Experimental study on the change law of internal erosion and seepage characteristics of inverse grading sand accumulation
-
摘要:
反粒序堆积体常见于高速远程滑坡的流通区和堆积区。针对其粒径上大下小的特殊结构和较强透水性而诱发堆积体不稳定的问题, 采用自制的渗流侵蚀试验装置对颗粒粒径为0.075~20 mm的7组连续及间断颗粒级配反粒序土样进行了试验, 研究了反粒序砂土体渗流侵蚀过程中参数变化和细颗粒迁移模式及规律。结果表明:在反粒序堆积土样中, 细颗粒含量和不均匀系数对反粒序砂土体的渗流侵蚀有重要影响, 细颗粒含量越高, 不均匀系数越大, 则起始渗流系数越小。反粒序砂土体发生管涌颗粒跃层后, 底层颗粒流失量最多, 且粒径为0.075~0.125 mm的颗粒流失比最大。反粒序堆积体整体的渗流能力主要取决于底部的细颗粒含量, 细颗粒含量越高, 临界水力梯度越大。在连续级配土样中, 水力梯度与渗流系数呈二次函数关系;在间断级配反粒序土样中, 细颗粒含量超过45%时, 土样趋于稳定。反粒序堆积体发生管涌后, 其颗粒呈现剥离-沉淀-剥离-沉淀中下层颗粒交替侵蚀的运移模式。研究结果对于该类灾害形成机理与防治研究具有理论和实际应用意义。
Abstract:Inverse grading deposits are commonly found in circulation and accumulation areas of high-speed and long-distance landslides. Due to its special structure of large particle size at the top and small at the bottom and strong permeability, the accumulation is highly susceptible to unstable failure. In this study, using a self-designed device, seepage erosion tests were conducted on seven sets of inverse grading soil samples with continuous and discontinuous particle gradation of particle size 0.075-20 mm to investigate the parameter changes and fine particle migration patterns and laws during seepage erosion of inverse grading sand mass. The results show that the fine particle content and nonuniformity coefficient have an important influence on the seepage erosion of the inverse grading soil samples. The higher the fine particle content, the greater the nonuniformity coefficient and the lower the initial seepage coefficient. After the occurrence of cross-layer tube surge particles, the bottom layer of particle loss is the most, and the particle size of 0.075-0.125 mm particle loss ratio is the largest.The seepage capacity of the inverse grading sand mass depends mainly on the content of fine particles at the bottom. The higher the content of fine particles is, the greater the critical hydraulic gradient will be.In continuous graded soil samples, the relationship between the hydraulic gradient is quadratically related to the percolation coefficient.Soil samples with discontinuous particle gradation are stabilized when the content of fine particles exceeds 45%.After tube gushing occurred in the reverse grain sequence accumulation body, the particles show a migration pattern of stripping-precipitation-stripping-precipitation alternately eroded particles in the middle and lower layers. The study has theoretical and practical significance for the formation mechanism and prevention of such disasters.
-
Key words:
- inverse grading /
- sand accumulation /
- fine particle content /
- particle migration /
- piping /
- seepage and erosion
-
图 1 反粒序堆积结构示意图[3]
Figure 1. Schematic diagram of the structure of inverse grading accumulation
图 3 易贡滑坡堆积体竖向级配曲线[20]
Figure 3. Vertical grading curve of the Yigong landslide accumulation body
图 4 连续级配方程拟合的易贡滑坡堆积体级配曲线[20]
Figure 4. Grading curve of the Yigong landslide accumulation body fitted by the continuous gradation equation
图 5 牛圈沟滑坡碎屑堆积体竖向级配曲线[3]
Figure 5. Vertical grading curve of the debris accumulation body in the Niu Juangou landslide
表 1 颗粒级配特征
Table 1. Particle gradation characteristics
试样名称 有效粒径d10/ mm d30/ mm 限制粒径d60/ mm 不均匀系数Cu 曲率系数Cc CA A1 0.161 0.707 2.516 15.63 1.23 A2 0.109 0.499 1.813 16.63 1.26 A3 0.096 0.356 1.189 12.39 1.11 CB B1 0.213 0.851 2.802 13.15 1.21 B2 0.148 0.603 2.060 13.92 1.19 B3 0.122 0.434 1.371 11.24 1.13 CC C1 0.265 0.994 3.100 11.70 1.20 C2 0.187 0.720 2.320 12.41 1.19 C3 0.148 0.512 1.553 10.49 1.14 CD D1 0.330 1.150 3.387 10.26 1.18 D2 0.239 0.851 2.568 10.74 1.18 D3 0.187 0.603 1.735 9.28 1.12 DE E1 0.830 6.620 12.100 14.58 4.36 E2 0.407 2.000 10.676 26.23 0.92 E3 0.196 1.232 9.069 46.27 0.85 DF F1 0.830 6.620 12.100 14.58 4.36 F2 0.407 2.000 10.676 26.23 0.92 F3 0.158 1.000 8.258 52.27 0.77 DG G1 0.830 6.620 12.100 14.58 4.36 G2 0.407 2.000 10.676 26.23 0.92 G3 0.137 0.854 7.344 53.69 0.73 -
[1] 程谦恭, 张倬元, 黄润秋. 高速远程崩滑动力学的研究现状及发展趋势[J]. 山地学报, 2007, 25(1): 72-84. doi: 10.3969/j.issn.1008-2786.2007.01.007Cheng Q G, Zhang Z Y, Huang R Q. Study on dynamics of rock avalanches: State of the art report[J]. Journal of Mountain Science, 2007, 25(1): 72-84(in Chinese with English abstract). doi: 10.3969/j.issn.1008-2786.2007.01.007 [2] Heim A. Landslides and human lives[M]. Vancouver, B C: Bitech Publishers, 1932: 93-94. [3] 王玉峰, 程谦恭, 朱圻. 汶川地震触发高速远程滑坡-碎屑流堆积反粒序特征及机制分析[J]. 岩石力学与工程学报, 2012, 31(6): 1089-1106. doi: 10.3969/j.issn.1000-6915.2012.06.002Wang Y F, Cheng Q G, Zhu Q. Inverse grading analysis of deposit from rock avalanches triggered by Wenchuan Earthquake[J]. Chinese Journal of Rock Mechanics Engineering, 2012, 31(6): 1089-1106(in Chinese with English abstract). doi: 10.3969/j.issn.1000-6915.2012.06.002 [4] Zhou J, Cui P, Yang X. Dynamic process analysis for the initiation and movement of the Donghekou landslide-debris flow triggered by the Wenchuan Earthquake[J]. Journal of Asian Earth Sciences, 2013, 76: 70-84. doi: 10.1016/j.jseaes.2013.08.007 [5] Strom A L. Mechanism of stratification and abnormal crushing of rockslide deposits[C]//Anon. Proc. 7th International IAEG Congress. Balkema Rotterdam: [s. n.], 1994: 1287-1295. [6] Bertran P. The rock-avalanche of February 1995 at Claix(French Alps)[J]. Geomorphology, 2003, 54(3): 339-346. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0169555X03000412&originContentFamily=serial&_origin=article&_ts=1470975285&md5=17f573dacfb8e7d07f3ee1d73e522861 [7] Cruden D M, Hungr O. The debris of the frank slide and theories of rockslide-avalanche mobility[J]. Canadian Journal of Earth Sciences, 1986, 23(3): 425-432. doi: 10.1139/e86-044 [8] 邹志文, 李辉, 徐洋, 等. 准噶尔盆地玛湖凹陷下三叠统百口泉组扇三角洲沉积特征[J]. 地质科技情报, 2015, 34(2): 20-26. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201502004.htmZhou Z W, Li H, Xu Y, et al. Sedimentary characteristics of the Baikouquan Formation, Lower Triassic in the Mahu Depression, Junggar Basin[J]. Geological Science and Technology Information, 2015, 34(2): 20-26(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201502004.htm [9] 刘自亮, 王多云, 李凤杰, 等. 鄂尔多斯盆地西峰油田主要储层砂体的成因与演化[J]. 地质科技情报, 2008, 27(2): 68-72. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200802013.htmLiu Z L, Wang D Y, Li F J, et al. Genetic and evolution of main reservoir sand bodies in Xifeng Oilfield, Ordos Basin[J]. Geological Science and Technology Information, 2008, 27(2): 68-72(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200802013.htm [10] 叶茂松, 解习农, 黄灿. 陆相坳陷湖盆斜坡带层序格架下沉积模式及隐蔽圈闭勘探: 以准噶尔盆地车排子凸起春光油田白垩系为例[J]. 地质科技情报, 2014, 33(4): 149-158. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201404023.htmYe M S, Xie X N, Huang C. Depositional models and subtle trap exploration under sequence stratigraphic framework in slope belt of continental lacustrine depression basin: An example as Chunguang Cretaceous Oilfiled in Chepaizi area, Junggar Basin[J]. Geological Science and Technology Information, 2014, 33(4): 149-158(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201404023.htm [11] 王志兵, 汪稔, 胡明鉴, 等. 颗粒运移对蒋家沟土体渗透性影响的试验研究[J]. 岩土力学, 2011, 32(7): 2017-2024. doi: 10.3969/j.issn.1000-7598.2011.07.017Wang Z B, Wang R, Hu M J, et al. Effects of particle transport characteristics on permeability of soils from Jiangjiagou ravine[J]. Rock and Soil Mechanics, 2011, 32(7): 2017-2024(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2011.07.017 [12] 袁涛, 蒋中明, 刘德谦, 等. 粗粒土渗透损伤特性试验研究[J]. 岩土力学, 2018, 39(4): 1311-1316, 1336. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201804022.htmYuan T, Jiang Z M, Liu D Q, et al. Experiment on the seepage damage coarse grain soil[J]. Rock and Soil Mechanics, 2018, 39(4): 1311-1316, 1336(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201804022.htm [13] 朱秦, 苏立君, 刘振宇, 等. 颗粒迁移作用下宽级配土渗透性研究[J]. 岩土力学, 2021, 42(1): 125-134. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202101014.htmZhu Q, Su L J, Liu Z Y, et al. Study of seepage in wide-grading soils with particles migration[J]. Rock and Soil Mechanics, 2021, 42(1): 125-134(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202101014.htm [14] Xiao M, Shwiyhat N. Experimental investigation of the effects of suffusion on physical and geomechanic characteristics of sandy soils[J]. Geotechnical Testing Journal, 2012, 35(6): 104594. doi: 10.1520/GTJ104594 [15] 常东升, 张利民. 土体渗透稳定性判定准则[J]. 岩土力学, 2011, 32(增刊1): 253-259. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S1045.htmChang D S, Zhang L M. Internal stability criteria for soils[J]. Rock and Soil Mechanics, 2011, 32(S1): 253-259(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S1045.htm [16] Andrianatrehina L, Hanène Souli, Joël R, et al. Analysis of the internal stability of coarse granular materials according to various criteria[J]. European Journal of Environmental and Civil Engineering, 2015, 20(8): 936-953. doi: 10.1080/19648189.2015.1084385 [17] Chang D S, Zhang L M. A stress-controlled erosion apparatus for studying internal erosion in soils[J]. Geotechnical Testing Journal, 2011, 34(6): 579-589. [18] Luzio E D, Bianchi-Fasani G, Esposito C, et al. Massive rock-slope failure in the Central Apennines(Italy): The case of the Campo di Giove rock avalanche[J]. Bulletin of Engineering Geology and the Environment, 2004, 63(1): 1-12. [19] 彭双麒. 滑坡-碎屑流堆积体粒度分布研究[D]. 成都: 成都理工大学, 2020.Peng S L. The study for grain size distribution of rock avalanche deposit[D]. Chengdu: Chengdu Univerisity of Technology, 2020(in Chinese with English abstract). [20] 林小龙. 高速远程滑坡颗粒组构特征与竖向分带研究[D]. 成都: 西南交通大学, 2019.Lin X L. Study on debris composition and related effects on vertical grading of rock avalanche deposits[D]. Chengdu: Southwest Jiaotong University, 2019(in Chinese with English abstract). [21] Hungr D. The debris of the frank slide and theories of rockslide-avalanche mobility[J]. Canadian Journal of Earth Sciences, 1986, 23(3): 425-432. [22] Wang Y F, Cheng Q G, Yuan Y Q, et al. Emplacement mechanisms of the Tagarma rock avalanche on the Pamir-western Himalayan syntaxis of the Tibetan Plateau, China[J]. Landslides, 2020, 17(3): 527-542. doi: 10.1007/s10346-019-01298-1 [23] Strom A L. Rock avalanches of the Ardon River valley at the southern foot of the Rocky Range, Northern Caucasus, North Osetia[J]. Landslides, 2004, 1(3): 237-241. http://www.onacademic.com/detail/journal_1000034488404010_f20e.html [24] 朱俊高, 郭万里, 王元龙, 等. 连续级配土的级配方程及其适用性研究[J]. 岩土工程学报, 2015, 37(10): 1931-1936. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201510029.htmZhu J G, Guo W L, Wang Y L, et al. Equation for soil gradation curve and its applicability[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(10): 1931-1936(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201510029.htm [25] 于际都, 刘斯宏, 王涛, 等. 间断级配粗粒土压实特性试验研究[J]. 岩土工程学报, 2019, 41(11): 2142-2148. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201911024.htmYu J D, Liu S H, Wang T, et al. Experimental research on compaction characteristics of gap-graded coarse-grained soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 2142-2148(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201911024.htm [26] Liang Y, Yeh T, Zha Y, et al. Onset of suffusion in gap-graded soils under upward seepage[J]. Soils and Foundations-Tokyo, 2017, 57(5): 849-860. http://www.onacademic.com/detail/journal_1000040110924210_c00c.html [27] 朱韶茹, 潘梽橼, 杨丽平, 等. 土力学与地基基础[M]. 南京: 东南大学出版社, 2017.Zhu S R, Pang Z Y, Yang L P, et al. Soil mechanics and foundation[M]. Nanjing: Southeast University Press, 2017(in Chinese). [28] Andrianatrehina L, Souli H, Rech J, et al. Analysis of the internal stability of coarse granular materials according to various criteria[J]. European Journal of Environmental and Civil Engineering, 2016, 20(8): 936-953. [29] 田大浪, 谢强, 宁越, 等. 间断级配砂砾石土的渗透变形试验研究[J]. 岩土力学, 2020, 41(11): 3663-3670. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202011017.htmTian D L, Xie Q, Ning Y, et al. Experimental investigation on seepage deformation of gap-graded sand-gravel soils[J]. Rock and Soil Mechanics, 2020, 41(11): 3663-3670(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202011017.htm [30] 赵军, 闫文雯, 徐通, 等. 朝阳沟阶地扶杨油层微观孔隙结构及渗流机理分析[J]. 地质科技通报, 2023, 42(2): 194-206. doi: 10.19509/j.cnki.dzkq.2022.0111Zhao J, Yan W W, Xu T, et al. Microscopic pore structure and seepage mechanism of Fuyang oil reservoir in Chaoyanggou Terrace[J]. Bulletin of Geological Science and Technology, 2023, 42(2): 194-206(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0111 [31] 唐军峰, 唐雪梅, 肖鹏, 等. 库水位升降与降雨作用下大型滑坡体渗流稳定性分析[J]. 地质科技通报, 2021, 40(4): 153-161. doi: 10.19509/j.cnki.dzkq.2021.0409Tang J F, Tang X M, Xiao P, et al. Analysis of seepage stability of large-scale landslide under water-level fluctuation and rainfall[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 153-161(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0409