留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

贵州省毕节市米底河地热特征及形成机理

林华颖 裴鹏 邹行 焦安军

林华颖, 裴鹏, 邹行, 焦安军. 贵州省毕节市米底河地热特征及形成机理[J]. 地质科技通报, 2023, 42(3): 281-288. doi: 10.19509/j.cnki.dzkq.tb20210675
引用本文: 林华颖, 裴鹏, 邹行, 焦安军. 贵州省毕节市米底河地热特征及形成机理[J]. 地质科技通报, 2023, 42(3): 281-288. doi: 10.19509/j.cnki.dzkq.tb20210675
Lin Huaying, Pei Peng, Zou Hang, Jiao Anjun. Geothermal characteristics and formation mechanism of the Medi River in Bijie City, Guizhou Province[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 281-288. doi: 10.19509/j.cnki.dzkq.tb20210675
Citation: Lin Huaying, Pei Peng, Zou Hang, Jiao Anjun. Geothermal characteristics and formation mechanism of the Medi River in Bijie City, Guizhou Province[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 281-288. doi: 10.19509/j.cnki.dzkq.tb20210675

贵州省毕节市米底河地热特征及形成机理

doi: 10.19509/j.cnki.dzkq.tb20210675
基金项目: 

国家自然科学基金项目 52066005

贵州省科技支撑计划项目 黔科合支撑[2020]2Y025

贵州省教育厅青年科技人才成长项目 黔教合KY字[2017]117

详细信息
    作者简介:

    林华颖(1995—),现正攻读矿业工程专业硕士学位,主要从事地热方向研究工作。E-mail: eternity37326@gmail.com

    通讯作者:

    裴鹏(1982—),教授,主要从事地热方向研究工作。E-mail: ppei@gzu.edy.cn

  • 中图分类号: P314

Geothermal characteristics and formation mechanism of the Medi River in Bijie City, Guizhou Province

  • 摘要:

    研究地热资源形成机理及水化学特征可为资源综合利用与开发提供参考。通过采集贵州省毕节市米底河水样进行水化学特征分析,采用Piper三线图、地温温标法和音频大地电磁等手段对米底河地下热水水化学和形成机理进行了研究。研究表明,该地区受平寨穹窿构造影响穹窿内节理构造极其发育,利于深部热水向穹窿内承压相对低区域运移,形成褶皱穹起构造对流型地下热水资源;通过区域断层探测,推断该区域存在5条断层破碎带(或者裂隙),其中F4与F13断层产状较陡,向下延伸较浅;F9比较明显,倾向北西;F1走向近似南北向,倾向北西,延伸较深;F17与F18反映较为明显,但是延伸较浅,推断F1断层具有良好的控热性,是地下热水上涌的有利位置;在平寨穹窿边部环带接受大气降水入渗补给后径流至2 500 m深度内获得围岩的加热,并在上覆寒武系碎屑岩隔水、保温盖层的作用下,于震旦系灯影组白云岩中形成深部承压热储;水化学特征分析得出地热水属低矿化度水,地热井水源中Na+为主要阳离子,占45%左右,其次为Ca2+与Mg2+,占49%左右。阴离子中HCO3-占主体,SO42-占39%,Cl-几乎没有,因此地下热水水化学类型为HCO3-·SO42--Na·Ca型;根据玉髓温标得出地热井地下热水热储温度为53.98℃,地温梯度为2.85℃/100m,地下热水循环深度在2 500 m左右。研究结果对贵州毕节地区地热资源开发利用具有较好的指导意义。

     

  • 图 1  区域地质构造略图

    1.二级构造单元界线;2.三级构造单元界线;3.四级构造单元界线;4.省界; 5.背斜轴线;6.向斜轴线;7.穹窿;8.盆地;9.断层;10.构造单元分区代号;11.研究区; Ⅰ1A3.贵阳复杂构造变形区;Ⅰ1A2.凤冈北北东构造变形区;Ⅰ1B.六盘水断陷

    Figure 1.  Sketch map of the regional geological structure

    图 2  平寨穹窿构造图

    1.构造等高线及高程(m);2.根据航空像片描绘的大型节理;3.大型节理等密度线(等密间距单位为条/km2;4.中二叠统梁山组与中上寒武统娄山关组之间的侵蚀线;5.应力状态(实线代表共轭扭面;虚线代表最大挤压应力轴);6.大堰村以布罗地热井

    Figure 2.  Structural map of the Pingzhai Dome

    图 3  地下热水Piper三线图

    Figure 3.  Piper trilinear diagram of geothermal water

    图 4  地温井温度随井深变化曲线

    Figure 4.  Curve of change in temperature of geothermal well with the well depth

    图 5  音频大地电磁测深视电阻率反演拟断面图

    a.1号剖面;b.2号剖面;c.3号剖面

    Figure 5.  Pseudosection map of apparent resistivity inversion for audio-frequency magnetotelluric sounding

    图 6  地下热水形成示意图

    T1yn4.三叠系永宁组四段;T1yn3.三叠系永宁组三段;T1yn2.三叠系永宁组二段;T1yn1.三叠系永宁组一段;T1y3.三叠系夜郎组三段;T1y1-2.三叠系夜郎组一二段;P3c+d.上二叠统长兴组和大隆组;P3l.上二叠统龙潭组;P2m.中二叠统茅口组;P2q.中二叠统栖霞组;P2l.中二叠统梁山组;∈2-3ls.中上寒武统娄山关组;∈2g.中寒武统高台组;∈1q.下寒武统清虚洞组;∈1j.下寒武统金顶山组;∈1m.下寒武统明心寺组;∈1n.下寒武统牛蹄塘组;Pt33-∈1dy.震旦系至寒武系灯影组;Pt33d.震旦系陡山沱组;1.断层构造;2.热储层;3.大气降水;4.大地热流;5.地下热水流向;6.地热井及编号;7.地层界线;8.雨水沿断层下渗方向

    Figure 6.  Sketch map of the formation of geothermal hot water

    表  1  地下热水水质分析及主要化学成分对比

    Table  1.   Comparison of main chemical components and quality analysise of underground thermal water

    项目 ZK01 项目 ZK01
    水温/℃ 61 <0.001
    pH值 7.51 <0.001
    溶解性总固体 887 <0.000 1
    总硬度(以CaCO3计) 295 <0.000 05
    耗氧量(以O2计) 0.77 HCO3- 363
    Na+ 121 SO42- 230
    Ca2+ 78.1 偏硅酸 44.6
    Mg2+ 22.6 Cl- 41.2
    K+ 22.3 二氧化硅(SiO2) 34.3
    4.21 游离二氧化碳 17.5
    0.51 F-ρB/(mg·L-1) 5.29
    Fe2+ρB/(mg·L-1) <0.05 偏硼酸 2.06
    Fe3+ <0.05 NO3- 1.89
    0.35 阴离子合成洗涤剂 <0.05
    0.099 碘化物 <0.01
    0.07 溴化物 <0.01
    0.008 亚硝酸盐 <0.002
    <0.006 氰化物 <0.001
    <0.006 挥发酚 0.003
    铬(六价) <0.004 CO32- 0
    <0.001 总β放射性 0.86(Bq/L)
    <0.001 总α放射性 0.40(Bq/L)
    <0.001
    注:数据由贵州省地质矿产中心实验室于2020年检测
    下载: 导出CSV
  • [1] 陈刚, 方尚武, 张林等. 贵州省毕节市中东部地下热水资源整装勘查报告[R]. 贵州遵义: 贵州省地质矿产勘查开发局114地质大队, 2015.

    Chen G, Fang S W, Zhang L, et. al. Report on the whole installation of geothermal water resources in the central and eastern part of Bijie City, Guizhou Province[R]. Zunyi, Guizhou: Guizhou Geological and Mineral Exploration and Development Bureau 114 Geological Brigade, 2015(in Chinese).
    [2] 毛健全, 陈阳. 对贵州省温泉中氚含量及氢、氧稳定同位素组成的初步研究[J]. 地质地球化学, 1987, 15(1): 64-65. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ198701017.htm

    Mao J Q, Chen Y. Preliminary study on tritium content and stable isotope composition of hydrogen and oxygen in hot spring of Guizhou Province[J]. Geology Geochemstry, 1987, 15(1): 64-65(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ198701017.htm
    [3] 毛健全, 王伍军. 贵州温泉水氟研究[J]. 贵州工学院学报: 自然科学版, 1991, 20(2): 13-21. https://www.cnki.com.cn/Article/CJFDTOTAL-GZGX199102004.htm

    Mao J Q, Wang W J. Study of the fluorine in hot spring in Guizhou[J]. Journal of Guizhou University of Technology: Natural Science Edition, 1991, 20(2): 13-21(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GZGX199102004.htm
    [4] 陈履安, 张世从. 贵州石阡地区矿泉水的同位素年龄研究[J]. 贵州地质, 1997, 14(3): 274-278. https://www.cnki.com.cn/Article/CJFDTOTAL-GZDZ199703013.htm

    Chen L A, Zhang S C. A study on isotopic ages of mineral waters of Shiqian area, Guizhou[J]. Guizhou Geology, 1997, 14(3): 274-278(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GZDZ199703013.htm
    [5] 姚在永, 成忠礼, 王俊文. 息烽氡泉环境地球化学的初步研究[J]. 地球化学, 1982, 11(1): 76-81. doi: 10.3321/j.issn:0379-1726.1982.01.010

    Yao Z Y, Cheng Z L, Wang J W. A preliminary environmental geochemical study on the radon springs in Xifeng, Guizhou Province[J]. Geochimica, 1982, 11(1): 76-81(in Chinese with English abstract). doi: 10.3321/j.issn:0379-1726.1982.01.010
    [6] 张世从, 陈履安. 贵州石阡地区热矿水同位素地球化学研究[J]. 地质论评, 1992, 38(5): 457-466. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP199205009.htm

    Zhang S C, Chen L A. Isotope geochemistry of hot mineral water in Shiqian area, Guizhou Province[J]. Geological Review, 1992, 38(5): 457-466(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP199205009.htm
    [7] 张世从. 贵州热矿水的基本类型及特征[J]. 贵州地质, 1994, 11(4): 331-333. https://www.cnki.com.cn/Article/CJFDTOTAL-GZDZ404.009.htm

    Zhang S C. Classification for the thermal mineral water in Guizhou Province[J]. Guizhou Geology, 1994, 11(4): 331-333(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GZDZ404.009.htm
    [8] 宋小庆, 段启杉, 孟凡涛, 等. 贵州息烽温泉地质成因分析[J]. 地质科技情报, 2014, 33(5): 216-220. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201405034.htm

    Song X Q, Duan Q S, Meng F T, et al. Geological genesis analysis of the Xifeng hot spring in Guizhou[J]. Geological Science and Technology Information, 2014, 33(5): 216-220(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201405034.htm
    [9] 宋小庆, 彭钦, 段启杉, 等. 黔东北地区地热水化学特征及起源[J]. 地球科学, 2019, 44(9): 2874-2886. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201909006.htm

    Song X Q, Peng Q, Duan Q S, et al. Hydrochemistry characteristics and origin of geothermal water in northeastern Guizhou[J]. Earth Science, 2019, 44(9): 2874-2886(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201909006.htm
    [10] 王明章, 王尚彦. 贵州省地热资源开发问题及对策建议[J]. 贵州地质, 2007, 24(1): 9-12. https://www.cnki.com.cn/Article/CJFDTOTAL-GZDZ200701001.htm

    Wang M Z, Wang S Y. Concerns of developing geothermal resources in Guizhou Province and countermeasure proposals[J]. Guizhou Geology, 2007, 24(1): 9-12(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GZDZ200701001.htm
    [11] 杨荣康, 杨丽君, 王乾, 等. 贵州石阡地热田地热资源量计算[J]. 贵州地质, 2014, 31(2): 154-157. https://www.cnki.com.cn/Article/CJFDTOTAL-GZDZ201402016.htm

    Yang R K, Yang L J, Wang Q, et al. Geothermal resources a mount calculation of Shiqian geothermal field in Guizhou[J]. Guizhou Geology, 2014, 31(2): 154-157(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GZDZ201402016.htm
    [12] 曹卫刚, 陈治, 方永坤, 等. 贵州省地热资源特征及勘查开发探讨[J]. 冶金管理, 2020(9): 100-101. https://www.cnki.com.cn/Article/CJFDTOTAL-YJGL202009067.htm

    Cao W G, Chen Z, Fang Y K, et al. Characteristics and exploration of geothermal resources in Guizhou Province[J]. China Steel Focus, 2020(9): 100-101(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YJGL202009067.htm
    [13] 詹恕明. 贵州省地热资源分布特征及开发利用现状[J]. 资源信息与工程, 2016, 31(2): 88-89. https://www.cnki.com.cn/Article/CJFDTOTAL-YSJW201602048.htm

    Zhan S M. Distribution characteristics and development and utilization status of geothermal resources in Guizhou Province[J]. Resource Information and Engineering, 2016, 31(2): 88-89(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSJW201602048.htm
    [14] 杨胜元, 杨秀忠, 张建江, 等. 试论贵州地下热水类型[J]. 贵州地质, 2008, 25(2): 128-132. https://www.cnki.com.cn/Article/CJFDTOTAL-GZDZ200802009.htm

    Yang S Y, Yang X Z, Zhang J J, et al. Analyze the type of geothermal water of Guizhou Province[J]. Guizhou Geology, 2008, 25(2): 128-132(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GZDZ200802009.htm
    [15] 雷琨, 何守阳, 安艳玲. 典型岩溶温泉群水文地球化学特征[J]. 中国科学院大学学报, 2016, 33(3): 403-411. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKYB201603013.htm

    Lei K, He S Y, An Y L. Hydrogochemical characteristics of thermal spring group in typical karst region[J]. Journal of University of Chinese Academy of Sciences, 2016, 33(3): 403-411(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZKYB201603013.htm
    [16] 李超, 陈正山, 王甘露, 等. 贵州东南部地热水地球化学特征及成因[J]. 矿物岩石地球化学通报, 2020, 39(3): 614-625. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202003021.htm

    Li C, Chen Z S, Wang G L, et al. Geochemical characteristics and origin of geothermal water in southeastern Guizhou, China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2020, 39(3): 614-625(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202003021.htm
    [17] 陈墨香, 汪集旸, 邓孝. 中国地热资源: 形成特点和潜力评估[M]. 北京: 科学出版社, 1994.

    Chen M X, Wang J Y, Deng X. Geothermal resources in China: Formation characteristics and potential assessment[M]. Beijing: Science Press, 1994 (in Chinese).
    [18] 汪集旸, 熊亮萍, 庞忠和. 中低温对流型地热系统[M]. 北京: 科学出版社, 1993.

    Wang J Y, Xiong L P, Pang Z H. Low-medium temperature geothermal system of convective type[M]. Beijing: Science Press, 1993(in Chinese).
    [19] 刘旭东, 许峰, 石磊, 等. 乌东煤矿地下水水化学特征及其指示[J]. 煤炭工程, 2021, 53(4): 115-119. https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ202104025.htm

    Liu X D, Xu F, Shi L, et al. Hydrochemical characteristics of groundwater in Wudong Mine and its significance[J]. Coal Engineering, 2021, 53(4): 115-119 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ202104025.htm
    [20] 满孝全, 魏久传, 谢道雷, 等. 基于水化学特征分析的突水水源判别方法[J]. 中国科技论文, 2021, 16(1): 76-81, 90. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKZX202101012.htm

    Man X Q, Wei J C, Xie D L, et al. Identification method of water inrush source based on analysis of water chemical characteristics[J]. China Science Paper, 2021, 16(1): 76-81, 90 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZKZX202101012.htm
    [21] 董东林, 张健, 林刚, 等. 矿井涌(突)水源混合水识别模型研究[J]. 煤炭工程, 2020, 52(12): 124-127. https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ202012027.htm

    Dong D L, Zhang J, Lin G, et al. Identification model of the source of water-inrush[J]. Coal Engineering, 2020, 52(12): 124-127 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ202012027.htm
    [22] 刘基, 高敏, 靳德武, 等. 榆神矿区地表水水化学特征及其影响因素分析[J]. 煤炭科学技术, 2020, 48(7): 354-361. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202007041.htm

    Liu J, Gao M, Jin D W, et al. Hydrochemical characteristics of surface water and analysis on influence factors in Yushen Mining area[J]. Coal Science and Technology, 2020, 48(7): 354-361 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202007041.htm
    [23] 屈吉鸿, 李潇, 张艺锋, 等. 新乡市化工集聚区地下水化学特征及成因分析[J]. 科学技术与工程, 2019, 19(34): 95-102. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201934013.htm

    Qu J H, Li X, Zhang Y F, et al. Analysis of groundwater chemical characteristics and cause of formation in chemical agglomeration area of Xinxiang City[J]. Science Technology and Engineering, 2019, 19(34): 95-102 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201934013.htm
    [24] 李凤昱, 许天福, 封官宏, 等. T2 Well单井地下水源热泵水-热耦合数值模拟研究[J]. 太阳能学报, 2020, 41(4): 278-286. https://www.cnki.com.cn/Article/CJFDTOTAL-TYLX202004039.htm

    Li F Y, Xu T F, Feng G H, et al. Simulation for water-heat coupling process of single well ground source heat pump systems implemented by T2 Well[J]. Acta Energiae Solaris Sinica, 2020, 41(4): 278-286 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TYLX202004039.htm
    [25] 刘志涛, 刘帅, 宋伟华, 等. 鲁北地区砂岩热储地热尾水回灌地温场变化特征分析[J]. 地质学报, 2019, 93(增刊1): 149-157. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE2019S1019.htm

    Liu Z T, Liu S, Song W H, et al. Change characteristics of geothermal field for geothermal return water reinjection of sandstone reservoir in the northern Shandong[J]. Acta Geologica Sinica, 2019, 93 (S1): 149-157 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE2019S1019.htm
    [26] 冯守涛, 王成明, 杨亚宾, 等. 砂岩热储回灌对储层影响评价: 以鲁西北坳陷地热区为例[J]. 地质学报, 2019, 93(增刊1): 158-167. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE2019S1020.htm

    Feng S T, Wang C M, Yang Y B, et al. Impact assessment of reinjection on sandstone geothermal reservoir: A case study of northwest Shandong Depression[J]. Acta Geologica Sinica, 2019, 93(S1): 158-167 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE2019S1020.htm
    [27] 徐成华, 于丹丹, 骆祖江. 南京汤泉地下热水化学特征及其指示意义[J]. 科学技术与工程, 2020, 20(28): 11472-11478. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202028011.htm

    Xu C H, Yu D D, Luo Z J. Hydrogeochemistry of geothermal water from the Tangquan in Nanjing and its indicating significance[J]. Science Technology and Engineering, 2020, 20(28): 11472-11478 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202028011.htm
    [28] 徐刚, 伍坤宇, 王鹏, 等. 藏北温泉盆地地热田水文地球化学特征研究[J]. 中国岩溶, 2020, 39(3): 299-310. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202003002.htm

    Xu G, Wu K Y, Wang P, et al. Hydrogeochemical characteristics of the geothermal field in Wenquan Basin, northern Tibet[J]. Carsologica Sinica, 2020, 39(3): 299-310 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202003002.htm
    [29] 单玄龙, 蔡壮, 郝国丽, 等. 地球化学温标估算长白山地热系统热储温度[J]. 吉林大学学报: 地球科学版, 2019, 49(3): 662-672. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201903004.htm

    Shan X L, Cai Z, Hao G L, et al. Geochemical temperature scales estimate the thermal storage temperature of the Changbai Mountain thermal system[J]. Journal of Jilin University: Earth Science Edition, 2019, 49(3): 662-672 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201903004.htm
    [30] Fournier R O, Potter R W. An equation correlating the solubility of quartz in water from 25Ȃ℃ to 900Ȃ℃ at pressures up to 10, 000 bars[J]. Pergamon, 1982, 46(10): 1969-1973. http://www.onacademic.com/detail/journal_1000035675133410_26df.html
    [31] Rybach L, Muffler L J P. 地热系统原理和典型地热系统分析[M]. 北京大学地质学系地热研究室译. 北京: 地质出版社, 1986: 79-104.

    Rybach L, Muffler L J P. Principle and analysis of typical geothermal systems[M]. Translated by Geothermal Laboratory, Department of Geology, Peking University. Beijing: Geological Publishing House, 1986: 79-104 (in Chinese).
    [32] 郭忠杰, 王锦国, 陈舟, 等. 云南省鹤庆西山温水龙潭温泉成因机制探讨[J]. 工程勘察, 2015, 5: 43-48, 98. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201505010.htm

    Guo Z J, Wang J G, Chen Z, et al. Discussion on the formation mechanism of Wenshui Longtan hot spring in Xishan, Heqing, Yunnan Province[J]. Geotechnical Investigation & Surveying, 2015, 5: 43-48, 98(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201505010.htm
    [33] 龙汩, 周训, 李婷, 等. 北京延庆县松山温泉的特征与成因[J]. 现代地质, 2014, 28(5): 1053-1060. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201405023.htm

    Long G, Zhou X, Li T, et al. Characteristics and formation of the Songshan hot spring in Yanqing County of Beijing[J]. Geoscience, 2014, 28(5): 1053-1060(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201405023.htm
    [34] 林元武. 红河断裂带北段温泉水循环深度与地震活动性的关系探讨[J]. 地震地质, 1993, 15(3): 193-206. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ199303000.htm

    Lin Y W. A discussion on the relation of circulation depth of hot spring water to seismic activity on the northern segment of the Honghe fault zone[J]. Seismology and Geology, 1993, 15(3): 193-206 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ199303000.htm
    [35] 李曼, 于鹏, 张志勇, 等. 二维直流电阻率与音频大地电磁自适应渐进联合反演[J]. 同济大学学报: 自然科学版, 2020, 48(1): 114-122. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ202001015.htm

    Li M, Yu P, Zhang Z Y, et al. Study of 2-D joint inversion of direct current resistivity and audio magnetotelluric data using adaptive progressive mesh refinement strategy[J]. Journal of Tongji University: Natural Science, 2020, 48(1): 114-122 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ202001015.htm
    [36] 郑采君, 刘昕卓, 林品荣, 等. 分布式电磁法仪器系统设计及实现[J]. 地球物理学报, 2019, 62(10): 3772-3784. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201910016.htm

    Zheng Z J, Liu Y Z, Lin P R, et al. Design and realization of the distributed electromagnetic instrument system[J]. Chinese Journal of Geophysics, 2019, 62(10): 3772-3784 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201910016.htm
    [37] 李晋, 张贤, 蔡锦. 利用变分模态分解(VMD)和匹配追踪(MP)联合压制音频大地电磁(AMT)强干扰[J]. 地球物理学报, 2019, 62(10): 3866-3884. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201910028.htm

    Li J, Zhang X, Cai J. Suppression of strong interference for AMT using VMD and MP[J]. Chinese Journal of Geophysics, 2019, 62(10): 3866-3884 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201910028.htm
    [38] 李勇, 林品荣, 刘祖鉴. 电性任意各向异性且分块连续变化CSAMT三维有限元数值模拟[J]. 地球物理学报, 2019, 62(10): 3923-3933. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201910034.htm

    Li Y, Lin P R, Liu Z J. Three-dimensional CSAMT FEM modeling on electrical medium with arbitrary anisotropy andcontinuous variation[J]. Chinese Journal of Geophysics, 2019, 62(10): 3923-3933 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201910034.htm
    [39] 萬文静, 甘浩男, 王贵玲, 等. 我国东南沿海干热岩赋存前景及与靶区选址研究[J]. 地质学报, 2016, 90(8): 2043-2058. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201608031.htm

    Wan W J, Gan H N, Wang G L. et al. Occurrence prospect of HDR and target site selection study in southeastern of China[J]. Acta Geologica Sinica, 2016, 90(8);2043-2058(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201608031.htm
    [40] 孙明行, 张起钻, 刘德民, 等. 广西干热型地热资源成因机制与赋存模式[J]. 地质科技通报, 2022, 41(3): 330-340. doi: 10.19509/j.cnki.dzkq.2022.0037

    Sun M H, Zhang Q Z, Liu D M, et. al. Genesis and occurrence models of hot-dry geothermal resources in Guangxi[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 330-340(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0037
    [41] 刘德民, 张昌生, 孙明行, 等. 干热岩勘查评价指标与形成条件[J]. 地质科技通报, 2021, 40(3): 1-11. doi: 10.19509/j.cnki.dzkq.2021.0316

    Liu D M, Zhang C S, Sun M X, et al. Evaluation indexes and formation conditions of hot dry rock exploration[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 1-11(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0316
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  877
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-28

目录

    /

    返回文章
    返回