Research advances on the dissociation dynamics of natural gas hydrates
-
摘要:
天然气水合物是具有巨大开发潜力的清洁能源,但由于开采技术、经济性和环境效应等问题尚未达到商业化开发水准。近年来人们也在探索水合物技术在二氧化碳封存、海水淡化、储能、气体分离等领域中的应用。其中最具挑战性和关键性的问题就是水合物如何随时间形成和分解。概况了水合物分解动力学基础研究,包括水合物分解特性、分解影响因素和分解机理;综述了水合物分解动力学模型研究进展,根据水合物分解控制机制,将现有模型归为4类:热分解模型、本征动力学模型、传质分解模型和综合模型,重点阐述了它们的假设条件、主要认识和局限性,并展望了未来水合物分解动力学研究的改进方向,以期能够加深对水合物分解动力学的理解,促进水合物的开发和利用。
Abstract:Natural gas hydrate is a kind of clean energy with great development potential but is still not commercially developed due to the bottlenecks such as exploitation technology, economical efficiency, and environmental effects.In recent years, people have explored the application of hydrate technology in the field of CO2 capture, seawater desalination, energy storage, gas separation, etc. One of the most challenging and critical problems is how the hydrates are formed and decomposed at any time. This paper summarizes the fundamental research on hydrate decomposition dynamics, including hydrate decomposition properties, influencing factors, and dissociation mechanisms. Moreover, the paper reviews the development of hydrate dissociation dynamics models. The existing models are divided into four categories according to dissociation mechanisms: Thermal dissociation models, intrinsic dynamics models, mass transfer dissociation models and integrated models, and their assumptions, main understanding and limitations are highlighted. Future directions for improving hydrate dissociation dynamics research are foreseen to deepen the understanding of hydrate dissociation dynamics and promote the development and utilization of hydrates.
-
图 1 不同开采方法下水合物形成/分解示意图(改自文献[17])
L.液相;H.水合物;V.气相;Lw-H-VCO2.液相、水合物相以及气相CO2共存, 其他以此类推
Figure 1. Schematic diagram of natural gas hydrate formation and dissociation at the molecular scale using different mining methods
图 2 水合物分解机理示意图(引自文献[78])
Figure 2. Schematic of mechanism for hydrate decomposition
图 3 分子尺度上气体水合物固-液界面横截面的简化示意图(修改自文献[63])
Figure 3. Simplified schematic map of the cross section of a gas hydrate solid-fluid interface on a molecular scale
图 4 具有有效传热的混合气-水系统中水合物分解的概念模型[72]
Figure 4. Conceptual model for hydrate dissociation in a mixing gas-water system with effective heat transfer
图 5 微观水平水合物三步分解机理的概念模型[72]
a. 解吸步骤; b.塌陷步骤; c.扩散步骤
Figure 5. Conceptual model for the three-step hydrate dissociation mechanism at microscopic level
表 1 经典水合物分解动力学模型总结(改自文献[74])
Table 1. Summary of classic hydrate dissociation dynamics models
模型作者 模型特点 传热 传质 本征动力学 多孔介质 资料来源 传导 对流 气 水 Selim等 热刺激水合物分解时间函数 √ √ √ — — — 文献[61] Kim等 本征动力学 — — — — √ — 文献[29] Jamaluddin等 传热、本征动力学 √ — — — √ — 文献[31] Yousif等 多孔介质中三相一维模型 — — √ √ √ √ 文献[64] Tsypkin 考虑冰层区域 √ √ √ √ — — 文献[65] Makogon 分解前缘的运动决定分解 — √ √ — — √ 文献[66] Clarke等 在线粒度分析 — — — — √ — 文献[67] Goel等 传质、本征动力学 — — √ — √ √ 文献[68] Hong等 多孔介质中传热、本征动力学 √ √ — — √ √ 文献[57] Sun等 冰层厚度、冰-水合物界面的移动 — — √ — — — 文献[69] 李娜等 界面化学反应、边界层传质和冰层扩散 — — √ — — — 文献[70] Windmeier等 考虑水合物溶解和分解 — — — — √ — 文献[63] Vlasov 冰层多孔结构、本征动力学 — — √ — √ √ 文献[71] Song等 分子化学势为驱动力、本征动力学、传质 — — √ √ √ — 文献[72] Deng等 本征动力学、两相流、传热 √ — √ √ √ √ 文献[73] -
[1] Sloan E D, Koh C. Clathrate hydrates of natural gases, thrid edition[M]. Boca Raton: CRC Press, 2007. [2] Sloan E D. Fundamental principles and applications of natural gas hydrates[J]. Nature, 2003, 426: 353-359. doi: 10.1038/nature02135 [3] 吴传芝, 赵克斌, 孙长青, 等. 天然气水合物开采技术研究进展[J]. 地质科技情报, 2016, 35(6): 243-250. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201606035.htmWu C Z, Zhao K B, Sun C Q, et al. Research advances of the production techniques for gas hydrate[J]. Geological Science and Technology Information, 2016, 35(6): 243-250(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201606035.htm [4] 周守为, 陈伟, 李清平. 深水浅层天然气水合物固态流化绿色开采技术[J]. 中国海上油气, 2014, 26(5): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201405001.htmZhou S W, Chen W, Li Q P. The green solid fluidization development principle of natural gas hydrate stored in shallow layers of deep water[J]. China Offshore Oil and Gas, 2014, 26(5): 1-7(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201405001.htm [5] Ma Z W, Zhang P, Bao H S, et al. Review of fundamental properties of CO2 hydrates and CO2 capture and separation using hydration method[J]. Renewable and Sustainable Energy Reviews, 2016, 53: 1273-1302. doi: 10.1016/j.rser.2015.09.076 [6] 郑智颖, 李凤臣, 李倩, 等. 海水淡化技术应用研究及发展现状[J]. 科学通报, 2016, 61(21): 2344-2370. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201621006.htmZheng Z Y, Li F C, Li Q, et al. State-of-the-art of R&D on seawater desalination technology[J]. Chinese Science Bulletin, 2016, 61(21): 2344-2370(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201621006.htm [7] Satoh M, Maekawa T, Okuda Y. Estimation of amount of methane and resources of natural gas hydrates in the world and around Japan[J]. The Journal of the Geological Society of Japan, 1996, 102: 959-971. doi: 10.5575/geosoc.102.959 [8] Sun Q, Kang Y T. Review on CO2 hydrate formation/dissociation and its cold energy application[J]. Renewable and Sustainable Energy Reviews, 2016, 62: 478-494. doi: 10.1016/j.rser.2016.04.062 [9] Jeong J H, Cha M, Jang J, et al. Thermodynamic behavior and spectroscopic properties of CO and C3H8 mixed gas hydrates: Implications for hydrate-based gas separation[J]. Chemical Engineering Journal, 2022, 428: 132076. doi: 10.1016/j.cej.2021.132076 [10] 刘建辉, 李占东, 赵佳彬. 神狐海域天然气水合物研究新进展[J]. 矿产与地质, 2021, 35(3): 596-602. doi: 10.19856/j.cnki.issn.1001-5663.2021.03.031Liu J H, Li Z D, Zhao J B. New progress in the study of natural gas hydrate in Shenhu area[J]. Mineral Resources and Geology, 2021, 35(3): 596-602(in Chinese with English abstract). doi: 10.19856/j.cnki.issn.1001-5663.2021.03.031 [11] You K, Flemings P B, Malinverno A, et al. Mechanisms of methane hydrate formation in geological systems[J]. Reviews of Geophysics, 2019, 57(4): 1146-1196. doi: 10.1029/2018RG000638 [12] 宁伏龙, 梁金强, 吴能友, 等. 中国天然气水合物赋存特征[J]. 天然气工业, 2020, 40(8): 1-24. doi: 10.3787/j.issn.1000-0976.2020.08.001Ning F L, Liang J Q, Wu N Y, et al. Reservoir characteristics of natural gas hydrates in China[J]. Natural Gas Industry, 2020, 40(8): 1-24(in Chinese with English abstract). doi: 10.3787/j.issn.1000-0976.2020.08.001 [13] 程聪, 姜涛, 匡增桂, 等. 天然气水合物系统特征及其对我国水合物勘查的启示[J]. 地质科技情报, 2019, 38(4): 30-40. doi: 10.19509/j.cnki.dzkq.2019.0405Cheng C, Jiang T, Kuang Z G, et al. Characteristics of gas hydrate system and its enlightenment to gas hydrate exploration in China[J]. Geological Science and Technology Information, 2019, 38(4): 30-40(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2019.0405 [14] Li Y L, Ning F L, Wu N Y, et al. Protocol for sand control screen design of production wells for clayey silt hydrate reservoirs: A case study[J]. Energy Science & Engineering, 2020, 8(5): 1438-1449. doi: 10.1002/ese3.602/abstract [15] Sun J X, Ning F L, Lei H W, et al. Wellbore stability analysis during drilling through marine gas hydrate-bearing sediments in Shenhu area: A case study[J]. Journal of Petroleum Science and Engineering, 2018, 170: 345-367. doi: 10.1016/j.petrol.2018.06.032 [16] 宁伏龙, 方翔宇, 李彦龙, 等. 天然气水合物开采储层出砂研究进展与思考[J]. 地质科技通报, 2020, 39(1): 137-148. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202001017.htmNing F L, Fang X Y, Li Y L, et al. Research status and perspective on wellbore sand production from hydrate reservoirs[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 137-148(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202001017.htm [17] 孙嘉鑫, 张凌, 宁伏龙, 等. 天然气水合物藏增产研究现状与展望[J]. 石油学报, 2021, 42(4): 523-540. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202104009.htmSun J X, Zhang L, Ning F L, et al. Research status and prospects of increasing production from gas hydrate reservoirs[J]. Acta Petrolei Sinica, 2021, 42(4): 523-540(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202104009.htm [18] Bai D S, Zhang D W, Zhang X R, et al. Origin of self-preservation effect for hydrate decomposition: Coupling of mass and heat transfer resistances[J]. Scientific Reports, 2015, 5(1): 14599. doi: 10.1038/srep14599 [19] Kawamura T, Ohga K, Higuchi K. Dissociation behavior of pellet-shaped methane-ethane mixed gas hydrate samples[J]. Energy & Fuels, 2003, 17(3): 614-618. http://www.onacademic.com/detail/journal_1000036575320610_f255.html [20] Zhong J R, Sun Y F, Li W Z, et al. Structural transition range of methane-ethane gas hydrates during decomposition below ice point[J]. Applied Energy, 2019, 250: 873-881. doi: 10.1016/j.apenergy.2019.05.092 [21] Bishnoi P R, Natarajan V. Formation and decomposition of gas hydrates[J]. Fluid Phase Equilibria, 1996, 117(1/2): 168-177. http://www.onacademic.com/detail/journal_1000034008873310_0d14.html [22] Ripmeester J A, Alavi S. Some current challenges in clathrate hydrate science: Nucleation, decomposition and the memory effect[J]. Current Opinion in Solid State and Materials Science, 2016, 20(6): 344-351. doi: 10.1016/j.cossms.2016.03.005 [23] Barbara S, Nobuo M. Statistical study of the memory effect in model natural gas hydrate systems[J]. The Journal of Physical Chemistry A, 2015, 119(44): 10784-10790. doi: 10.1021/acs.jpca.5b07308 [24] Wu Q, Zhang B Y. Memory effect on the pressure-temperature condition and induction time of gas hydrate nucleation[J]. Journal of Natural Gas Chemistry, 2010, 19(4): 446-451. doi: 10.1016/S1003-9953(09)60086-4 [25] 庞维新, 陈光进. 甲烷水合物分解实验[J]. 化工学报, 2008, 59(3): 681-686. doi: 10.3321/j.issn:0438-1157.2008.03.023Pang W X, Chen G J. Dissociation experiment of methane hydrate[J]. Journal of Chemical Industry and Engineering, 2008, 59(3): 681-686(in Chinese with English abstract). doi: 10.3321/j.issn:0438-1157.2008.03.023 [26] 展静, 吴青柏, 杨玉忠. 冰点以下甲烷水合物分解实验对天然气储运的影响[J]. 天然气地球科学, 2012, 23(2): 348-352. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201202022.htmZhan J, Wu Q B, Yang Y Z. Effect of methane hydrate dissociation on natural gas storage and transportation[J]. Natural Gas Geoscience, 2012, 23(2): 348-352(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201202022.htm [27] Takeya S, Uchida T, Nagao J, et al. Particle size effect of CH4 hydrate for self-preservation[J]. Chemical Engineering Science, 2005, 60(5): 1383-1387. doi: 10.1016/j.ces.2004.10.011 [28] Kono H O, Narasimhan S, Song F, et al. Synthesis of methane gas hydrate in porous sediments and its dissociation by depressurizing[J]. Powder Technology, 2002, 122(2): 239-246. http://www.sciencedirect.com/science/article/pii/S003259100100420X [29] Kim H C, Bishnoi P R, Heidemann R A, et al. Kinetics of methane hydrate decomposition[J]. Chemical Engineering Science, 1987, 42(7): 1645-1653. doi: 10.1016/0009-2509(87)80169-0 [30] Chen W Q, Hartman R L. Methane hydrate intrinsic dissociation kinetics measured in a microfluidic system by means of in situ raman spectroscopy[J]. Energy & Fuels, 2018, 32(11): 11761-11771. [31] Jamaluddin A K M, Kalogerakis N, Bishnoi P R. Modelling of decomposition of a synthetic core of methane gas hydrate by coupling intrinsic kinetics with heat transfer rates[J]. The Canadian Journal of Chemical Engineering, 1989, 67(6): 948-954. doi: 10.1002/cjce.5450670613 [32] 陈强, 业渝光, 孟庆国, 等. 甲烷水合物分解过程模拟实验研究[J]. 现代地质, 2008, 22(3): 475-479. doi: 10.3969/j.issn.1000-8527.2008.03.019Chen Q, Ye Y G, Meng Q G, et al. Experimental research of methane hydrate dissociation[J]. Geoscience, 2008, 22(3): 475-479(in Chinese with English abstract). doi: 10.3969/j.issn.1000-8527.2008.03.019 [33] Pang W X, Xu W Y, Sun C Y, et al. Methane hydrate dissociation experiment in a middle-sized quiescent reactor using thermal method[J]. Fuel, 2009, 88(3): 497-503. doi: 10.1016/j.fuel.2008.11.002 [34] Wang B, Dong H S, Liu Y Z, et al. Evaluation of thermal stimulation on gas production from depressurized methane hydrate deposits[J]. Applied Energy, 2018, 227: 710-718. doi: 10.1016/j.apenergy.2017.08.005 [35] 王家生, 高钰涯, 李清, 等. 沉积物粒度对水合物形成的制约: 来自IODP 311航次证据[J]. 地球科学进展, 2007, 22(7): 659-665. doi: 10.3321/j.issn:1001-8166.2007.07.001Wang J S, Gao Y Y, Li Q, et al. Grain size constraint on gas hydrate occurrence: Evidence from sediment size during IODP 311[J]. Advances in Earth Science, 2007, 22(7): 659-665(in Chinese with English abstract). doi: 10.3321/j.issn:1001-8166.2007.07.001 [36] Fang B, Ning F L, Ou W J, et al. The dynamic behavior of gas hydrate dissociation by heating in tight sandy reservoirs: A molecular dynamics simulation study[J]. Fuel, 2019, 258: 116106. doi: 10.1016/j.fuel.2019.116106 [37] Anderson R, Llamedo M, Tohidi B, et al. Experimental measurement of methane and carbon dioxide clathrate hydrate equilibria in mesoporous silica[J]. The Journal of Physical Chemistry B, 2003, 107(15): 3507-3514. doi: 10.1021/jp0263370 [38] Handa Y P, Stupin D Y. Thermodynamic properties and dissociation characteristics of methane and propane hydrates in 70-. ANG. -radius silica gel pores[J]. The Journal of Physical Chemistry, 1992, 96(21): 8599-8603. doi: 10.1021/j100200a071 [39] 邓帅, 胡高伟, 卜庆涛. 粒径及孔径分布对天然气水合物形成影响的研究进展[J]. 地质科技情报, 2019, 38(4): 41-52. doi: 10.19509/j.cnki.dzkq.2019.0406Deng S, Hu G W, Bu Q T. Research progress on the effects of particle size and pore size distribution on natural gas hydrate formation[J]. Geological Science and Technology Information, 2019, 38(4): 41-52(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2019.0406 [40] 徐锋, 吴强, 朱丽华. 甲烷水合物恒压分解动力学研究进展[J]. 工业安全与环保, 2010, 36(12): 10-12. doi: 10.3969/j.issn.1001-425X.2010.12.005Xu F, Wu Q, Zhu L H. Study of decomposition kinetics of methane hydrate at constant pressure[J]. Industrial Safety and Environmental Protection, 2010, 36(12): 10-12(in Chinese with English abstract). doi: 10.3969/j.issn.1001-425X.2010.12.005 [41] Uchida T, Ebinuma T, Ishizaki T. Dissociation condition measurements of methane hydrate in confined small pores of porous glass[J]. Journal of Physical Chemistry B, 1999, 103(18): 3659-3662. doi: 10.1021/jp984559l [42] 张郁, 蔡晶, 李小森, 等. 南海沉积物中甲烷水合物定压分解特性[J]. 中国科学: 物理学, 力学, 天文学, 2019, 49(3): 136-143. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201903010.htmZhang Y, Cai J, Li X S, et al. Dissociation behaviors of methane hydrate in marine sediments from South China Sea under constant pressure[J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2019, 49(3): 136-143(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201903010.htm [43] Zhao J F, Liu D, Yang M J, et al. Analysis of heat transfer effects on gas production from methane hydrate by depressurization[J]. International Journal of Heat and Mass Transfer, 2014, 77: 529-541. doi: 10.1016/j.ijheatmasstransfer.2014.05.034 [44] 杨明军, 孙慧茹, 陈兵兵, 等. 水流动强化天然气水合物降压分解研究[J]. 工程热物理学报, 2020, 41(2): 307-312. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB202002008.htmYang M J, Sun H R, Chen B B, et al. The study on natural gas hydrate depressurization dissociation strengthened by water flow process[J]. Journal of Engineering Thermophysics, 2020, 41(2): 307-312(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB202002008.htm [45] Chen B B, Sun H R, Zhao G J, et al. Experimental observation of methane hydrate dissociation via different depressurization modes under water phase flow[J]. Fuel, 2021, 283: 118908. doi: 10.1016/j.fuel.2020.118908 [46] Sun H R, Chen B B, Zhao G J, et al. The enhancement effect of water-gas two-phase flow on depressurization process: Important for gas hydrate production[J]. Applied Energy, 2020, 276: 115559. doi: 10.1016/j.apenergy.2020.115559 [47] Yang L, Falenty A, Chaouachi M, et al. Synchrotron X-ray computed microtomography study on gas hydrate decomposition in a sedimentary matrix[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(9): 3717-3732. doi: 10.1002/2016GC006521 [48] Akihiro H, Satoshi T, Evgeny C, et al. Preservation phenomena of methane hydrate in pore spaces[J]. Physical Chemistry Chemical Physics: PCCP, 2011, 13: 17449-17452. doi: 10.1039/c1cp22353d [49] Chaouachi M, Falenty A, Sell K, et al. Microstructural evolution of gas hydrates in sedimentary matrices observed with synchrotron X-ray computed tomographic microscopy[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(6): 1711-1722. doi: 10.1002/2015GC005811 [50] Peng X M, Hu Y F, Yang L Y, et al. Decomposition kinetics for formation of CO2 hydrates in natural silica sands[J]. Chinese Journal of Chemical Engineering, 2010, 18(1): 61-65. doi: 10.1016/S1004-9541(08)60324-9 [51] 喻西崇, 李刚, 李清平, 等. 沉积物中水合物分解过程影响因素的实验模拟分析[J]. 中国科学: 地球科学, 2013, 43(3): 400-405. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201303009.htmYu X C, Li G, Li Q P, et al. Experimental simulation of gas hydrate decomposition in porous sediment[J]. Science China: Earth Sciences, 2013, 43(3): 400-405(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201303009.htm [52] Xie Y, Zheng T, Zhong J R, et al. Experimental research on self-preservation effect of methane hydrate in porous sediments[J]. Applied Energy, 2020, 268: 115008. doi: 10.1016/j.apenergy.2020.115008 [53] 文龙, 周雪冰, 梁德青. 甲烷水合物在天然砂中的分解动力学研究[J]. 石油化工, 2019, 48(9): 926-931. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHG201909009.htmWen L, Zhou X B, Liang D Q. Investigation on decomposition kinetics of methane hydrate in natural sand[J]. Petrochemical Technology, 2019, 48(9): 926-931(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYHG201909009.htm [54] Wang Y, Feng J C, Li X S, et al. Fluid flow mechanisms and heat transfer characteristics of gas recovery from gas-saturated and water-saturated hydrate reservoirs[J]. International Journal of Heat and Mass Transfer, 2018, 118: 1115-1127. doi: 10.1016/j.ijheatmasstransfer.2017.11.081 [55] Li X Y, Li X S, Wang Y, et al. The optimization mechanism for gas hydrate dissociation by depressurization in the sediment with different water saturations and different particle sizes[J]. Energy, 2021, 215: 119129. doi: 10.1016/j.energy.2020.119129 [56] Tang L G, Li X S, Feng Z P, et al. Control mechanisms for gas hydrate production by depressurization in different scale hydrate reservoirs[J]. Energy & Fuels, 2006, 21(1): 227-233. doi: 10.1021/ef0601869 [57] Hong H, Pooladi-Darvish M, Bishnoi P R. Analytical modelling of gas production from hydrates in porous media[J]. Journal of Canadian Petroleum Technology, 2003, 42(11): 45-56. doi: 10.2118/03-11-05 [58] Zheng R Y, Li S X, Cui G D. Determining the controlling mechanisms of hydrate dissociation front using optimized characteristic time[J]. Fuel, 2021, 298: 120805. doi: 10.1016/j.fuel.2021.120805 [59] Kamath V A, Holder G D, Angert P F. Three phase interfacial heat transfer during the dissociation of propane hydrates[J]. Chemical Engineering Science, 1984, 39(10): 1435-1442. doi: 10.1016/0009-2509(84)80001-9 [60] Kamath V A, Holder G D. Dissociation heat transfer characteristics of methane hydrates[J]. AIChE Journal, 1987, 33: 347-350. doi: 10.1002/aic.690330228 [61] Selim M S, Sloan E D. Modeling of the dissociation of an in-situ hydrate[C]//Anon. SPE California Regional Meeting. Bakersfield: OnePetro, 1985. [62] Handa Y. A calorimetric study of naturally occurring gas hydrates[J]. Industrial & Engineering Chemistry Research, 1988, 27(5): 872-874. http://www.onacademic.com/detail/journal_1000035859312610_12bd.html [63] Windmeier C, Oellrich L R. Theoretical study of gas hydrate decomposition kinetics-model development[J]. The Journal of Physical Chemistry A, 2013, 117(40): 10151-10161. doi: 10.1021/jp403471b [64] Yousif M H, Abass H H, Selim M S, et al. Experimental and theoretical investigation of methane-gas-hydrate dissociation in porous media[J]. SPE Reservoir Engineering, 1991, 6(1): 69-76. doi: 10.2118/18320-PA [65] Tsypkin G G. Mathematical model of the dissociation of gas hydrates coexisting with ice in natural reservoirs[J]. Fluid Dynamics, 1993, 28(2): 223-229. doi: 10.1007/BF01051211 [66] Makogon Y. Hydrates of hydrocarbons[M]. USA: Penn Well Publishing Company, 1997. [67] Clarke M A, Bishnoi P R. Determination of the intrinsic rate of gas hydrate decomposition using particle size analysis[J]. Annals of the New York Academy of Sciences, 2000, 912(1): 556-563. http://www.sciencedirect.com/science/article/pii/S0009250900001378 [68] Goel N, Wiggins M, Shah S. Analytical modeling of gas recovery from in situ hydrates dissociation[J]. Journal of Petroleum Science and Engineering, 2001, 29(2): 115-127. doi: 10.1016/S0920-4105(01)00094-8 [69] Sun C Y, Chen G J. Methane hydrate dissociation above 0℃ and below 0℃[J]. Fluid Phase Equilibria, 2006, 242(2): 123-128. doi: 10.1016/j.fluid.2006.01.025 [70] 李娜, 奚西峰, 何小霞, 等. 甲烷水合物分解动力学模型[J]. 天然气地球科学, 2006, 17(6): 880-883. doi: 10.3969/j.issn.1672-1926.2006.06.031Li N, Xi X F, He X X, et al. Dynamic model for methane hydrate decomposition[J]. Natural Gas Geoscience, 2006, 17(6): 880-883(in Chinese with English abstract). doi: 10.3969/j.issn.1672-1926.2006.06.031 [71] Vlasov V A. Diffusion model of gas hydrate dissociation into ice and gas: Simulation of the self-preservation effect[J]. International Journal of Heat and Mass Transfer, 2016, 102: 631-636. doi: 10.1016/j.ijheatmasstransfer.2016.06.057 [72] Song S F, Shi B H, Yu W C, et al. A new methane hydrate decomposition model considering intrinsic kinetics and mass transfer[J]. Chemical Engineering Journal, 2019, 361: 1264-1284. doi: 10.1016/j.cej.2018.12.143 [73] Deng X J, Feng J W, Pan S W, et al. An improved model for the migration of fluids caused by hydrate dissociation in porous media[J]. Journal of Petroleum Science and Engineering, 2020, 188: 106876. doi: 10.1016/j.petrol.2019.106876 [74] Yin Z Y, Chong Z R, Tan H K, et al. Review of gas hydrate dissociation kinetic models for energy recovery[J]. Journal of Natural Gas Science and Engineering, 2016, 35: 1362-1387. doi: 10.1016/j.jngse.2016.04.050 [75] Ullerich J, Selim M S, Sloan E D. Theory and measurement of hydrate dissociation[J]. AIChE Journal, 1987, 33: 747-752. doi: 10.1002/aic.690330507 [76] Selim M S, Sloan E D. Hydrate dissociation in sediment[J]. SPE Reservoir Engineering, 1990, 5(2): 245-251. doi: 10.2118/16859-PA [77] Selim M S, Sloan E D. Heat and mass transfer during dissociation of hydrates in porous media[J]. AIChE Journal, 1989, 35: 1049-1052. doi: 10.1002/aic.690350620 [78] Clarke M A, Bishnoi P R. Determination of the intrinsic rate of ethane gas hydrate decomposition[J]. Chemical Engineering Science, 2000, 55(21): 4869-4883. doi: 10.1016/S0009-2509(00)00137-8 [79] Clarke M A, Bishnoi P R. Determination of the activation energy and intrinsic rate constant of methane gas hydrate decomposition[J]. The Canadian Journal of Chemical Engineering, 2001, 79(1): 143-147. doi: 10.1002/cjce.5450790122 [80] Clarke M A, Bishnoi P R. Measuring and modelling the rate of decomposition of gas hydrates formed from mixtures of methane and ethane[J]. Chemical Engineering Science, 2001, 56(16): 4715-4724. doi: 10.1016/S0009-2509(01)00135-X [81] Clarke M A, Bishnoi P R. Determination of the intrinsic rate constant and activation energy of CO2 gas hydrate decomposition using in-situ particle size analysis[J]. Chemical Engineering Science, 2004, 59(14): 2983-2993. doi: 10.1016/j.ces.2004.04.030 [82] Giraldo C, Clarke M A. Stoichiometric approach toward modeling the decomposition kinetics of gas hydrates formed from mixed gases[J]. Energy & Fuels, 2013, 27(8): 4534-4544. http://www.researchgate.net/profile/Matthew_Clarke11/publication/263948384_Stoichiometric_Approach_toward_Modeling_the_Decomposition_Kinetics_of_Gas_Hydrates_Formed_from_Mixed_Gases/links/57c49b0e08aecd4514155cce.pdf [83] Windmeier C, Oellrich L R. Theoretical study of gas hydrate decomposition kinetics: Model predictions[J]. The Journal of Physical Chemistry A, 2013, 117(47): 12184-12195. doi: 10.1021/jp406837q [84] Takeya S, Ebinuma T, Uchida T, et al. Self-preservation effect and dissociation rates of CH4 hydrate[J]. Journal of Crystal Growth, 2002, 237/239(1/4): 379-382. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0022024801019467&originContentFamily=serial&_origin=article&_ts=1467696769&md5=4df46585f565fe66186b5239cb12ce2c [85] Vlasov V A. Diffusion model of gas hydrate dissociation into ice and gas that takes into account the ice microstructure[J]. Chemical Engineering Science, 2020, 215: 115443. doi: 10.1016/j.ces.2019.115443 [86] Misyura S Y, Donskoy I G. Dissociation kinetics of methane hydrate and CO2 hydrate for different granular composition[J]. Fuel, 2020, 262: 116614. doi: 10.1016/j.fuel.2019.116614 [87] 何晓霞, 余劲松, 马应海, 等. 甲烷水合物分解的缩粒动力学模型[J]. 天然气地球科学, 2005, 16(6): 818-821. doi: 10.3969/j.issn.1672-1926.2005.06.028He X X, Yu J S, Ma Y H, et al. Particle shrinking dynamic model for methane hydrate decomposition[J]. Natural Gas Geoscience, 2005, 16(6): 818-821(in Chinese with English abstract). doi: 10.3969/j.issn.1672-1926.2005.06.028 [88] 艾志久, 王杰. 天然气水合物分解的动力学模型研究[J]. 天然气地球科学, 2017, 28(3): 377-382. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201703004.htmAi Z J, Wang J. Study on kinetic model of natural gas hydrate dissociation[J]. Natural Gas Geoscience, 2017, 28(3): 377-382(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201703004.htm [89] 刘犟, 阎立军, 陈光进, 等. 活性炭中甲烷水合物的分解动力学[J]. 化学学报, 2002, 60(8): 1385-1389. doi: 10.3321/j.issn:0567-7351.2002.08.006Liu J, Yan L J, Cheng G J, et al. Kinetics of methane hydrate dissociation in active carbon[J]. Acta Chimica Sinica Chinese Edition, 2002, 60(8): 1385-1389(in Chinese with English abstract). doi: 10.3321/j.issn:0567-7351.2002.08.006 [90] Sun X F, Mohanty K K. Kinetic simulation of methane hydrate formation and dissociation in porous media[J]. Chemical Engineering Science, 2006, 61(11): 3476-3495. doi: 10.1016/j.ces.2005.12.017 [91] Nazridoust K, Ahmadi G. Computational modeling of methane hydrate dissociation in a sandstone core[J]. Chemical Engineering Science, 2007, 62(22): 6155-6177. doi: 10.1016/j.ces.2007.06.038 [92] Chen X Y, Espinoza D N. Surface area controls gas hydrate dissociation kinetics in porous media[J]. Fuel, 2018, 234: 358-363. doi: 10.1016/j.fuel.2018.07.030