Indicative significance of hydrochemical characteristics in geothermal resource investigations in the Enshi Basin
-
摘要:
地热资源是一种宝贵的清洁能源, 恩施盆地蕴含丰富的地热资源, 探明地热形成机理具有重要意义。从地热水化学特征和同位素特征入手, 结合恩施盆地水文、地热地质条件, 采用Piper三线图法、主要离子相关分析法等探讨分析了恩施盆地地下热水地球化学特征及其主要离子补给来源; 选取适宜的二氧化硅温标法解决了热储温度难以准确测量的问题; 利用氢氧同位素测试技术, 示踪判定了地下热水的补给来源、循环深度及补给高程。研究结果显示: 恩施盆地地下热水的水化学类型主要为SO4·Cl-Na型水, 水中离子以SO42-, Cl-, Na+为主, 地下热水中TDS与Na+, Ca2+, Mg2+, Cl-, SO42-有极好的正相关性, 而地下热水中TDS远高于冷泉, 分析认为是由于地下热水在演化过程中埋藏深度大、径流途径长、溶解—溶滤作用强烈, 更容易从围岩中萃取相关离子, 从而导致离子浓度远高于地表水; 研究区内地下热水主要接受大气降水补给; 地下热水14C, 34S同位素特征均表明盆地边缘到盆地中心地下热水储存环境逐渐封闭, 地下热水滞留时间逐渐变长, 水-岩反应程度逐渐变强; 水-岩平衡判定结果表明, 热水中SiO2的浓度受石英的溶解平衡控制, 利用SiO2地热温标估算热储温度为55.74~58.24℃, 热储埋深为1 793~1 906 m, 热水循环深度为1 823~1 936 m; 根据大气降水
δ 18O的高程效应估算地下热水的补给高程为1 022.64~1 109.00 m, 依据研究区高程范围确定地下热水补给区主要为盆地西侧寒武系-奥陶系碳酸盐岩低中山区。Abstract:Objective Geothermal resources are valuable clean resources, and the Enshi Basin contains abundant geothermal resources. It is very important to expore the origin of geothermal resources.
Methods Starting from the chemical and isotopic characteristics of geothermal water, combined with the hydrological and geothermal geological conditions of the Enshi Basin, the following works have been performed. The geochemical characteristics and main ion recharge sources of geothermal water in the Enshi Basin are discussed and analyzed by the Piper diagram method and main ion correlation analysis method. In this study, the appropriate silica temperature scale method is used to solve the problem that it is difficult to accurately measure the heat storage temperature. Using hydrogen and oxygen isotope testing technology, the recharge source, circulation depth and recharge elevation of geothermal water are determined.
Results Results show that the hydrochemical type of geothermal water in the Enshi Basin is mainly SO4·Cl-Na water, and the main ions in the groundwater are SO42-, Cl- and Na+. There is a good positive correlation between TDS in geothermal water and Na+, Ca2+, Mg2+, Cl- and SO42-, while TDS in geothermal water is much higher than that in cold springs.It is due to the large burial depth, long runoff path and strong dissolution leaching action, which makes it easier to extract relevant ions from the surrounding rock and results in ion concentrations much higher than those of surface water. The hot water in the study area is mainly supplied by atmospheric precipitation, and the 14C and 34S isotopic characteristics of geothermal water show that the storage environment of geothermal water from the edge of the basin to the center of the basin is gradually closed, the retention time of geothermal water is gradually longer, and the degree of water rock reaction is gradually stronger. The results of the water-rock balance show that the concentration of SiO2 in hot water is controlled by the dissolution balance of quartz.Using the SiO2 geothermal temperature scale, the estimated thermal storage temperature is 55.74-58.24 ℃, the burial depth of thermal storage is 1 793-1 906 m, and the circulating depth of hot water is 1 823-1 936 m. The recharge elevation of geothermal water is estimated to be 1 022.64-1 109.00 m, according to the elevation effect of
δ O of atmospheric precipitation.Conclusion According to the elevation range of the study area, the geothermal water recharge area is mainly the low and middle mountain area of Cambrian Ordovician carbonate rocks in the western part of the basin.
-
图 1 研究区水文地质简图
1.第四系松散岩类孔隙弱含(透)水层; 2.上白垩统跑马岗组砂岩裂隙相对隔水层;3.中三叠统巴东组四段砂页岩隔水层;4.中三叠统巴东组三段岩溶裂隙含水层;5.中三叠统巴东组二段砂页岩隔水层;6.中三叠统巴东组一段岩溶裂隙含水层;7.下-中三叠统嘉陵江组岩溶裂隙含水层组;8.下三叠统大冶组岩溶裂隙含水层组;9.二叠系碳酸盐岩岩溶裂隙含水层组;10.石炭系-泥盆系砂岩裂隙弱含水层组;11.奥陶系碳酸盐岩岩溶裂隙含水层;12.上寒武统-下奥陶统娄山关组岩溶裂隙含水层;13.志留系隔水层;14.地质界线;15.角度不整合地质界线;16.断层;17.热泉取水样点;18.冷泉、河水取水样点;19.推测地下水流向;20.地热钻孔取样点
Figure 1. Hydrogeological diagram of the study area
图 2 研究区地热成因概念模式图
1.第四系弱含水层;2.白垩系跑马岗组(盖层);3.三叠系碳酸盐岩含水层;4.二叠系碳酸盐岩含水层;5.石炭系-泥盆系碳酸盐岩层;6.志留系砂岩层(隔水层);7.奥陶系碳酸盐岩层(热储层);8.寒武系碳酸盐岩层(热储层);9.恩施大断裂;10.粉砂岩;11.砂岩;12.砾岩;13.灰岩;14.泥质灰岩;15.生物碎屑灰岩;16.云质灰岩;17.炭质泥岩;18.泥质粉砂岩;19.粉砂质泥岩;20.燧石结核灰岩;21.瘤状灰岩;22.龟裂纹灰岩;23.地层产状;24.大气降水;25.冷(热)水流向;26.大地热流
Figure 2. Conceptual model map of geothermal genesis in the study area
表 1 水样类型及分析测试项目统计
Table 1. Statistical table of water sample types and analysis test items
样号 水样类型 水样温度/℃ 同位素测试项目 水质测试项目 采样点位 SY01 岩池热泉 21.3 18O、D、T HCO3-,Cl-,SO42-,CO32-,K+,Na+,Ca2+,Mg2+,F,Br,I,SiO2,B,H2S,Al,Pb,Zn,Cs,Fe2+,Mn,Li,Sr,Cu,pH,耗氧量、总硬度、暂时硬度、永久硬度、溶解性总固体(TDS) 岩池热泉点 SY02 热泉 25.0 18O、D、T 岩池热泉北100 m热泉 SY03 冷泉 15.2 松树坪冷泉点SY03 SY04 冷泉 15.6 松树坪冷泉点SY04 SY05 冷泉 14.6 褶皱泉点SY05 SY06 冷泉 16.0 金龙坝泉点SY06 Sy05 冷泉 14.5 小龙潭冷泉Sy05 Sy06 冷泉 15.5 小龙潭冷泉Sy06 S06 岩池热泉 21.3 18O、D、T、34S 岩池热泉点 S08 冷泉 17.0 冷泉点S08 S09 冷泉 18.0 冷泉点S09 HS01 清江河水 17.0 18O、D、T、34S 河水监测点HS01 JZ1 不同时期热水 44.2 18O、D、T、34S ZK1钻孔 JZ2 44.2 18O、D、T、34S ZK1钻孔 ZK01 44.2 18O、D、T、14C ZK1钻孔 Q6 44.2 ZK1钻孔 Q7 冷泉 16.0 泉点Q7 Q8 冷泉 16.0 泉点Q8 Q9 冷泉 17.0 泉点Q9 Q10 岩池热泉 25.0 岩池热泉点 Q11 冷泉 17.0 泉点Q11 Q12 冷泉 16.0 泉点Q12 Q13 冷泉 17.0 泉点Q13 表 2 各水样化学成分分析结果
Table 2. Results table of chemical composition analysis of water samples
样号 水样类型 水样温度/℃ 阳离子质量浓度/(mg·L-1) 阴离子质量浓度/(mg·L-1) pH ρ(TDS)/ (mg·L-1) Na+ K+ Ca2+ Mg2+ Cl- SO42- HCO3- SY01 岩池热泉 21.3 71.33 6.09 97.75 20.51 127.04 113.11 244.20 7.22 611.00 S06 岩池热泉 21.3 76.75 7.10 90.23 14.82 123.98 94.70 228.05 7.74 548.81 Q6-1 丰水期钻孔热水 44.2 1 083.66 80.61 566.2 155.9 1 827 1 824.75 163.22 7.94 5 647.39 Q6-2 枯水期钻孔热水 44.2 1 127.02 52.58 544.3 153.1 1 771.15 1 887.86 154.86 8.07 5 640.7 SY02 热泉 25 980.87 22.02 295.60 62.05 1 375.83 985.70 187.31 7.59 3 903.0 SY04 冷泉 15.6 5.45 3.40 73.56 23.14 7.94 55.90 235.26 6.84 293.50 SY05 冷泉 14.6 7.41 1.84 29.60 9.63 2.64 22.14 125.58 6.87 165.40 Sy05 冷泉 14.5 5.38 1.03 23.90 8.18 0.60 58.86 51.13 7.36 139.3 Sy06 冷泉 15.5 11.55 3.57 78.17 14.66 9.47 68.08 221.55 7.56 332.7 S08 冷泉 17.0 3.08 0.72 89.41 5.50 2.67 37.65 243.48 7.45 270.73 S09 冷泉 18.0 4.06 1.50 84.34 4.00 7.60 44.25 194.44 7.56 274.41 Q7 冷泉 16.0 3.04 2.99 77.05 8.02 3.27 58.10 195.09 7.45 272.53 Q8 冷泉 16.0 5.40 2.86 71.44 7.53 6.97 28.08 200.89 8.04 261.18 Q9 冷泉 17.0 8.08 2.53 21.47 1.95 3.31 10.38 77.54 7.80 130.87 Q11 冷泉 17.0 20.75 4.66 76.58 16.68 23.77 48.52 248.51 8.37 330.39 Q12 冷泉 16.0 2.61 2.98 68.03 3.73 4.16 17.45 181.98 8.25 218.08 Q13 冷泉 17.0 1.98 1.67 37.64 8.57 1.50 11.73 145.16 8.37 157.48 HS01 清江河水 17.0 4.19 2.27 57.32 7.05 4.90 39.53 156.03 8.37 209.16 表 3 各水样微量元素分析结果
Table 3. Analysis results of trace elements in water samples
样号 水样类型 水样温度/℃ B F I Br Sr ρB/(mg·L-1) SY01 岩池 21.3 0.05 0.24 0.00 0.02 1.55 S06 热泉 21.3 0.04 0.54 0.00 0.22 1.50 Q6-1 ZK1钻 44.2 1.39 2.40 0.03 2.55 8.95 Q6-2 孔热水 44.2 0.47 0.01 0.00 0.00 15.52 SY02 热泉 25.0 0.48 2.06 0.02 0.26 13.90 SY04 冷泉 15.6 0.02 0.02 0.00 0.00 0.42 SY05 冷泉 14.6 0.01 0.70 0.00 0.00 0.11 Sy05 冷泉 14.5 0.01 0.08 0.00 0.00 0.11 Sy06 冷泉 15.5 0.02 0.11 0.00 0.00 0.72 S08 冷泉 17.0 0.00 0.55 0.00 0.00 0.46 S09 冷泉 18.0 0.00 0.47 0.00 0.00 0.49 Q7 冷泉 16.0 0.01 0.66 0.00 0.00 0.80 Q8 冷泉 16.0 0.01 0.22 0.00 0.00 0.55 Q9 冷泉 17.0 0.00 0.26 0.03 0.39 0.07 Q11 冷泉 17.0 0.02 0.66 0.00 0.36 0.61 Q12 冷泉 16.0 0.00 0.30 0.00 0.00 0.71 Q13 冷泉 17.0 0.00 0.15 0.00 0.00 0.12 HS01 河水 17.0 0.00 0.34 0.00 0.00 0.62 表 4 热泉、钻孔热水、河水样品氢氧同位素分析结果
Table 4. Results of hydrogen and oxygen isotope analysis of hot spring, borehole hot water and river water samples
样号 水样类型 δDVSMOW/‰ δ18OVSMOW/‰ T/TU SY01 岩池热泉 -39 -6.5 7.2±0.8 SY02 热泉 -56 -8.4 3.5±0.7 S06 岩池热泉 -54 -8.0 6.9±0.8 HS01 清江河水 -57 -8.5 6.5±0.8 JZ1 -66.15 -9.74 1.9±0.1 JZ2 ZK1钻孔热水 -67.02 -9.92 2.0±0.1 ZK01 -66.86 -9.93 2.1 表 5 地下热水补给高程计算成果
Table 5. Estimated results of the recharge elevation of the geothermal water
样号 水样类型 水样δ18OVSMOW/‰ 大气降水δ18O高度梯度/(‰·10-2m-1) 取样点高程/m 地热水补给高程/m JZ1 -9.74 -0.22 459.0 1 022.64 JZ2 ZK1钻孔热水 -9.92 -0.22 459.0 1 104.45 ZK01 -9.93 -0.22 459.0 1 109.00 HS01 清江河水 -8.5 435.0 表 6 热泉水、河水、钻孔热水样品硫、氧同位素分析结果
Table 6. Sulfur and oxygen isotope analysis results of hot spring water, river water and borehole hot water samples
样号 水样类型 δ34S/‰ δ18O/‰ S06 岩池热泉水 23.0 -8.0 HS01 清江河水 6.8 -8.5 JZ1 ZK1钻孔热水 36.2 -9.74 JZ2 ZK1钻孔热水 36.2 -9.92 表 7 热泉水样、钻孔热水样中SiO2质量浓度与温度统计
Table 7. Statistics of SiO2 content and temperature of hot spring water samples and borehole hot water samples
样号 水样类型 水样温度/℃ 采样点位 ρ(SiO2)/ (mg·L-1) SY01 岩池热泉 21.33 岩池热泉点S6 9.06 Q10 岩池热泉 21.3 岩池热泉点 7.88 ZK01 不同时期采 44.2 ZK1钻孔 17.22 Q6 取钻孔热水 44.2 ZK1钻孔 16.13 表 8 热泉水样、钻孔热水样钠钾镁含量与温度统计
Table 8. Statistics of sodium, potassium and magnesium content and temperature of hot spring water samples and borehole hot water samples
样号 水样类型 水样温度/℃ 采样点位 Na+ K+ Mg2+ ρB/(mg·L-1) SY01 岩池热泉 21.3 岩池热泉点S6 71.33 6.09 20.51 Q10 岩池热泉 21.3 岩池热泉点 20.75 4.66 16.68 ZK01 不同时期采 44.2 ZK1钻孔 1 231.00 60.81 172.53 Q6 取钻孔热水 44.2 ZK1钻孔 1 083.66 80.61 155.92 表 9 不同温标热储温度估算成果及误差统计
Table 9. Statistics and error statistics of temperature estimation results of geothermal reservoirs with different temperature scales
样号 水样类型 水样温度/℃ Na+ K+ Ca2+ SiO2 Na-K-Ca温标 误差/ % 石英温标 误差/% 平均温度T/℃ ρB/(mg·L-1) 估算温度T/℃ 估算温度T/℃ SY01 岩池热泉 21.3 71.33 6.09 97.75 9.06 97.80 359 36.31 70 67.06 Q10 岩池热泉 21.3 20.75 4.66 76.58 7.88 102.88 383 31.98 50 67.30 ZK01 不同时期 44.2 1 231.00 60.81 574.39 17.22 134.52 204 58.24 32 96.38 Q6 采取ZK1钻孔热水 44.2 1 083.66 80.61 566.2 16.13 149.16 237 55.74 26 102.45 -
[1] 孙红丽. 关中盆地地热资源赋存特征及成因模式研究[D]. 北京: 中国地质大学(北京), 2015.Sun H L. The bearing features and genetic model for geothermal resources in Guanzhong Basin[D]. Beijing: China University of Geosicences(Beijing), 2015(in Chinese with English abstract). [2] 余浩文, 刘昭, 荣峰, 等. 西藏错那地热田水化学特征与物源机制[J]. 地质科技通报, 2021, 40(3): 34-44. doi: 10.19509/j.cnki.dzkq.2021.0318Yu H W, Liu Z, Rong F, et al. Characteristics and source mechanism of geothermal field in Cuona, Tibet[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 34-44(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0318 [3] 张子祥, 李文鑫. 兰州市永登县地热水成因模式和地质模型[J]. 地质科技情报, 2015, 34(2): 194-199. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201502029.htmZhang Z X, Li W X. Geothermal models in Yongdeng County, Lanzhou[J]. Geological Science and Technology Information, 2015, 34(2): 194-199(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201502029.htm [4] 郎旭娟. 贵德盆地热结构及地热成因机制[D]. 北京: 中国地质科学院, 2016.Lang X J. The thermal structure and geothermal genesis mechanism in Guide Basin[D]. Beijing: Chinese Academy of Geological Sciences, 2016(in Chinese with English abstract). [5] 陈刚, 万军伟, 郭鹏, 等. 湖北省利川市忠路镇洞脑壳温泉成因[J]. 地质科技情报, 2013, 32(4): 196-200. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201304031.htmChen G, Wan J W, Guo P, et al. Analysis for the formation cause of Dongnaoke Hot Spring in Zhonglu Township, Lichuan, Hubei Province[J]. Geological Science and Technology Information, 2013, 32(4): 196-200(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201304031.htm [6] 赵佳怡, 张薇, 马峰, 等. 雄安新区容城地热田地热流体化学特征[J]. 地质学报, 2020, 94(7): 1991-1998. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202007008.htmZhao J Y, Zhang W, Ma F, et al. Geochemical characteristics of the geothermal fluid in the Rongcheng Geothermal Field, Xiong'an New Area[J]. Acta Geological Sinica, 2020, 94(7): 1991-1998(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202007008.htm [7] 戴蔓, 蒋小伟, 罗银飞, 等. 地热水氢氧同位素控制因素识别与定量计算: 以青海贵德盆地为例[J]. 地学前缘, 2021, 28(1): 420-427. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202101040.htmDai W, Jiang X W, Luo Y F, et al. Identification and quantification of factors controlling hydrogen and oxygen isotopes of geothermal water: An example from the Guide Basin, Qinghai Province[J]. Earth Science Frontiers, 2021, 28(1): 420-427(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202101040.htm [8] 田禹. 鲁东地热区氢氧同位素特征及地热水补给来源[J]. 地质科技情报, 2015, 34(6): 182-185. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201506026.htmTian Y. Hydrogen and oxygen isotope characteristics and geothermal water supply source in East Shandong geothermal area[J]. Geological Science and Technology Information, 2015, 34(6): 182-185(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201506026.htm [9] 高旭波, 向绚丽, 侯保俊, 等. 水化学-稳定同位素技术在岩溶水文地质研究中的应用[J]. 中国岩溶, 2020, 39(5): 629-636. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202005001.htmGao X B, Xiang X L, Hou B J, et al. Application of hydrochemistry coupled with stable isotopes in the study of karst water hydrogeology[J]. Carsologica Sinica, 2020, 39(5): 629-636(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202005001.htm [10] 张江华, 梁永平, 王维泰, 等. 硫同位素技术在北方岩溶水资源调查中的应用实例[J]. 中国岩溶, 2009, 28(3): 235-241. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR200903003.htmZhang J H, Liang Y P, Wang W T, et al. A practical use of 34S in the investigation of karst groundwater resource in North China[J]. Carsologica Sinica, 2009, 28(3): 235-241(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR200903003.htm [11] 孙红丽, 马峰, 蔺文静, 等. 西藏高温地热田地球化学特征及地热温标应用[J]. 地质科技情报, 2015, 34(3): 171-177. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201503024.htmSun H L, Ma F, Lin W J, et al. Geochemical characteristics and geothermometer application in high temperature geothermal field in Tibet[J]. Geological Science and Technology Information, 2015, 34(3): 171-177(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201503024.htm [12] 任坤, 潘晓东, 兰干江, 等. 硫氧同位素解析典型岩溶地下河流域硫酸盐季节变化特征和来源[J]. 环境科学, 2021, 42(9): 4267-4274. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202109020.htmRen K, Pan X D, Lan G J, et al. Seasonal variation and sources identification of dissolved sulfate in a typical karst subterranean stream basin using sulfur and oxygen isotopes[J]. Environmental Science, 2021, 42(9): 4267-4274(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202109020.htm [13] 刘延锋, 江贵荣, 靳孟贵, 等. 新疆焉耆盆地水环境氢氧同位素特征及其指示作用[J]. 地质科技情报, 2009, 28(6): 89-93. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200906014.htmLiu Y F, Jiang G R, Jin M G, et al. Features of environmental isotopes of hydrogen and oxygen of water and their indication in Yangqi Basin, China[J]. Geological Science and Technology Information, 2009, 28(6): 89-93(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200906014.htm [14] 赵春红, 梁永平, 卢海平, 等. 娘子关泉域岩溶水氢氧同位素特征及影响因素浅析[J]. 地质科技情报, 2018, 37(5): 200-205. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201805028.htmZhao C H, Liang Y P, Lu H P, et al. Hydrogen and oxygen isotope characteristics and influencing factors of karst water in Niangziguan Spring Area[J]. Geological Science and Technology Information, 2018, 37(5): 200-205(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201805028.htm [15] 彭凯, 刘文, 魏善明等. 基于水化学、同位素特征的济南岩溶地下水补给来源研究[J]. 中国岩溶, 2020, 39(5): 650-657. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202005003.htmPeng K, Liu W, Wei S M, et al. Study on the recharge source of karst groundwater in Jinan city based on hydrogeochemical and isotopic characteristics[J]. Carsologica Sinica, 2020, 39(5): 650-657(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202005003.htm [16] Apollaro C, Dotsika E, Marini L, et al. Chemical and isotopic characterization of the thermomineral water of Terme Sibarite springs(Northern Calabria, Italy)[J]. Geochemical Journal, 2012, 46(2): 117-129. [17] 肖琼, 杨雷, 蒲俊兵, 等. 重庆温塘峡背斜地表水-地下水-浅层地热水中硫同位素的环境指示意义研究[J]. 地质学报, 2016, 90(8): 1945-1954. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201608022.htmXiao Q, Yang L, Pu J B, et al. The environmental significance of sulfur isotope in surface water-ground water-shallow thermal water in Wentang Gorge Anticline, Chongqing, China[J]. Acta Geological Sinica, 2016, 90(8): 1945-1954(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201608022.htm [18] 王洁青, 周训, 李晓璐, 等. 云南兰坪盆地羊吃蜜温泉水化学特征与成因分析[J]. 现代地质, 2017, 31(4): 822-830. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201704016.htmWang J Q, Zhou X, Li X L, et al. Hydrochemistry and formation of the Yangchimi Hot Spring in the Lanping Basin of Yunnan[J]. Geoscience, 2017, 31(4): 822-830(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201704016.htm [19] Wu X, Li C, Sun B, et al. Groundwater hydrogeochemical formation and evolution in a karst aquifer system affected by anthropogenic impacts[J]. Environmental Geochemistry and Health, 2019: 1-18. [20] Wu Z C, Liu J S, Han H T, et al. Geological and geochemical characteristics and metallogenic model of the Wenquan molybdenum deposit[J]. Chinese Journal of Geochemistry, 2011, 30(3): 391-397. [21] Mohamed A Z, Hakim S, Sachio E. Geochemical and stable isotopic studies of Gulf of Suez's hot springs, Egypt[J]. Chinese Journal of Geochemistry, 2012, 31(2): 120-127. [22] Clark I. Groundwater geochemistry and isotopes[M]. Abingdon: Taylor and Francis Group, 2015. [23] Chen L, Wang G C, Hu F S, et al. Groundwater hydrochemistry and isotope geochemistry in the Turpan Basin, Northwestern China[J]. Journal of Arid Land, 2014, 6(4): 378-388. [24] 薛磊, 申中华, 张佰康. 济南市东部地区地热流体的化学特征研究[J]. 地下水, 2020, 42(4): 10-15. https://www.cnki.com.cn/Article/CJFDTOTAL-DXSU202004003.htmXu L, Shen Z H, Zhang B K. The brief analysis of the chemical characteristics of geothermal fluid in east Jinan[J]. Ground Water, 2020, 42(4): 10-15(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXSU202004003.htm