留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

天然气水合物分解动力学研究进展

郁桂刚 欧文佳 吴翔 宁伏龙 张凌

郁桂刚, 欧文佳, 吴翔, 宁伏龙, 张凌. 天然气水合物分解动力学研究进展[J]. 地质科技通报, 2023, 42(3): 175-188. doi: 10.19509/j.cnki.dzkq.tb20210668
引用本文: 郁桂刚, 欧文佳, 吴翔, 宁伏龙, 张凌. 天然气水合物分解动力学研究进展[J]. 地质科技通报, 2023, 42(3): 175-188. doi: 10.19509/j.cnki.dzkq.tb20210668
Yu Guigang, Ou Wenjia, Wu Xiang, Ning Fulong, Zhang Ling. Research advances on the dissociation dynamics of natural gas hydrates[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 175-188. doi: 10.19509/j.cnki.dzkq.tb20210668
Citation: Yu Guigang, Ou Wenjia, Wu Xiang, Ning Fulong, Zhang Ling. Research advances on the dissociation dynamics of natural gas hydrates[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 175-188. doi: 10.19509/j.cnki.dzkq.tb20210668

天然气水合物分解动力学研究进展

doi: 10.19509/j.cnki.dzkq.tb20210668
基金项目: 

国家自然科学基金项目 51704266

国家自然科学基金项目 51874263

国家重点研发计划 2018YFE0126400

详细信息
    作者简介:

    郁桂刚(1996—),男,现正攻读地质工程专业硕士学位,主要从事天然气水合物勘探开发的研究工作。E-mail:2585707175@qq.com

    通讯作者:

    欧文佳(1985—),女,副研究员,主要从事天然气水合物勘探开发方面的研究工作。E-mail:ouwj@cug.edu.cn

  • 中图分类号: P618.130.1

Research advances on the dissociation dynamics of natural gas hydrates

  • 摘要:

    天然气水合物是具有巨大开发潜力的清洁能源,但由于开采技术、经济性和环境效应等问题尚未达到商业化开发水准。近年来人们也在探索水合物技术在二氧化碳封存、海水淡化、储能、气体分离等领域中的应用。其中最具挑战性和关键性的问题就是水合物如何随时间形成和分解。概况了水合物分解动力学基础研究,包括水合物分解特性、分解影响因素和分解机理;综述了水合物分解动力学模型研究进展,根据水合物分解控制机制,将现有模型归为4类:热分解模型、本征动力学模型、传质分解模型和综合模型,重点阐述了它们的假设条件、主要认识和局限性,并展望了未来水合物分解动力学研究的改进方向,以期能够加深对水合物分解动力学的理解,促进水合物的开发和利用。

     

  • 图 1  不同开采方法下水合物形成/分解示意图(改自文献[17])

    L.液相;H.水合物;V.气相;Lw-H-VCO2.液相、水合物相以及气相CO2共存, 其他以此类推

    Figure 1.  Schematic diagram of natural gas hydrate formation and dissociation at the molecular scale using different mining methods

    图 2  水合物分解机理示意图(引自文献[78])

    Figure 2.  Schematic of mechanism for hydrate decomposition

    图 3  分子尺度上气体水合物固-液界面横截面的简化示意图(修改自文献[63])

    Figure 3.  Simplified schematic map of the cross section of a gas hydrate solid-fluid interface on a molecular scale

    图 4  具有有效传热的混合气-水系统中水合物分解的概念模型[72]

    Figure 4.  Conceptual model for hydrate dissociation in a mixing gas-water system with effective heat transfer

    图 5  微观水平水合物三步分解机理的概念模型[72]

    a. 解吸步骤; b.塌陷步骤; c.扩散步骤

    Figure 5.  Conceptual model for the three-step hydrate dissociation mechanism at microscopic level

    表  1  经典水合物分解动力学模型总结(改自文献[74])

    Table  1.   Summary of classic hydrate dissociation dynamics models

    模型作者 模型特点 传热 传质 本征动力学 多孔介质 资料来源
    传导 对流
    Selim等 热刺激水合物分解时间函数 文献[61]
    Kim等 本征动力学 文献[29]
    Jamaluddin等 传热、本征动力学 文献[31]
    Yousif等 多孔介质中三相一维模型 文献[64]
    Tsypkin 考虑冰层区域 文献[65]
    Makogon 分解前缘的运动决定分解 文献[66]
    Clarke等 在线粒度分析 文献[67]
    Goel等 传质、本征动力学 文献[68]
    Hong等 多孔介质中传热、本征动力学 文献[57]
    Sun等 冰层厚度、冰-水合物界面的移动 文献[69]
    李娜等 界面化学反应、边界层传质和冰层扩散 文献[70]
    Windmeier等 考虑水合物溶解和分解 文献[63]
    Vlasov 冰层多孔结构、本征动力学 文献[71]
    Song等 分子化学势为驱动力、本征动力学、传质 文献[72]
    Deng等 本征动力学、两相流、传热 文献[73]
    下载: 导出CSV

    表  2  水合物分解本征动力学参数

    Table  2.   Intrinsic dynamics parameters hydrate

    气体 Kd0/(mol·m-2·Pa-1·s-1) 活化能/(kJ·mol-1) 资料来源
    CH4 1.24×105 78.30 文献[29]
    CH4 3.6×104 81.00 文献[71]
    CH4(结构Ⅱ) 8.06×103 77.33 文献[80]
    C2H6 2.56×108 104.00 文献[67]
    CO2 1.83×108 102.88 文献[81]
    CH4 1.7×104 78.15 文献[56]
    下载: 导出CSV
  • [1] Sloan E D, Koh C. Clathrate hydrates of natural gases, thrid edition[M]. Boca Raton: CRC Press, 2007.
    [2] Sloan E D. Fundamental principles and applications of natural gas hydrates[J]. Nature, 2003, 426: 353-359. doi: 10.1038/nature02135
    [3] 吴传芝, 赵克斌, 孙长青, 等. 天然气水合物开采技术研究进展[J]. 地质科技情报, 2016, 35(6): 243-250. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201606035.htm

    Wu C Z, Zhao K B, Sun C Q, et al. Research advances of the production techniques for gas hydrate[J]. Geological Science and Technology Information, 2016, 35(6): 243-250(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201606035.htm
    [4] 周守为, 陈伟, 李清平. 深水浅层天然气水合物固态流化绿色开采技术[J]. 中国海上油气, 2014, 26(5): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201405001.htm

    Zhou S W, Chen W, Li Q P. The green solid fluidization development principle of natural gas hydrate stored in shallow layers of deep water[J]. China Offshore Oil and Gas, 2014, 26(5): 1-7(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201405001.htm
    [5] Ma Z W, Zhang P, Bao H S, et al. Review of fundamental properties of CO2 hydrates and CO2 capture and separation using hydration method[J]. Renewable and Sustainable Energy Reviews, 2016, 53: 1273-1302. doi: 10.1016/j.rser.2015.09.076
    [6] 郑智颖, 李凤臣, 李倩, 等. 海水淡化技术应用研究及发展现状[J]. 科学通报, 2016, 61(21): 2344-2370. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201621006.htm

    Zheng Z Y, Li F C, Li Q, et al. State-of-the-art of R&D on seawater desalination technology[J]. Chinese Science Bulletin, 2016, 61(21): 2344-2370(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201621006.htm
    [7] Satoh M, Maekawa T, Okuda Y. Estimation of amount of methane and resources of natural gas hydrates in the world and around Japan[J]. The Journal of the Geological Society of Japan, 1996, 102: 959-971. doi: 10.5575/geosoc.102.959
    [8] Sun Q, Kang Y T. Review on CO2 hydrate formation/dissociation and its cold energy application[J]. Renewable and Sustainable Energy Reviews, 2016, 62: 478-494. doi: 10.1016/j.rser.2016.04.062
    [9] Jeong J H, Cha M, Jang J, et al. Thermodynamic behavior and spectroscopic properties of CO and C3H8 mixed gas hydrates: Implications for hydrate-based gas separation[J]. Chemical Engineering Journal, 2022, 428: 132076. doi: 10.1016/j.cej.2021.132076
    [10] 刘建辉, 李占东, 赵佳彬. 神狐海域天然气水合物研究新进展[J]. 矿产与地质, 2021, 35(3): 596-602. doi: 10.19856/j.cnki.issn.1001-5663.2021.03.031

    Liu J H, Li Z D, Zhao J B. New progress in the study of natural gas hydrate in Shenhu area[J]. Mineral Resources and Geology, 2021, 35(3): 596-602(in Chinese with English abstract). doi: 10.19856/j.cnki.issn.1001-5663.2021.03.031
    [11] You K, Flemings P B, Malinverno A, et al. Mechanisms of methane hydrate formation in geological systems[J]. Reviews of Geophysics, 2019, 57(4): 1146-1196. doi: 10.1029/2018RG000638
    [12] 宁伏龙, 梁金强, 吴能友, 等. 中国天然气水合物赋存特征[J]. 天然气工业, 2020, 40(8): 1-24. doi: 10.3787/j.issn.1000-0976.2020.08.001

    Ning F L, Liang J Q, Wu N Y, et al. Reservoir characteristics of natural gas hydrates in China[J]. Natural Gas Industry, 2020, 40(8): 1-24(in Chinese with English abstract). doi: 10.3787/j.issn.1000-0976.2020.08.001
    [13] 程聪, 姜涛, 匡增桂, 等. 天然气水合物系统特征及其对我国水合物勘查的启示[J]. 地质科技情报, 2019, 38(4): 30-40. doi: 10.19509/j.cnki.dzkq.2019.0405

    Cheng C, Jiang T, Kuang Z G, et al. Characteristics of gas hydrate system and its enlightenment to gas hydrate exploration in China[J]. Geological Science and Technology Information, 2019, 38(4): 30-40(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2019.0405
    [14] Li Y L, Ning F L, Wu N Y, et al. Protocol for sand control screen design of production wells for clayey silt hydrate reservoirs: A case study[J]. Energy Science & Engineering, 2020, 8(5): 1438-1449. doi: 10.1002/ese3.602/abstract
    [15] Sun J X, Ning F L, Lei H W, et al. Wellbore stability analysis during drilling through marine gas hydrate-bearing sediments in Shenhu area: A case study[J]. Journal of Petroleum Science and Engineering, 2018, 170: 345-367. doi: 10.1016/j.petrol.2018.06.032
    [16] 宁伏龙, 方翔宇, 李彦龙, 等. 天然气水合物开采储层出砂研究进展与思考[J]. 地质科技通报, 2020, 39(1): 137-148. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202001017.htm

    Ning F L, Fang X Y, Li Y L, et al. Research status and perspective on wellbore sand production from hydrate reservoirs[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 137-148(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202001017.htm
    [17] 孙嘉鑫, 张凌, 宁伏龙, 等. 天然气水合物藏增产研究现状与展望[J]. 石油学报, 2021, 42(4): 523-540. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202104009.htm

    Sun J X, Zhang L, Ning F L, et al. Research status and prospects of increasing production from gas hydrate reservoirs[J]. Acta Petrolei Sinica, 2021, 42(4): 523-540(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202104009.htm
    [18] Bai D S, Zhang D W, Zhang X R, et al. Origin of self-preservation effect for hydrate decomposition: Coupling of mass and heat transfer resistances[J]. Scientific Reports, 2015, 5(1): 14599. doi: 10.1038/srep14599
    [19] Kawamura T, Ohga K, Higuchi K. Dissociation behavior of pellet-shaped methane-ethane mixed gas hydrate samples[J]. Energy & Fuels, 2003, 17(3): 614-618. http://www.onacademic.com/detail/journal_1000036575320610_f255.html
    [20] Zhong J R, Sun Y F, Li W Z, et al. Structural transition range of methane-ethane gas hydrates during decomposition below ice point[J]. Applied Energy, 2019, 250: 873-881. doi: 10.1016/j.apenergy.2019.05.092
    [21] Bishnoi P R, Natarajan V. Formation and decomposition of gas hydrates[J]. Fluid Phase Equilibria, 1996, 117(1/2): 168-177. http://www.onacademic.com/detail/journal_1000034008873310_0d14.html
    [22] Ripmeester J A, Alavi S. Some current challenges in clathrate hydrate science: Nucleation, decomposition and the memory effect[J]. Current Opinion in Solid State and Materials Science, 2016, 20(6): 344-351. doi: 10.1016/j.cossms.2016.03.005
    [23] Barbara S, Nobuo M. Statistical study of the memory effect in model natural gas hydrate systems[J]. The Journal of Physical Chemistry A, 2015, 119(44): 10784-10790. doi: 10.1021/acs.jpca.5b07308
    [24] Wu Q, Zhang B Y. Memory effect on the pressure-temperature condition and induction time of gas hydrate nucleation[J]. Journal of Natural Gas Chemistry, 2010, 19(4): 446-451. doi: 10.1016/S1003-9953(09)60086-4
    [25] 庞维新, 陈光进. 甲烷水合物分解实验[J]. 化工学报, 2008, 59(3): 681-686. doi: 10.3321/j.issn:0438-1157.2008.03.023

    Pang W X, Chen G J. Dissociation experiment of methane hydrate[J]. Journal of Chemical Industry and Engineering, 2008, 59(3): 681-686(in Chinese with English abstract). doi: 10.3321/j.issn:0438-1157.2008.03.023
    [26] 展静, 吴青柏, 杨玉忠. 冰点以下甲烷水合物分解实验对天然气储运的影响[J]. 天然气地球科学, 2012, 23(2): 348-352. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201202022.htm

    Zhan J, Wu Q B, Yang Y Z. Effect of methane hydrate dissociation on natural gas storage and transportation[J]. Natural Gas Geoscience, 2012, 23(2): 348-352(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201202022.htm
    [27] Takeya S, Uchida T, Nagao J, et al. Particle size effect of CH4 hydrate for self-preservation[J]. Chemical Engineering Science, 2005, 60(5): 1383-1387. doi: 10.1016/j.ces.2004.10.011
    [28] Kono H O, Narasimhan S, Song F, et al. Synthesis of methane gas hydrate in porous sediments and its dissociation by depressurizing[J]. Powder Technology, 2002, 122(2): 239-246. http://www.sciencedirect.com/science/article/pii/S003259100100420X
    [29] Kim H C, Bishnoi P R, Heidemann R A, et al. Kinetics of methane hydrate decomposition[J]. Chemical Engineering Science, 1987, 42(7): 1645-1653. doi: 10.1016/0009-2509(87)80169-0
    [30] Chen W Q, Hartman R L. Methane hydrate intrinsic dissociation kinetics measured in a microfluidic system by means of in situ raman spectroscopy[J]. Energy & Fuels, 2018, 32(11): 11761-11771.
    [31] Jamaluddin A K M, Kalogerakis N, Bishnoi P R. Modelling of decomposition of a synthetic core of methane gas hydrate by coupling intrinsic kinetics with heat transfer rates[J]. The Canadian Journal of Chemical Engineering, 1989, 67(6): 948-954. doi: 10.1002/cjce.5450670613
    [32] 陈强, 业渝光, 孟庆国, 等. 甲烷水合物分解过程模拟实验研究[J]. 现代地质, 2008, 22(3): 475-479. doi: 10.3969/j.issn.1000-8527.2008.03.019

    Chen Q, Ye Y G, Meng Q G, et al. Experimental research of methane hydrate dissociation[J]. Geoscience, 2008, 22(3): 475-479(in Chinese with English abstract). doi: 10.3969/j.issn.1000-8527.2008.03.019
    [33] Pang W X, Xu W Y, Sun C Y, et al. Methane hydrate dissociation experiment in a middle-sized quiescent reactor using thermal method[J]. Fuel, 2009, 88(3): 497-503. doi: 10.1016/j.fuel.2008.11.002
    [34] Wang B, Dong H S, Liu Y Z, et al. Evaluation of thermal stimulation on gas production from depressurized methane hydrate deposits[J]. Applied Energy, 2018, 227: 710-718. doi: 10.1016/j.apenergy.2017.08.005
    [35] 王家生, 高钰涯, 李清, 等. 沉积物粒度对水合物形成的制约: 来自IODP 311航次证据[J]. 地球科学进展, 2007, 22(7): 659-665. doi: 10.3321/j.issn:1001-8166.2007.07.001

    Wang J S, Gao Y Y, Li Q, et al. Grain size constraint on gas hydrate occurrence: Evidence from sediment size during IODP 311[J]. Advances in Earth Science, 2007, 22(7): 659-665(in Chinese with English abstract). doi: 10.3321/j.issn:1001-8166.2007.07.001
    [36] Fang B, Ning F L, Ou W J, et al. The dynamic behavior of gas hydrate dissociation by heating in tight sandy reservoirs: A molecular dynamics simulation study[J]. Fuel, 2019, 258: 116106. doi: 10.1016/j.fuel.2019.116106
    [37] Anderson R, Llamedo M, Tohidi B, et al. Experimental measurement of methane and carbon dioxide clathrate hydrate equilibria in mesoporous silica[J]. The Journal of Physical Chemistry B, 2003, 107(15): 3507-3514. doi: 10.1021/jp0263370
    [38] Handa Y P, Stupin D Y. Thermodynamic properties and dissociation characteristics of methane and propane hydrates in 70-. ANG. -radius silica gel pores[J]. The Journal of Physical Chemistry, 1992, 96(21): 8599-8603. doi: 10.1021/j100200a071
    [39] 邓帅, 胡高伟, 卜庆涛. 粒径及孔径分布对天然气水合物形成影响的研究进展[J]. 地质科技情报, 2019, 38(4): 41-52. doi: 10.19509/j.cnki.dzkq.2019.0406

    Deng S, Hu G W, Bu Q T. Research progress on the effects of particle size and pore size distribution on natural gas hydrate formation[J]. Geological Science and Technology Information, 2019, 38(4): 41-52(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2019.0406
    [40] 徐锋, 吴强, 朱丽华. 甲烷水合物恒压分解动力学研究进展[J]. 工业安全与环保, 2010, 36(12): 10-12. doi: 10.3969/j.issn.1001-425X.2010.12.005

    Xu F, Wu Q, Zhu L H. Study of decomposition kinetics of methane hydrate at constant pressure[J]. Industrial Safety and Environmental Protection, 2010, 36(12): 10-12(in Chinese with English abstract). doi: 10.3969/j.issn.1001-425X.2010.12.005
    [41] Uchida T, Ebinuma T, Ishizaki T. Dissociation condition measurements of methane hydrate in confined small pores of porous glass[J]. Journal of Physical Chemistry B, 1999, 103(18): 3659-3662. doi: 10.1021/jp984559l
    [42] 张郁, 蔡晶, 李小森, 等. 南海沉积物中甲烷水合物定压分解特性[J]. 中国科学: 物理学, 力学, 天文学, 2019, 49(3): 136-143. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201903010.htm

    Zhang Y, Cai J, Li X S, et al. Dissociation behaviors of methane hydrate in marine sediments from South China Sea under constant pressure[J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2019, 49(3): 136-143(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201903010.htm
    [43] Zhao J F, Liu D, Yang M J, et al. Analysis of heat transfer effects on gas production from methane hydrate by depressurization[J]. International Journal of Heat and Mass Transfer, 2014, 77: 529-541. doi: 10.1016/j.ijheatmasstransfer.2014.05.034
    [44] 杨明军, 孙慧茹, 陈兵兵, 等. 水流动强化天然气水合物降压分解研究[J]. 工程热物理学报, 2020, 41(2): 307-312. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB202002008.htm

    Yang M J, Sun H R, Chen B B, et al. The study on natural gas hydrate depressurization dissociation strengthened by water flow process[J]. Journal of Engineering Thermophysics, 2020, 41(2): 307-312(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB202002008.htm
    [45] Chen B B, Sun H R, Zhao G J, et al. Experimental observation of methane hydrate dissociation via different depressurization modes under water phase flow[J]. Fuel, 2021, 283: 118908. doi: 10.1016/j.fuel.2020.118908
    [46] Sun H R, Chen B B, Zhao G J, et al. The enhancement effect of water-gas two-phase flow on depressurization process: Important for gas hydrate production[J]. Applied Energy, 2020, 276: 115559. doi: 10.1016/j.apenergy.2020.115559
    [47] Yang L, Falenty A, Chaouachi M, et al. Synchrotron X-ray computed microtomography study on gas hydrate decomposition in a sedimentary matrix[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(9): 3717-3732. doi: 10.1002/2016GC006521
    [48] Akihiro H, Satoshi T, Evgeny C, et al. Preservation phenomena of methane hydrate in pore spaces[J]. Physical Chemistry Chemical Physics: PCCP, 2011, 13: 17449-17452. doi: 10.1039/c1cp22353d
    [49] Chaouachi M, Falenty A, Sell K, et al. Microstructural evolution of gas hydrates in sedimentary matrices observed with synchrotron X-ray computed tomographic microscopy[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(6): 1711-1722. doi: 10.1002/2015GC005811
    [50] Peng X M, Hu Y F, Yang L Y, et al. Decomposition kinetics for formation of CO2 hydrates in natural silica sands[J]. Chinese Journal of Chemical Engineering, 2010, 18(1): 61-65. doi: 10.1016/S1004-9541(08)60324-9
    [51] 喻西崇, 李刚, 李清平, 等. 沉积物中水合物分解过程影响因素的实验模拟分析[J]. 中国科学: 地球科学, 2013, 43(3): 400-405. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201303009.htm

    Yu X C, Li G, Li Q P, et al. Experimental simulation of gas hydrate decomposition in porous sediment[J]. Science China: Earth Sciences, 2013, 43(3): 400-405(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201303009.htm
    [52] Xie Y, Zheng T, Zhong J R, et al. Experimental research on self-preservation effect of methane hydrate in porous sediments[J]. Applied Energy, 2020, 268: 115008. doi: 10.1016/j.apenergy.2020.115008
    [53] 文龙, 周雪冰, 梁德青. 甲烷水合物在天然砂中的分解动力学研究[J]. 石油化工, 2019, 48(9): 926-931. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHG201909009.htm

    Wen L, Zhou X B, Liang D Q. Investigation on decomposition kinetics of methane hydrate in natural sand[J]. Petrochemical Technology, 2019, 48(9): 926-931(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYHG201909009.htm
    [54] Wang Y, Feng J C, Li X S, et al. Fluid flow mechanisms and heat transfer characteristics of gas recovery from gas-saturated and water-saturated hydrate reservoirs[J]. International Journal of Heat and Mass Transfer, 2018, 118: 1115-1127. doi: 10.1016/j.ijheatmasstransfer.2017.11.081
    [55] Li X Y, Li X S, Wang Y, et al. The optimization mechanism for gas hydrate dissociation by depressurization in the sediment with different water saturations and different particle sizes[J]. Energy, 2021, 215: 119129. doi: 10.1016/j.energy.2020.119129
    [56] Tang L G, Li X S, Feng Z P, et al. Control mechanisms for gas hydrate production by depressurization in different scale hydrate reservoirs[J]. Energy & Fuels, 2006, 21(1): 227-233. doi: 10.1021/ef0601869
    [57] Hong H, Pooladi-Darvish M, Bishnoi P R. Analytical modelling of gas production from hydrates in porous media[J]. Journal of Canadian Petroleum Technology, 2003, 42(11): 45-56. doi: 10.2118/03-11-05
    [58] Zheng R Y, Li S X, Cui G D. Determining the controlling mechanisms of hydrate dissociation front using optimized characteristic time[J]. Fuel, 2021, 298: 120805. doi: 10.1016/j.fuel.2021.120805
    [59] Kamath V A, Holder G D, Angert P F. Three phase interfacial heat transfer during the dissociation of propane hydrates[J]. Chemical Engineering Science, 1984, 39(10): 1435-1442. doi: 10.1016/0009-2509(84)80001-9
    [60] Kamath V A, Holder G D. Dissociation heat transfer characteristics of methane hydrates[J]. AIChE Journal, 1987, 33: 347-350. doi: 10.1002/aic.690330228
    [61] Selim M S, Sloan E D. Modeling of the dissociation of an in-situ hydrate[C]//Anon. SPE California Regional Meeting. Bakersfield: OnePetro, 1985.
    [62] Handa Y. A calorimetric study of naturally occurring gas hydrates[J]. Industrial & Engineering Chemistry Research, 1988, 27(5): 872-874. http://www.onacademic.com/detail/journal_1000035859312610_12bd.html
    [63] Windmeier C, Oellrich L R. Theoretical study of gas hydrate decomposition kinetics-model development[J]. The Journal of Physical Chemistry A, 2013, 117(40): 10151-10161. doi: 10.1021/jp403471b
    [64] Yousif M H, Abass H H, Selim M S, et al. Experimental and theoretical investigation of methane-gas-hydrate dissociation in porous media[J]. SPE Reservoir Engineering, 1991, 6(1): 69-76. doi: 10.2118/18320-PA
    [65] Tsypkin G G. Mathematical model of the dissociation of gas hydrates coexisting with ice in natural reservoirs[J]. Fluid Dynamics, 1993, 28(2): 223-229. doi: 10.1007/BF01051211
    [66] Makogon Y. Hydrates of hydrocarbons[M]. USA: Penn Well Publishing Company, 1997.
    [67] Clarke M A, Bishnoi P R. Determination of the intrinsic rate of gas hydrate decomposition using particle size analysis[J]. Annals of the New York Academy of Sciences, 2000, 912(1): 556-563. http://www.sciencedirect.com/science/article/pii/S0009250900001378
    [68] Goel N, Wiggins M, Shah S. Analytical modeling of gas recovery from in situ hydrates dissociation[J]. Journal of Petroleum Science and Engineering, 2001, 29(2): 115-127. doi: 10.1016/S0920-4105(01)00094-8
    [69] Sun C Y, Chen G J. Methane hydrate dissociation above 0℃ and below 0℃[J]. Fluid Phase Equilibria, 2006, 242(2): 123-128. doi: 10.1016/j.fluid.2006.01.025
    [70] 李娜, 奚西峰, 何小霞, 等. 甲烷水合物分解动力学模型[J]. 天然气地球科学, 2006, 17(6): 880-883. doi: 10.3969/j.issn.1672-1926.2006.06.031

    Li N, Xi X F, He X X, et al. Dynamic model for methane hydrate decomposition[J]. Natural Gas Geoscience, 2006, 17(6): 880-883(in Chinese with English abstract). doi: 10.3969/j.issn.1672-1926.2006.06.031
    [71] Vlasov V A. Diffusion model of gas hydrate dissociation into ice and gas: Simulation of the self-preservation effect[J]. International Journal of Heat and Mass Transfer, 2016, 102: 631-636. doi: 10.1016/j.ijheatmasstransfer.2016.06.057
    [72] Song S F, Shi B H, Yu W C, et al. A new methane hydrate decomposition model considering intrinsic kinetics and mass transfer[J]. Chemical Engineering Journal, 2019, 361: 1264-1284. doi: 10.1016/j.cej.2018.12.143
    [73] Deng X J, Feng J W, Pan S W, et al. An improved model for the migration of fluids caused by hydrate dissociation in porous media[J]. Journal of Petroleum Science and Engineering, 2020, 188: 106876. doi: 10.1016/j.petrol.2019.106876
    [74] Yin Z Y, Chong Z R, Tan H K, et al. Review of gas hydrate dissociation kinetic models for energy recovery[J]. Journal of Natural Gas Science and Engineering, 2016, 35: 1362-1387. doi: 10.1016/j.jngse.2016.04.050
    [75] Ullerich J, Selim M S, Sloan E D. Theory and measurement of hydrate dissociation[J]. AIChE Journal, 1987, 33: 747-752. doi: 10.1002/aic.690330507
    [76] Selim M S, Sloan E D. Hydrate dissociation in sediment[J]. SPE Reservoir Engineering, 1990, 5(2): 245-251. doi: 10.2118/16859-PA
    [77] Selim M S, Sloan E D. Heat and mass transfer during dissociation of hydrates in porous media[J]. AIChE Journal, 1989, 35: 1049-1052. doi: 10.1002/aic.690350620
    [78] Clarke M A, Bishnoi P R. Determination of the intrinsic rate of ethane gas hydrate decomposition[J]. Chemical Engineering Science, 2000, 55(21): 4869-4883. doi: 10.1016/S0009-2509(00)00137-8
    [79] Clarke M A, Bishnoi P R. Determination of the activation energy and intrinsic rate constant of methane gas hydrate decomposition[J]. The Canadian Journal of Chemical Engineering, 2001, 79(1): 143-147. doi: 10.1002/cjce.5450790122
    [80] Clarke M A, Bishnoi P R. Measuring and modelling the rate of decomposition of gas hydrates formed from mixtures of methane and ethane[J]. Chemical Engineering Science, 2001, 56(16): 4715-4724. doi: 10.1016/S0009-2509(01)00135-X
    [81] Clarke M A, Bishnoi P R. Determination of the intrinsic rate constant and activation energy of CO2 gas hydrate decomposition using in-situ particle size analysis[J]. Chemical Engineering Science, 2004, 59(14): 2983-2993. doi: 10.1016/j.ces.2004.04.030
    [82] Giraldo C, Clarke M A. Stoichiometric approach toward modeling the decomposition kinetics of gas hydrates formed from mixed gases[J]. Energy & Fuels, 2013, 27(8): 4534-4544. http://www.researchgate.net/profile/Matthew_Clarke11/publication/263948384_Stoichiometric_Approach_toward_Modeling_the_Decomposition_Kinetics_of_Gas_Hydrates_Formed_from_Mixed_Gases/links/57c49b0e08aecd4514155cce.pdf
    [83] Windmeier C, Oellrich L R. Theoretical study of gas hydrate decomposition kinetics: Model predictions[J]. The Journal of Physical Chemistry A, 2013, 117(47): 12184-12195. doi: 10.1021/jp406837q
    [84] Takeya S, Ebinuma T, Uchida T, et al. Self-preservation effect and dissociation rates of CH4 hydrate[J]. Journal of Crystal Growth, 2002, 237/239(1/4): 379-382. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0022024801019467&originContentFamily=serial&_origin=article&_ts=1467696769&md5=4df46585f565fe66186b5239cb12ce2c
    [85] Vlasov V A. Diffusion model of gas hydrate dissociation into ice and gas that takes into account the ice microstructure[J]. Chemical Engineering Science, 2020, 215: 115443. doi: 10.1016/j.ces.2019.115443
    [86] Misyura S Y, Donskoy I G. Dissociation kinetics of methane hydrate and CO2 hydrate for different granular composition[J]. Fuel, 2020, 262: 116614. doi: 10.1016/j.fuel.2019.116614
    [87] 何晓霞, 余劲松, 马应海, 等. 甲烷水合物分解的缩粒动力学模型[J]. 天然气地球科学, 2005, 16(6): 818-821. doi: 10.3969/j.issn.1672-1926.2005.06.028

    He X X, Yu J S, Ma Y H, et al. Particle shrinking dynamic model for methane hydrate decomposition[J]. Natural Gas Geoscience, 2005, 16(6): 818-821(in Chinese with English abstract). doi: 10.3969/j.issn.1672-1926.2005.06.028
    [88] 艾志久, 王杰. 天然气水合物分解的动力学模型研究[J]. 天然气地球科学, 2017, 28(3): 377-382. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201703004.htm

    Ai Z J, Wang J. Study on kinetic model of natural gas hydrate dissociation[J]. Natural Gas Geoscience, 2017, 28(3): 377-382(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201703004.htm
    [89] 刘犟, 阎立军, 陈光进, 等. 活性炭中甲烷水合物的分解动力学[J]. 化学学报, 2002, 60(8): 1385-1389. doi: 10.3321/j.issn:0567-7351.2002.08.006

    Liu J, Yan L J, Cheng G J, et al. Kinetics of methane hydrate dissociation in active carbon[J]. Acta Chimica Sinica Chinese Edition, 2002, 60(8): 1385-1389(in Chinese with English abstract). doi: 10.3321/j.issn:0567-7351.2002.08.006
    [90] Sun X F, Mohanty K K. Kinetic simulation of methane hydrate formation and dissociation in porous media[J]. Chemical Engineering Science, 2006, 61(11): 3476-3495. doi: 10.1016/j.ces.2005.12.017
    [91] Nazridoust K, Ahmadi G. Computational modeling of methane hydrate dissociation in a sandstone core[J]. Chemical Engineering Science, 2007, 62(22): 6155-6177. doi: 10.1016/j.ces.2007.06.038
    [92] Chen X Y, Espinoza D N. Surface area controls gas hydrate dissociation kinetics in porous media[J]. Fuel, 2018, 234: 358-363. doi: 10.1016/j.fuel.2018.07.030
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  1926
  • PDF下载量:  148
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-28

目录

    /

    返回文章
    返回