[J]. 地质科技通报, 2023, 42(3): 93-101. doi: 10.19509/j.cnki.dzkq.tb20210633
引用本文: 熊健, 唐俊方, 周雪, 刘向君, 梁利喜. 含氧官能团修饰的石墨表面润湿性及其对气水分布的影响[J]. 地质科技通报, 2023, 42(3): 93-101. doi: 10.19509/j.cnki.dzkq.tb20210633
Xiong Jian, Tang Junfang, Zhou Xue, Liu Xiangjun, Liang Lixi. Surface wettability of oxygen-containing functional group-modified graphite and its effect on gas-water distribution[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 93-101. doi: 10.19509/j.cnki.dzkq.tb20210633
Citation: Xiong Jian, Tang Junfang, Zhou Xue, Liu Xiangjun, Liang Lixi. Surface wettability of oxygen-containing functional group-modified graphite and its effect on gas-water distribution[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 93-101. doi: 10.19509/j.cnki.dzkq.tb20210633

含氧官能团修饰的石墨表面润湿性及其对气水分布的影响

doi: 10.19509/j.cnki.dzkq.tb20210633
基金项目: 

国家自然科学基金项目 41772151

国家自然科学基金项目 41872167

西南石油大学青年科技创新团队 2018CXTD13

详细信息
    作者简介:

    熊健(1986—),男,研究员,主要从事岩石物理和岩石力学实验等方面研究。E-mail: 361184163@qq.com

  • 中图分类号: P618.130.2+1

Surface wettability of oxygen-containing functional group-modified graphite and its effect on gas-water distribution

  • 摘要:

    润湿性是储层岩石表面重要的物理性质之一, 是影响毛细管力、相对渗透率、束缚水饱和度以及流体微观分布的关键因素。基于分子模拟方法, 研究了含氧官能团修饰的石墨表面(有机质表面)润湿行为及甲烷-水体系在有机质狭缝孔中的分布特征。结果表明:随着含氧官能团的增多, 水分子与有机质表面间相互作用能减小, 有机质表面润湿接触角增大;随着温度的升高, 有机质表面与水分子间的相互作用能增大, 润湿接触角减小;在对称C/O比的石墨狭缝孔模型中, 水分子对称分布在含氧官能团化的石墨壁面附近区域, 且随着C/O比的减小, 水分子的相对浓度增大、扩散系数减小, 而甲烷分子则聚集分布在孔中心区域;在不对称C/O比的石墨狭缝孔模型中, 水分子不对称分布在含氧官能团化的石墨壁面附近区域, 而甲烷分子仍聚集分布在孔中心区域, 其中C/O比低的一侧, 壁面亲水性强, 水分子的相对浓度高,而C/O比高的一侧,壁面疏水性强,水分子的相对浓度低。研究结果对于页岩储层特征影响研究有重要的意义。

     

  • 图 1  不同C/O比的石墨层状结构模型

    a. 不含氧; b. C/O=16;c. C/O=11;d. C/O=8;e. C/O=6;f. C/O=4;g. C/O=3;h=g

    Figure 1.  Laminar structure model of graphite with different C/O ratios

    图 2  不同C/O比的石墨狭缝模型

    a. CC6狭缝模型; b. C3-C11狭缝模型

    Figure 2.  Slit pore model of graphite with different C/O ratios

    图 3  接触角计算示意图

    θ为接触角;h为水滴高度;r为水滴与表面接触圆面的半径; R是水滴(球)的半径

    Figure 3.  Schematic diagram of calculation of the contact angle

    图 4  表面上不同方向水分子的相对浓度分布曲线

    h为水滴高度;r1, r2分别为水滴与x, y轴表面接触圆面的半径

    Figure 4.  Distribution curve of relative concentrations of water molecules in different directions on the surface

    图 5  纳米水滴模拟体系的平衡构型

    Figure 5.  Equilibrium configuration of the nano water drop simulation system

    图 6  纳米水滴在不同表面的润湿接触角

    Figure 6.  Wetting contact angle of nano water drop on different surfaces

    图 7  不同C/O比的石墨结构表面水的扩散系数

    Figure 7.  Self diffusion coefficient of surface water of the graphite structure with different C/O ratios

    图 8  甲烷和水分子的平衡时构型(对称狭缝孔隙)

    Figure 8.  Equilibrium configuration of methane and water molecules (symmetrical slit pores)

    图 9  甲烷分子的相对浓度分布(a)和径向分布(b)函数(对称狭缝孔隙)

    Figure 9.  Relative concentration distribution (a) and radial distribution function (b) of methane molecules

    图 10  水分子的相对浓度分布(a)和径向分布(b)函数(对称狭缝孔隙)

    Figure 10.  Relative concentration distribution (a) and radial distribution function (b) of water molecules

    图 11  甲烷分子和水分子的扩散系数

    Figure 11.  Diffusion coefficients of methane and water molecules

    图 12  甲烷和水分子平衡时的瞬时构型(不对称狭缝孔隙)

    Figure 12.  Equilibrium configuration of methane and water molecules

    图 13  甲烷分子的相对浓度分布(a)和径向分布函数(b) (不对称狭缝孔隙)

    Figure 13.  Relative concentration distribution (a) and radial distribution function (b) of methane molecules

    图 14  水分子的相对浓度分布(a)和径向分布函数(b) (不对称狭缝孔隙)

    Figure 14.  Relative concentration distribution (a) and radial distribution function (b) of water molecules

    表  1  水滴与不同C/O比的石墨结构表面的相互作用能

    Table  1.   Interaction energy between water drop and graphite structure surface with different C/O ratio

    表面C/O比 温度/T/K Etotal EvdW Eelec 表面C/O比 温度/T/K Etotal EvdW Eelec
    E/(KJ·mol-1) E/(KJ·mol-1)
    4 313 -4 722.7 856.2 -5 579.0 4 353 -4 772.3 874.3 -5 646.6
    8 -4 680.7 825.7 -5 506.4 8 -4 719.6 843.2 -5 562.8
    16 -4 633.4 785.8 -5 419.1 16 -4 654.9 816.6 -5 471.4
    32 -4 585.7 763.9 -5 349.6 32 -4 624.2 799.1 -5 423.3
    4 333 -4 744.8 864.8 -5 609.6 4 373 -4 784.1 884.6 -5 668.6
    8 -4 683.9 839.7 -5 523.5 8 -4 742.8 855.0 -5 597.7
    16 -4 643.4 813.6 -5 457.0 16 -4 683.3 833.7 -5 517.0
    32 -4 608.7 793.6 -5 402.2 32 -4 660.9 816.3 -5 477.2
    注:Etotal为体系的相互作用能;EvdW为体系的范德华能;Eelec为体系的静电能
    下载: 导出CSV
  • [1] 史璨, 林伯韬. 页岩储层压裂裂缝扩展规律及影响因素研究探讨[J]. 石油科学通报, 2021, 6(1): 92-113. doi: 10.3969/j.issn.2096-1693.2021.01.008

    Shi C, Lin B T. Principles and influencing factors for shale formations[J]. Petroleum Science Bulletin, 2021, 6(1): 92-113 (in Chinese with English abstract). doi: 10.3969/j.issn.2096-1693.2021.01.008
    [2] 陈林, 陈孝红, 张保民, 等. 鄂西宜昌地区五峰组-龙马溪组页岩储层特征及其脆性评价[J]. 地质科技通报, 2020, 39(2): 54-61. doi: 10.19509/j.cnki.dzkq.2020.0206

    Chen L, Chen X H, Zhang B M, et al. Reservoir characteristics and brittleness evaluation of Wufeng Formation-Longmaxi Formation shale in Yichang area, western Hubei Province[J]. Bulletin of Geological Science and Technology, 2020, 39(2): 54-61 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0206
    [3] 解经宇, 陆洪智, 陈磊, 等. 龙马溪组层状页岩微观非均质性及力学各向异性特征[J]. 地质科技通报, 2021, 40(3): 67-77. doi: 10.19509/j.cnki.dzkq.2021.0302

    Xie J Y, Lu H Z, Chen L, et al. Micro scopic heterogeneity and mechanical anisotropy of the laminated shale in Longmaxi Formation[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 67-77 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0302
    [4] 李灿星, 刘冬冬, 肖磊, 等. 松辽盆地白垩系陆相页岩孔隙演化过程研究[J]. 石油科学通报, 2021, 6(2): 181-195. doi: 10.3969/j.issn.2096-1693.2021.02.015

    Li C X, Liu D D, Xiao L, et al. Research into pore evolution in Cretaceous continental shales in the Songliao Basin[J]. Petroleum Science Bulletin, 2021, 6(2): 181-195 (in Chinese with English abstract). doi: 10.3969/j.issn.2096-1693.2021.02.015
    [5] 张福, 黄艺, 蓝宝锋, 等. 正安地区五峰组-龙马溪组页岩储层特征及控制因素[J]. 地质科技通报, 2021, 40(1): 49-56. doi: 10.19509/j.cnki.dzkq.2021.0016

    Zhang F, Huang Y, Lan B F, et al. Characteristics and controlling factors of shale reservoir in Wufeng Formation-Longmaxi Formation of the Zheng'an area[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 49-56 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0016
    [6] Odusina E O, Sondergeld C H, Rai C S. NMR study of shale wettability[C]//Anon. Canadian unconventional resources conference. [S. l. ]: Society of Petroleum Engineers, 2011.
    [7] Josh M, Esteban L, Delle Piane C, et al. Laboratory characterisation of shale properties[J]. Journal of Petroleum Science and Engineering, 2012, 88: 107-124. http://doc.paperpass.com/foreign/rgArti2012381185.html
    [8] Borysenko A, Clennell B, Sedev R, et al. Experimental investigations of the wettability of clays and shales[J]. Journal of Geophysical Research: Solid Earth, 2009, 114(B7): 1-11. doi: 10.1029/2008JB005928/abstract
    [9] Liang L, Luo D, Liu X, et al. Experimental study on the wettability and adsorption characteristics of Longmaxi Formation shale in the Sichuan Basin, China[J]. Journal of Natural Gas Science and Engineering, 2016, 33: 1107-1118. doi: 10.1016/j.jngse.2016.05.024
    [10] Wang L, Fu Y, Li J, et al. Experimental study on the wettability of Longmaxi gas shale from Jiaoshiba gas field, Sichuan Basin, China[J]. Journal of Petroleum Science and Engineering, 2017, 151: 488-495. doi: 10.1016/j.petrol.2017.01.036
    [11] 刘向君, 熊健, 梁利喜, 等. 川南地区龙马溪组页岩润湿性分析及影响讨论[J]. 天然气地球科学, 2014, 25(10): 1644-1652. doi: 10.11764/j.issn.1672-1926.2014.10.1644

    Liu X J, Xiong J, Liang L X, et al. Analysis of the wettability of Longmaxi Formation shale in the south region of Sichuan Basin and its influence[J]. Natural Gas Geoscience, 2014, 25(10): 1644-1652 (in Chinese with English abstract). doi: 10.11764/j.issn.1672-1926.2014.10.1644
    [12] Hautman J, Klein M L. Microscopic wetting phenomena[J]. Physical Review Letters, 1991, 67(13): 1763. doi: 10.1103/PhysRevLett.67.1763
    [13] Chai J, Liu S, Yang X. Molecular dynamics simulation of wetting on modified amorphous silica surface[J]. Applied Surface Science, 2009, 255(22): 9078-9084. doi: 10.1016/j.apsusc.2009.06.109
    [14] 王甜, 王宝和. 纳米水滴在光滑壁面上润湿行为的分子动力学模拟[J]. 河南化工, 2015, 32(1): 26-31. https://www.cnki.com.cn/Article/CJFDTOTAL-HNHU201501009.htm

    Wang T, Wang B H. Molecular dynamics simulation of wetting behavior of water nano-droplets on smooth surfaces[J]. Henan Chemical Industry, 2015, 32(1): 26-31 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HNHU201501009.htm
    [15] 焦红岩, 董明哲, 刘仲伟, 等. 水环境下甲烷在不同润湿性石英表面吸附行为的分子动力学模拟[J]. 中国石油大学学报: 自然科学版, 2014, 38(5): 178-183. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201405027.htm

    Jiao H Y, Dong M Z, Liu Z W, et al. Molecular dynamics simulation of methane adsorption with presence of water on different wettability quartz surface[J]. Journal of China University of Petroleum: Edition of Natural Science, 2014, 38(5): 178-183 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201405027.htm
    [16] 汪周华, 赵建飞, 白银, 等. 不同润湿性修饰石英吸附甲烷的模拟研究[J]. 西南石油大学学报: 自然科学版, 2019, 41(6): 28-34. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201906006.htm

    Wang Z H, Zhao J F, Bai Y, et al. Simulation of methane adsorption of quartz with different wettability[J]. Journal of Southwest Petroleum University: Science & Technology Edition, 2019, 41(6): 28-34 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201906006.htm
    [17] Abramov A, Keshavarz A, Iglauer S. Wettability of fully hydroxylated and alkylated (01)α-quartz surface in carbon dioxide atmosphere[J]. The Journal of Physical Chemistry C, 2019, 123(14): 9027-9040.
    [18] Hu Y, Devegowda D, Sigal R. A microscopic characterization of wettability in shale kerogen with varying maturity levels[J]. Journal of Natural Gas Science and Engineering, 2016, 33: 1078-1086. http://www.onacademic.com/detail/journal_1000039023057510_fcca.html
    [19] Xiong J, Liu X, Liang L, et al. Adsorption of methane in organic-rich shale nanopores: An experimental and molecular simulation study[J]. Fuel, 2017, 200: 299-315. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0016236117303599&originContentFamily=serial&_origin=article&_ts=1494085956&md5=76281ff2f1877f319f8fa89f11599b6a
    [20] Xiong J, Liu X, Liang L, et al. Methane adsorption on carbon models of the organic matter of organic-rich shales[J]. Energy & Fuels, 2017, 31(2): 1489-1501.
    [21] Behar F, Vandenbroucke M. Chemical modelling of kerogens[J]. Organic Geochemistry, 1987, 11(1): 15-24. http://www.sciencedirect.com/science/article/pii/0146638087900477
    [22] Vandenbroucke M, Largeau C. Kerogen origin, evolution and structure[J]. Organic Geochemistry, 2007, 38(5): 719-833. http://www.sciencedirect.com/science/article/pii/S014663800700006X
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  759
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-22

目录

    /

    返回文章
    返回