Experimental study on the effect of ion exchange on solute transport in a sandy tank
-
摘要:
为研究河流阶地和洪积扇这类典型水力沉积单元污染物运移规律, 搭建了大尺寸室内渗流槽开展溶质运移实验。通过点投放NaNO3溶液模拟点源污染物在水力沉积物中的运移过程, 测定不同位置主要离子成分随时间的变化, 用于分析离子交换过程对于溶质运移的影响及溶质迁移规律。结果表明: 在运移过程中, NO32-属于保守性离子, 穿透曲线呈尖瘦形, Na+受阳离子交替吸附作用的显著影响, 峰形陡升缓降; 阳离子交替吸附作用降低了Na+的弥散度, 离子交替吸附作用对弥散度的影响随着运移距离的增加愈加明显; 运移初期高浓度Na+在砂层中能交换出相当数量的Ca2+, Mg2+, K+等离子; 运移后期阳离子交替吸附反应方向改变, 沉积砂层吸附水中的Ca2+, Mg2+, K+, 穿透曲线存在3种阳离子低于背景值的情况; 交替吸附作用使得对流-弥散作用下的Na+质量浓度穿透曲线形状更加宽缓, "拖尾"现象更为明显; 渗流砂槽内不同区域的水化学类型在空间上产生了差异性。研究成果对于开展水力沉积单元地下水污染防治具有一定指导意义。
Abstract:Objective To study the transport of pollutants in typical hydraulic sedimentary units such as river terraces or alluvial fans, solute transport experiments were carried out in an indoor seepage tank.
Methods NaNO3 solution were introduced into the tank to simulate the point-pollution in hydraulic sediments. By measuring the concentration of the main ion components at different positions over time, the migration law of pollutants and the ion exchange process are analysed.
Results The results show that NO32- is a conservative ion, and its breakthrough curve (BTC) is sharp and thin. The transport behaviour of Na+ is significantly affected by cation exchange, its concentration rising sharply and decreasing slowly. Cation exchange reduces the dispersion of Na+, and the effect becomes more obvious as the distance increases. In the early stage, the high concentration of Na+ can exchange Ca2+, Mg2+, and K+ in the sand layer. Cation exchange reduces the Na+ dispersion concentration. Due to the adsorption by sediment, the concentrations of Ca2+, Mg2+, and K+ will be lower in the later stage. The change in the reaction direction of cation exchange makes the BTCs of Na+ wider and gentler under the action of advective dispersion, and the phenomenon of "tailing" is more obvious. The water chemistry types in different areas in the seepage sank have different properties in space.
Conclusion The research results have guiding significance for preventing and controlling groundwater pollution in hydraulic sedimentary units.
-
Key words:
- solute transport /
- cation exchange adsorption /
- breakthrough curve /
- advective dispersive
-
图 3 阴离子质量浓度穿透曲线(分图中左上角编号②~⑨分别对应图 2中的2~9号监测孔)
Figure 3. Concentration breakthrough curve of anion
表 1 渗流槽填充介质设计参数
Table 1. Design parameters of the filling medium of the seepage tank
填充介质 几何参数 物理参数 矿物组成 长/cm 宽/cm 高/cm 容重/(kg·m-3) 孔隙度/% 渗透系数/(m·s-1) 黏土 150 100 40 1 830 58 10-7 高岭石、蒙脱石 中砂 340 100 60~90 2 460 44 10-4 石英、长石 砾石 100 100 20 2 650 28 2×10-4 石英、云母 表 2 监测孔布设位置坐标
Table 2. Coordinates of the monitoring holes locations
监测孔编号 1 2 3 4 5 6 7 8 9 x/cm 20 50 80 120 120 150 250 250 300 y/cm 50 50 50 75 25 50 75 25 50 z/cm 50 50 50 50 75 50 75 75 75 注: 以模拟槽前端顶部近视点为坐标原点(见图 2),长度单位为cm 表 3 2, 3号监测孔Na+和NO32-的弥散度计算结果
Table 3. Calculation results of the dispersion of Na+ and NO32- in the No.2 and No.3 monitoring holes
离子成分 x/m tm/h 实际流速v/(m·h-1) 弥散系数DL/(m2·h-1) 弥散度α/m Na+ 0.3 1.76 0.1 0.008 384 0.083 841 0.6 3.56 0.016 381 0.163 809 NO32- 0.3 1.75 0.1 0.008 482 0.084 821 0.6 3.36 0.018 384 0.183 847 表 4 交替吸附作用对到达峰值时间的影响
Table 4. Effect of cation exchange adsorption on the peak time
监测孔编号 2 3 4 6 7 8 9 到达峰值时间tm/h NO32- 1.75 3.36 5.50 5.50 7.50 8.00 8.75 Na+ 1.76 3.56 — — 8.75 9.00 11.00 延迟时间tdelay/h 0.01 0.20 — — 1.25 1.00 2.25 延迟时间比r/% 0.57 5.95 — — 16.67 12.50 25.71 注:延迟时间比$r=\frac{t_{\text {delay }}}{t_{\mathrm{m}}\left(\mathrm{NO}_3^{2-}\right)} \times 100 \% $ -
[1] Ramos T B, Šimuonek J, Gonçalves M C, et al. Field evaluation of a multicomponent solute transport model in soils irrigated with saline waters[J]. Journal of Hydrology, 2011, 407(1): 129-144. [2] Zhou J, Su X, Liang C, et al. Experimental and numerical investigations of the effect of imbricated gravel structures on flow and solute transport in a highly heterogeneous alluvial-proluvial fan aquifer, SW China[J]. Environmental Fluid Mechanics, 2021, 21(1): 11-38. doi: 10.1007/s10652-020-09760-8 [3] Swami D, Sharma A, Sharma P K, et al. Predicting suitability of different scale-dependent dispersivities for reactive solute transport through stratified porous media[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2016, 8(6): 921-927. doi: 10.1016/j.jrmge.2016.07.005 [4] 胡海珠, 毛晓敏, 王铄. 多组分离子交换吸附反应-运移的土柱试验及模拟[J]. 水文地质工程地质, 2010, 37(4): 81-86. doi: 10.3969/j.issn.1000-3665.2010.04.017Hu H Z, Mao X M, Wang S. Column experiment and simulation on muti-species cation exchange reactive transport[J]. Hydrogeology & Engineering Geology, 2010, 37(4): 81-86(in Chinese with English abstract). doi: 10.3969/j.issn.1000-3665.2010.04.017 [5] 牛宏, 魏小雅, 林晶晶, 等. 盆地多级次地下水流系统盐分运移实验模拟[J]. 地质科技通报, 2022, 41(1): 177-182. doi: 10.19509/j.cnki.dzkq.2022.0019Niu H, Wei X Y, Lin J J, et al. Experimental simulation of salt transport in hierarchically nested groundwater flow systems[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 177-182(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0019 [6] 付宏渊, 严志伟, 李海. 土柱溶质运移试验的理论验证及影响因素敏感性分析[J]. 长沙理工大学学报: 自然科学版, 2011, 8(4): 1-5, 11. doi: 10.3969/j.issn.1672-9331.2011.04.001Fu H Y, Yan Z W, Li H. Verification and factor analysis on solute transportation in soil column test by 1D finite element method[J]. Journal of Changsha University of Science and Technology: Natural Science Edition, 2011, 8(4): 1-5, 11(in Chinese with English abstract). doi: 10.3969/j.issn.1672-9331.2011.04.001 [7] Beegum S, Šimuonek J, Szymkiewicz A, et al. Implementation of solute transport in the Vadose Zone into the "HYDRUS Package for MODFLOW"[J]. Groundwater, 2019, 57(3): 392-408. doi: 10.1111/gwat.12815 [8] Martinez F S J, Pachepsky Y A, Rawls W J. Modelling solute transport in soil columns using advective-dispersive equations with fractional spatial derivatives[J]. Advances in Engineering Software, 2010, 41(1): 4-8. doi: 10.1016/j.advengsoft.2008.12.015 [9] 季怀松, 罗明明, 褚学伟, 等. 岩溶洼地内涝蓄水量与不同级次裂隙对溶质迁移影响的室内实验与模拟[J]. 地质科技通报, 2020, 39(5): 164-172. doi: 10.19509/j.cnki.dzkq.2020.0520Ji H S, Luo M M, Chu X W, et al. Laboratory experiment and simulation of solute transport affected by different grades of fissures and water storge of water logging in karst depression[J]. Bulletin of Geological Science and Technology, 2020, 39(5): 164-172(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0520 [10] 覃荣高, 曹广祝, 仵彦卿. 非均质含水层中渗流与溶质运移研究进展[J]. 地球科学进展, 2014, 29(1): 30-41. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201401004.htmQin R G, Cao G Z, Wu Y Q. Review of the study of groundwater flow and solute transport in heterogeneous aquifer[J]. Advances in Earth Science, 2014, 29(1): 30-41(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201401004.htm [11] 郭清海, 王焰新. 典型新生代断陷盆地内孔隙地下水地球化学过程及其模拟: 以山西太原盆地为例[J]. 地学前缘, 2014, 21(4): 83-90. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201404012.htmGuo Q H, Wang Y X. Simulation of geochemical processes affecting groundwater in Quaternary porous aquifers of Taiyuan Basin: A typical Cenozoic rift basin[J]. Earth Science Fronties, 2014, 21(4): 83-90(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201404012.htm [12] Prelot B, Ayed I, Marchandeau F, et al. On the real performance of cation exchange resins in wastewater treatment under conditions of cation competition: The case of heavy metal pollution[J]. Environmental Science and Pollution Research, 2014, 21(15): 9334-9343. doi: 10.1007/s11356-014-2862-3 [13] 任加国, 武倩倩. 咸淡水过渡带的多组分离子交换行为研究[J]. 中国地质, 2010, 37(2): 530-535. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201002029.htmRen J G, Wu Q Q. Multi-component ion exchange and transport in the seawater-fresh water transitional zone[J]. Geology in China, 2010, 37(2): 530-535(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201002029.htm [14] Miao Q Z, Zhou X N, Wang G L, et al. Research on changes of hydrodynamics and ion-exchange adsorption in brackish-water interface[J]. Journal of Groundwater Science and Engineering, 2019, 7(2): 94-105. [15] Xie X, Pu L, Zhu M, et al. Linkage between soil salinization indicators and physicochemical properties in a long-term intensive agricultural coastal reclamation area, eastern China[J]. Journal of Soils and Sediments, 2019, 19(11): 3699-3707. [16] Ishiguro M, Koopal L K. Surfactant adsorption to soil components and soils[J]. Advances in Colloid and Interface Science, 2016, 231: 59-102. [17] Mande S L A S, Liu M Z, Tchakala I, et al. Water-rock interaction effect on evolution of total hardness in groundwater in urban[J]. American Journal of Water Resources, 2018, 6(2): 48-52. [18] Karnland O, Birgersson M, Hedström M. Selectivity coefficient for Ca/Na ion exchange in highly compacted bentonite[J]. Physics and Chemistry of the Earth, 2011, 32: 1554-1558. [19] Bradford S A, Kim H. Implications of cation exchange on clay release and colloid-facilitated transport in porous media[J]. Journal of Environmental Quality, 2010, 39(6): 2040-2046. [20] Borrok D M, Broussard W P. Long-term geochemical evaluation of the coastal Chicot aquifer system, Louisiana, USA[J]. Journal of Hydrology, 2016, 533: 320-331. [21] Ceazan M L, Thurman E M, Smith R L. Retardation of ammonium and potassium-transport through a contaminated sand and gravel aquifer: The role of cation-exchange[J]. Environmental Science & Technology, 1989, 23(11): 1402-1408. [22] 杨会林. 氯化钠在地下水中迁移的室内实验研究[D]. 北京: 中国地质大学(北京), 2013.Yang H L. Laboratory experiments research for NaCl transportation in the groundwater[D]. Beijing: China University of Geosciences(Beijing), 2013(in Chinese with English abstract). [23] 赵元艺, 王晓亮, 赵希涛, 等. 赣东北乐安江德兴铜矿段河流阶地的发育及环境意义[J]. 地球学报, 2014, 35(4): 454-462. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201404009.htmZhao Y Y, Wang X L, Zhao X T, et al. Terraces development of the Le'an River in the Dexing Copper Mine of Northeast Jiangxi and its envirmental significance[J]. Acta Geoscientica Sinica, 2014, 35(4): 454-462(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201404009.htm [24] 江欣悦, 李静, 郭林, 等. 豫北平原浅层地下水化学特征与成因机制[J]. 地质科技通报, 2021, 40(5): 290-300. doi: 10.19509/j.cnki.dzkq.2021.0511Jiang X Y, Li J, Guo L, et al. Chemical characteristics and formation mechanism of shallow groundwater in the northern Henan Plain[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 290-300(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0511 [25] 潘欢迎, 邹常健, 毕俊擘, 等. 新疆阿克苏典型山前洪积扇内高氟地下水的化学特征及氟富集机制[J]. 地质科技通报, 2021, 40(3): 194-203. doi: 10.19509/j.cnki.dzkq.2021.0312Pan H Y, Zou C J, Bi J B, et al. Hydrochemical characteristics and fluoride enrichment mechanisms of high-fluoride groundwater in a typical piedmont proluvial fan in Aksu area, Xinjiang, China[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 194-203(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0312 [26] Wood W W. Geogenic groundwater solutes: The myth[J]. Hydrogeology Journal, 2019, 27(8): 2729-2738. [27] Talabi A O, Kayode T J. Groundwater pollution and remediation[J]. Journal of Water Resource and Protection, 2019, 11(1): 1-19. [28] 陈崇希, 李国敏. 地下水溶质运移理论及模型[M]. 武汉: 武汉地质学院出版社, 1996.Chen C X, Li G M. Groundwater solute transport theory and model[M]. Wuhan: Wuhan College of Geology Press, 1996(in Chinese). [29] 秦鹏一, 徐先锋, 蔡五田, 等. 河南安阳冲洪积扇含水层水化学分布特征及成因分析[J]. 水文, 2020, 40(6): 89-96. https://www.cnki.com.cn/Article/CJFDTOTAL-SWZZ202006016.htmQin P Y, Xu X F, Cai W T, et al. Analysis on aquifers hydrochemical distribution characteristics and genesis of the alluvial fan in Anyang, Henan Province[J]. Journal of China Hydrology, 2020, 40(6): 89-96(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWZZ202006016.htm [30] 张人权, 梁杏, 靳孟贵, 等. 水文地质学基础: 第7版[M]. 北京: 地质出版社, 2018.Zhang R Q, Liang X, Jin M G, et al. Fundamentals of hydrogeology: 7th Edition[M]. Beijing: Geological Publishing House, 2018(in Chinese).