留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向区域滑坡易发性精细化评价的改进斜坡单元法

李星 杨赛 李远耀 殷坤龙 王伟

李星, 杨赛, 李远耀, 殷坤龙, 王伟. 面向区域滑坡易发性精细化评价的改进斜坡单元法[J]. 地质科技通报, 2023, 42(3): 81-92. doi: 10.19509/j.cnki.dzkq.tb20210707
引用本文: 李星, 杨赛, 李远耀, 殷坤龙, 王伟. 面向区域滑坡易发性精细化评价的改进斜坡单元法[J]. 地质科技通报, 2023, 42(3): 81-92. doi: 10.19509/j.cnki.dzkq.tb20210707
Li Xing, Yang Sai, Li Yuanyao, Yin Kunlong, Wang Wei. Improved slope unit method for fine evaluation of regional landslide susceptibility[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 81-92. doi: 10.19509/j.cnki.dzkq.tb20210707
Citation: Li Xing, Yang Sai, Li Yuanyao, Yin Kunlong, Wang Wei. Improved slope unit method for fine evaluation of regional landslide susceptibility[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 81-92. doi: 10.19509/j.cnki.dzkq.tb20210707

面向区域滑坡易发性精细化评价的改进斜坡单元法

doi: 10.19509/j.cnki.dzkq.tb20210707
基金项目: 

国家自然科学基金项目 41877253

详细信息
    作者简介:

    李星(1996—), 女, 现正攻读资源与环境专业硕士学位, 主要从事滑坡地质灾害风险评价方面的研究工作。E-mail: 1850755402@qq.com

    通讯作者:

    李远耀(1978—), 男, 副研究员, 主要从事地质灾害机理与风险分析方面的研究和教学工作。E-mail: liyuanyao2004@163.com

  • 中图分类号: P642.22

Improved slope unit method for fine evaluation of regional landslide susceptibility

  • 摘要:

    易发性评价是区域滑坡灾害风险预警与稳定性分析的基础,针对乡镇尺度的大比例尺精细化滑坡易发性评价,传统基于水文学和地貌学的斜坡单元划分方法难以满足评价精度。针对以上问题,以重庆市万州区大周镇为实例验证对象,形成了适用于精细化评价的改进斜坡单元划分方法。首先从斜坡地质环境孕灾规律出发,综合考虑地形地貌、物质组成、斜坡结构和灾害类型的均一性要求,提出了基于斜坡地质环境一致性的改进斜坡单元划分方法,选择重庆市万州区大周镇为实例验证对象,并与水文分析法、曲率分水岭法进行了对比分析。结果表明:①改进斜坡单元法划分的评价单元大小均匀性较好,未出现细碎单元或畸形长条状单元;②评价单元的总体形态特征更为合理,形态指数集中在1~2之间,呈现圆形或正方形斜坡形态;③改进斜坡单元划分的结果与已有灾害边界范围的叠加重合度最高,能更好地体现滑坡易发性评价或稳定性分析物理意义。研究结论对提高区域滑坡易发性评价的准确性与精度具有重要借鉴意义。

     

  • 图 1  斜坡单元示意图

    Figure 1.  Schematic diagram of the slope unit

    图 2  改进斜坡评价单元划分流程

    Figure 2.  Division process of improved slope evaluation units

    图 3  斜坡地貌单元划分步骤

    Figure 3.  Step of division of slope geomorphic unit

    图 4  斜坡岩组单元划分流程图

    Figure 4.  Flow chart of division of slope rock group units

    图 5  斜坡结构划分示意图

    Figure 5.  Schematic diagram of slope structure division

    图 6  斜坡结构单元划分示意图

    Figure 6.  Schematic diagram of the division of slope structural units

    图 7  大周镇坡向变率

    Figure 7.  Slope aspect variation in Dazhou Town

    图 8  SOA识别出的水库库岸

    Figure 8.  Reservoir banks identified by SOA

    图 9  SOA识别出的小型冲沟

    Figure 9.  Small gullies identified by SOA

    图 10  长度低于约束条件的SOA线段

    Figure 10.  SOA line segment whose length is less than the constraint

    图 11  第四系分布(a)及工程地质岩组(b)

    Figure 11.  Quaternary distribution(a) and engineering geology group(b)

    图 12  研究区岩性产状点(a)与倾向插值结果(b)

    Figure 12.  Lithologic points (a) and dip interpolation results (b) of the study area

    图 13  初始斜坡结构图(a)和降噪后斜坡结构单元(b)

    Figure 13.  Initial slope structure (a) and denoised slope structure unit (b)

    图 14  改进斜坡单元划分过程图

    a.斜坡地貌单元;b.斜坡岩组单元;c.斜坡评价单元

    Figure 14.  Division process of improved slope unit

    图 15  研究区基于水文分析法(a)、曲率分水岭法(b)和改进斜坡单元划分法(c)的划分结果

    Figure 15.  Dividing results based on hydrologic analysis (a), curvature watershed method (b), and improved slope unit method (c)

    表  1  斜坡结构类型划分

    Table  1.   Division of slope structure type

    斜坡结构类型 划分准则
    水平坡 岩层倾角小于10°
    非水平坡 顺向坡 岩层倾角大于10°且岩层倾向与斜坡坡向夹角在30°以内
    斜交坡 岩层倾角大于10°且岩层倾向与斜坡坡向夹角在30°~150°之间
    逆向坡 岩层倾角大于10°且岩层倾向与斜坡坡向夹角在150°~180°之间
    下载: 导出CSV

    表  2  3种斜坡单元划分结果统计表

    Table  2.   Division results of the three slope unit methods

    水文分析法占比/% 曲率分水岭法占比/% 改进斜坡单元划分法占比/%
    分布/ m2 [0, 103) 31.67 1.94 0
    [103, 104) 18.51 10.53 1.87
    [104, 105] 27.76 68.42 71.64
    >105 22.06 19.11 26.49
    形状指数 [1, 1.5) 13.17 43.77 29.10
    [1.5, 2) 25.98 38.23 50.00
    [2, 3) 22.06 13.30 19.03
    [3, 5] 17.79 4.16 1.87
    >5 21.35 0.55 0
    灾害重合度/% < 50 27.27 39.39 3.03
    [50, 75) 24.24 36.36 9.09
    [75, 100) 6.06 12.12 15.15
    100 42.42 12.12 72.73
    下载: 导出CSV
  • [1] 殷坤龙, 韩再生, 李志中. 国际滑坡研究的新进展[J]. 水文地质工程地质, 2000, 27(5): 1-4. doi: 10.16030/j.cnki.issn.1000-3665.2000.05.001

    Yin K L, Han Z S, Li Z Z. New progress in international landslide research[J]. Hydrogeology & Engineering Geology, 2000, 27(5): 1-4(in Chinese with English abstract). doi: 10.16030/j.cnki.issn.1000-3665.2000.05.001
    [2] 殷坤龙, 张宇, 汪洋. 水库滑坡涌浪风险研究现状和灾害链风险管控实践[J]. 地质科技通报, 2022, 41(2): 1-12. doi: 10.19509/j.cnki.dzkq.2022.0064

    Yin K L, Zhang Y, Wang Y. A review of landslide-generated waves risk and practice of management of hazard chain risk from reservoir landslide[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 1-12(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0064
    [3] 王芳, 殷坤龙, 桂蕾, 等. 万州区滑坡灾害风险管理对策[J]. 安全与环境工程, 2017, 24(5): 31-36. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201705006.htm

    Wang F, Yin K L, Gui L, et al. Risk management countermeasures for landslide disaster in Wanzhou District[J]. Safety and Environmental Engineering, 2017, 24(5): 31-36(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201705006.htm
    [4] Tengtrairat N, Woo W L, Parathai P, et al. Automated landslide-risk prediction using web GIS and machine learning models[J]. Sensors(Basel, Switzerland), 2021, 21(13): 4620. doi: 10.3390/s21134620
    [5] Pawan G, Tetsuya K, Lok M S, et al. Landslide susceptibility mapping with GIS in high mountain area of Nepal: A comparison of four methods[J]. Environmental Earth Sciences, 2021, 80(9): 1-18. doi: 10.1007/s12665-021-09650-2
    [6] Zhou H W, Yu J J, Feng H J, et al. A modelling tool for rainfall-triggered landslide susceptibility mapping and hazard warning based on GIS and machine learning[J]. IOP Conference Series: Earth and Environmental Science, 2021, 783(1): 012074. doi: 10.1088/1755-1315/783/1/012074
    [7] 周超, 殷坤龙, 曹颖, 等. 基于集成学习与径向基神经网络耦合模型的三峡库区滑坡易发性评价[J]. 地球科学, 2020, 45(6): 1865-1876. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202006001.htm

    Zhou C, Yin K L, Cao Y, et al. Landslide susceptibility assessment by applying the coupling method of radial basis neural network and adaboost: A case study from the Three Gorges Reservoir area[J]. Earth Sciences, 2020, 45(6): 1865-1876(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202006001.htm
    [8] 田述军, 张珊珊, 唐青松, 等. 基于不同评价单元的滑坡易发性评价对比研究[J]. 自然灾害学报, 2019, 28(6): 137-145. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201906015.htm

    Tian S J, Zhang S S, Tang Q S, et al. Comparative study of landslide susceptibility assessment based on different evaluation units[J]. Journal of Natural Disasters, 2019, 28(6): 137-145(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201906015.htm
    [9] 王凯, 张少杰, 韦方强. 斜坡单元提取方法研究进展和展望[J]. 长江科学院院报, 2020, 37(6): 85-93. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB202006019.htm

    Wang K, Zhang S J, Wei F Q. Slope unit extraction methods: Advances and prospects[J]. Journal of Yangtze River Scientific Research Institute, 2020, 37(6): 85-93(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB202006019.htm
    [10] 张俊, 殷坤龙, 王佳佳, 等. 三峡库区万州区滑坡灾害易发性评价研究[J]. 岩石力学与工程学报, 2016, 35(2): 284-296. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201404018.htm

    Zhang J, Yin K L, Wang J J, et al. Evaluation of landslide susceptibility for Wanzhou District of Three Gorges Reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(2): 284-296(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201404018.htm
    [11] 薛强, 张茂省, 高波. 斜坡单元支持下基于土体含水率的陕西省清涧县城区黄土滑坡危险性评价[J]. 中国地质, 2020, 47(6): 1904-1914. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202006025.htm

    Xue Q, Zhang M S, Gao B. Hazard assessment of loess landslide based on soil moisture content and supported by slope unit in Qingjian City, Shaanxi Province[J]. Geology in China, 2020, 47(6): 1904-1914(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202006025.htm
    [12] 许晓露, 刘汉湖, 蒋川东. 基于斜坡单元的滑坡易发性评价: 以易贡地区为例[J]. 河南科学, 2019, 37(11): 1825-1832. https://www.cnki.com.cn/Article/CJFDTOTAL-HNKX201911018.htm

    Xu X L, Liu H H, Jiang C D. Evaluation of landslide susceptibility based on slope unitl: A case study of Yigong[J]. Henan Science, 2019, 37(11): 1825-1832(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HNKX201911018.htm
    [13] 黄启乐, 陈伟, 傅旭东. 斜坡单元支持下区域泥石流危险性AHP-RBF评价模型[J]. 浙江大学学报: 工学版, 2018, 52(9): 1667-1675. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201809006.htm

    Huang Q L, Chen W, Fu X D. AHP-RBF evaluation model of regional debris flow hazard supported by slope unit[J]. Journal of Zhejiang University: Engineering, 2018, 52(9): 1667-1675(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201809006.htm
    [14] 宫清华, 黄光庆, 张冬良, 等. 基于斜坡单元的浅层滑坡风险区划: 以华南松岗河小流域为例[J]. 安全与环境学报, 2017, 17(2): 615-620. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ201702043.htm

    Gong Q H, Huang G Q, Zhang D L, et al. Risk zoning of shallow landslides based on slope units: A case study of Songgang River watershed in South China[J]. Journal of Safety and Environment, 2017, 17(2): 615-620(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ201702043.htm
    [15] 贾娟, 郭孟周, 姚昆, 等. 斜坡单元支持下基于信息量模型的地灾危险性评价[J]. 河南科学, 2017, 35(5): 787-792. https://www.cnki.com.cn/Article/CJFDTOTAL-HNKX201705020.htm

    Jia J, Guo M Z, Yao K, et al. Geo-hazard assessment based on information quantity model supported by slope unit[J]. Henan Science, 2017, 35(5): 787-792(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HNKX201705020.htm
    [16] 易靖松, 张勇, 石胜伟, 等. 基于斜坡单元的山区城镇地质灾害风险快速评价研究: 以江口镇为例[J]. 探矿工程: 岩土钻掘工程, 2018, 45(8): 72-78. https://www.cnki.com.cn/Article/CJFDTOTAL-TKGC201808015.htm

    Yi J S, Zhang Y, Shi S W, et al. Study on the rapid evaluation of geological hazards in mountain towns based on slope unit: Taking Jiangkou Town for example[J]. Exploration Engineering: Rock &. Soil Drilling and Tunneling, 2018, 45(8): 72-78(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TKGC201808015.htm
    [17] 邱丹丹, 牛瑞卿. 基于斜坡单元的地震滑坡敏感性分析[J]. 自然灾害学报, 2017, 26(2): 144-151. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201702017.htm

    Qiu D D, Niu R Q. Susceptibility analysis of earthquake-induced landslides based on slope units[J]. Journal of Natural Disasters, 2017, 26(2): 144-151(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201702017.htm
    [18] 薛强, 张茂省, 李林. 基于斜坡单元与信息量法结合的宝塔区黄土滑坡易发性评价[J]. 地质通报, 2015, 34(11): 2108-2115. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201511018.htm

    Xue Q, Zhang M S, Li L. Loess landslide susceptibility evaluation based on slope unit and information value method in Baota District, Yan'an[J]. Geological Bulletin of China, 2015, 34(11): 2108-2115(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201511018.htm
    [19] 张曦, 陈丽霞, 徐勇, 等. 两种斜坡单元划分方法对滑坡灾害易发性评价的对比研究[J]. 安全与环境工程, 2018, 25(1): 12-17, 50. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201801003.htm

    Zhang X, Chen L X, Xu Y, et al. Comparison of two methods for slope unit division in landslide susceptibility evaluation[J]. Safety and Environmental Engineering, 2018, 25(1): 12-17, 50(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201801003.htm
    [20] Guzzetti F, Carrara A, Cardinali M, et al. Landslide hazard evaluation: A review of current techniques and their application in a multi-scale study, Central Italy[J]. Geomorphology, 1999, 31(1/4): 181-216. http://www.sciencedirect.com/science/article/pii/s0169555x99000781
    [21] Xie M, Esaki T, Qiu C, et al. Spatial three-dimensional landslidesusceptibility mapping tool and its applications[J]. Earth Science Frontiers, 2007, 14(6): 73-84. http://www.sciencedirect.com/science/article/pii/S1872579108600044
    [22] Jia N, Mitani Y, Xie M, et al. Shallow landslide hazard assessment using a three-dimensional deterministic model in a mountainous area[J]. Computers and Geotechnics, 2012, 45: 1-10. http://www.onacademic.com/detail/journal_1000035037350710_b64a.html
    [23] Wang K, Zhang S J, Tellez R D, et al. A new slope unit extraction method for regional landslide analysis based on morphological image analysis[J]. Bulletin of Engineering Geology and the Environment, 2019, 78: 4139-4151. doi: 10.1007/s10064-018-1389-0
    [24] 颜阁, 梁收运, 赵红亮. 基于GIS的斜坡单元划分方法改进与实现[J]. 地理科学, 2017, 37(11): 1764-1770. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX201711019.htm

    Yan G, Liang S Y, Zhao H L. An approach to improving slope unit division using GIS technique[J]. Scientia Geographica Sinica, 2017, 37(11): 1764-1770(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX201711019.htm
    [25] 李长安. 基于地貌过程的滑坡系统分析: 以三峡库区为例[J]. 长江科学院院报, 2020, 37(6): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB202006003.htm

    Li C A. Systematic landslide analysis based on geomorphic process: An example from the Three Gorges Reservoir area[J]. Journal of Yangtze River Scientific Research Institute, 2020, 37(6): 1-7(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB202006003.htm
    [26] Zhou T, Geng Y J, Chen J, et al. High-resolution digital mapping of soil organic carbon and soil total nitrogen using DEM derivatives, Sentinel-1 and Sentinel-2 data based on machine learning algorithms[J]. Science of the Total Environment, 2020, 729: 138244. http://pubmed.ncbi.nlm.nih.gov/32498148/
    [27] 张福浩, 朱月月, 赵习枝, 等. 地理因子支持下的滑坡隐患点空间分布特征及识别研究[J]. 武汉大学学报: 信息科学版, 2020, 45(8): 1233-1244. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202008014.htm

    Zhang F H, Zhu Y Y, Zhao X Z, et al. Spatial distribution and identification of hidden danger points of landslides based on geographical factors[J]. Geomatics and Information Science of Wuhan University, 2020, 45(8): 1233-1244(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202008014.htm
    [28] 李松林, 许强, 汤明高, 等. 三峡库区滑坡空间发育规律及其关键影响因子[J]. 地球科学, 2020, 45(1): 341-354.

    Li S L, Xu Q, Tang M G, et al. Study on spatial distribution and key influencing factors of landslides in Three Gorges Reservoir area[J]. Earth Science, 2020, 45(1): 341-354(in Chinese with English abstract).
    [29] 常中华, 伍法权, 刘海燕, 等. 三峡库区奉节新县城库岸边坡类型及岩体结构特征[J]. 岩石力学与工程学报, 2005, 24(17): 3057-3063. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200517008.htm

    Chang Z H, Wu F Q, Liu H Y, et al. Bank slope types and rock mass structural features in new Fengjie County, Three Gorges Reservoir region[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17): 3057-3063(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200517008.htm
    [30] 柴波, 殷坤龙, 陈丽霞, 等. 岩体结构控制下的斜坡变形特征[J]. 岩土力学, 2009, 30(2): 521-525. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200902053.htm

    Chai B, Yin K L, Chen L X, et al. Analysis of slope deformation under control of rock mass structure[J]. Rock and Soil Mechanics, 2009, 30(2): 521-525(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200902053.htm
    [31] 黄发明, 胡松雁, 闫学涯, 等. 基于机器学习的滑坡易发性预测建模及其主控因子识别[J]. 地质科技通报, 2022, 41(2): 79-90. doi: 10.19509/j.cnki.dzkq.2021.0087

    Huang F M, Hu S Y, Yan X Y, et al. Landslide susceptibility prediction and identification of its main environmental factors based on machine learning models[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 79-90(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0087
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  1049
  • PDF下载量:  110
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-17

目录

    /

    返回文章
    返回