留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

断裂带水力特性研究进展

史浙明 叶海龙 吕少杰 齐之钰 何冠儒

史浙明, 叶海龙, 吕少杰, 齐之钰, 何冠儒. 断裂带水力特性研究进展[J]. 地质科技通报, 2023, 42(4): 47-54. doi: 10.19509/j.cnki.dzkq.tb2022
引用本文: 史浙明, 叶海龙, 吕少杰, 齐之钰, 何冠儒. 断裂带水力特性研究进展[J]. 地质科技通报, 2023, 42(4): 47-54. doi: 10.19509/j.cnki.dzkq.tb2022
Shi Zheming, Ye Hailong, Lü Shaojie, Qi Zhiyu, He Guanru. Advances in fault zone hydraulic properties[J]. Bulletin of Geological Science and Technology, 2023, 42(4): 47-54. doi: 10.19509/j.cnki.dzkq.tb2022
Citation: Shi Zheming, Ye Hailong, Lü Shaojie, Qi Zhiyu, He Guanru. Advances in fault zone hydraulic properties[J]. Bulletin of Geological Science and Technology, 2023, 42(4): 47-54. doi: 10.19509/j.cnki.dzkq.tb2022

断裂带水力特性研究进展

doi: 10.19509/j.cnki.dzkq.tb2022
基金项目: 

南昌市水文地质与优质地下水资源开发利用重点实验室资助项目 20232B22

详细信息
    作者简介:

    史浙明(1988—), 男, 教授, 主要从事水文地质教学与科研工作。E-mail: szm@cugb.edu.cn

  • 中图分类号: P641

Advances in fault zone hydraulic properties

  • 摘要:

    断裂带作为具有重要水文地质意义的构造现象, 往往对地下水运移产生显著影响。考虑断裂带的水文地质作用对于水资源管理和评价具有重要意义。围绕断裂带渗透性, 从断裂带渗透性结构及调查方法, 断裂带水力特性定量表征, 断裂带水力特性的动态演变特征, 断裂带地下水流模拟等方面展开论述。断裂带的渗透性是当前断裂带研究的核心, 不同的渗透性刻画方法具有不同的代表性尺度。断裂带渗透性具有复杂的时空分布特征, 对刻画断裂带的地下水运移造成较大挑战。针对不同目的, 选择合适的数值模拟方法是定量刻画断裂带地下水运移的重要途径, 也可以对其他方法进行有效的验证。如何在模拟过程中考虑断裂带水力特性在时空尺度上的复杂性是准确刻画断裂带地下水流动的前提。笔者认为建立专门的断裂带水文地质观测基地, 综合地质、水文地质、热流、地球物理及遥感数据资料, 加强多学科的交叉合作, 是进一步提升断裂带地下水研究水平的关键。

     

  • 图 1  断裂带分类示意图(据文献[1]修改)

    Figure 1.  Schematic diagram of fault zone classification

    图 2  断裂破碎带(a)及断裂带渗透结构(b)示意图(据文献[12]修改)

    Figure 2.  Schematic diagram of the fault damage zone (a) and fault zone permeability structure (b)

    图 3  断层对地下水流动影响的3种概念模式

    Figure 3.  Three conceptual models of fault influence on groundwater flow

  • [1] Bense V F, Gleeson T, Loveless S E, et al. Fault zone hydrogeology[J]. Earth-Science Reviews, 2013, 127: 171-192. doi: 10.1016/j.earscirev.2013.09.008
    [2] Curewitz D, Karson J A. Structural settings of hydrothermal outflow: Fracture permeability maintained by fault propagation and interaction[J]. Journal of Volcanology and Geothermal Research, 1997, 79(3/4): 149-168.
    [3] Folch A, Mas-Pla J. Hydrogeological interactions between fault zones and alluvial aquifers in regional flow systems[J]. Hyrological Processes, 2008, 22(17): 3476-3487. doi: 10.1002/hyp.6956
    [4] Keegan-Treloar R, Irvine D, Solorzano-Rivas S, et al. Fault-controlled springs: A review[J]. Earth-Science Reviews, 2022, 230: 104058. doi: 10.1016/j.earscirev.2022.104058
    [5] 安鹏举, 鲁莎, 唐辉明, 等. 渗透作用下滑带细观结构演变特性[J]. 地质科技通报, 2022, 41(6): 169-179. doi: 10.19509/j.cnki.dzkq.2022.0226

    An P J, Lu S, Tang H M, et al. Meso-structure evolution of the sliding zone under seepage conditions[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 169-179(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0226
    [6] 车用太, 何案华, 鱼金子. 水温微动态形成的水热动力学与地热动力学机制[J]. 地震学报, 2014, 36(1): 106-117. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB201401009.htm

    Che Y T, He A H, Yu J Z. Mechanisms of water-heat dynamics and earth-heat dynamics of well water temperature micro-behavior[J]. Acta Seismologica Sinica, 2014, 36(1): 106-117(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB201401009.htm
    [7] 付广, 李建民. 断裂对油气富集程度的控制作用[J]. 断块油气田, 2014, 21(6): 707-710. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201406006.htm

    Fu G, Li J M. Control effect of faults to oil and gas enrichment degree[J]. Fault-Block Oil and Gas Field, 2014, 21(6): 707-710(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201406006.htm
    [8] 李虹霖, 郭涛, 张如才, 等. 辽西凸起斜坡区风化壳油气运移特征及控藏作用[J]. 地质科技通报, 2022, 41(4): 109-116. doi: 10.19509/j.cnki.dzkq.2022.0130

    Li H L, Guo T, Zhang R C, et al. Hydrocarbon migration characteristics and its controlling effect on hydrocarbon accumulation of weathering crust in slope area of Liaoxi Uplift[J]. Bulletin of Geological Science and Technology, 2022, 41(4): 109-116(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0130
    [9] 刘军, 龚伟, 黄超, 等. 塔里木盆地顺北5号走滑断裂带北段超深层裂缝储层的地震属性表征方法研究及应用[J]. 地质科技通报, 2022, 41(4): 1-11. doi: 10.19509/j.cnki.dzkq.2022.0112

    Liu J, Gong W, Huang C, et al. Seismic attribute characteristics of an ultradeep fractured-reservoir in the northern section of Shunbei No. 5 strike-slip fault zone in Tarim Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(4): 1-11(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0112
    [10] 王大纯, 张人权, 史毅虹, 等. 水文地质学基础[M]. 北京: 地质出版社, 1995.

    Wang D C, Zhang R Q, Shi Y H, et al. Introduce to hydrogeology[M]. Beijing: Geological Publishing House, 1995(in Chinese).
    [11] 曹剑锋, 徐耀德. 断裂带水文地质作用的研究与评价[J]. 吉林大学学报: 地球科学版, 1996, 26(2): 202-205. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ602.013.htm

    Chao J F, Xu Y D. Evaluating the hydrogeological process: Taking place in fracture zone[J]. Journal of Jilin Univeristy: Earth Sciences Edition, 1996, 26(2): 202-205(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ602.013.htm
    [12] Caine J S, Evans J P, Forster C B. Fault zone architecture and permeability structure[J]. Geology, 1996, 24(11): 1025-1028. doi: 10.1130/0091-7613(1996)024<1025:FZAAPS>2.3.CO;2
    [13] Cook P G, Banks E W, Marshall S K, et al. Inferring fault hydrology using groundwater age tracers[J]. Journal of Hydrology, 2022, 610: 127905. doi: 10.1016/j.jhydrol.2022.127905
    [14] Olaka L, Kasemann S, Sültenfuß J, et al. Tectonic control of groundwater recharge and flow in faulted volcanic aquifers[J]. Water Resources Research, 2022, 58(7): e2022WR032016.
    [15] Barnes H, Hinojosa J R, Spinelli G A, et al. Detecting fault zone characteristics and paleovalley incision using electrical resistivity: Loma Blanca Fault, New Mexico[J]. Geophysics, 2021, 86(3): B209-B221. doi: 10.1190/geo2020-0375.1
    [16] Figueroa R, Viguier B, Taucare M, et al. Deciphering groundwater flow-paths in fault-controlled semiarid mountain front zones(Central Chile)[J]. Science of the Total Environment, 2021, 771: 145456. doi: 10.1016/j.scitotenv.2021.145456
    [17] 戚帮申, 丰成君, 谭成轩, 等. 京张地区延矾盆地北缘活动断裂带桑园镇隐伏段综合地球物理及钻孔地层剖面研究[J]. 中国地质, 2019, 46(3), 468-481. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201903004.htm

    Qi B S, Feng C J, Tan C X, et al. Application of comprehensive geophysical-drilling exploration to detect the buried north boundary active fault belt of Yanqing-Fanshan Basin in Sangyuan town, Beijing-Zhangjiakou area[J]. Geology in China, 2019, 46(3): 468-481(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201903004.htm
    [18] 付光明, 黄进调, 刘阳, 等. 高密度电阻率法与CSAMT法在江西会昌县坝背地热勘查中的综合探测[J]. 中国地质, 2019, 46(4): 927-936. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201904022.htm

    Fu G M, Huang J T, Liu Y, et al. Multi-electrode resistivity method and CSAMT method in geothermal exploration of Babei area in Huichang County, Jiangxi Province[J]. Geology in China, 2019, 46(4): 927-936(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201904022.htm
    [19] Gleeson T, Novakowski K S. Identifying watershed-scale barriers to groundwater flow: Lineaments in the Canadian Shield[J]. Geology, 2009, 121(3/4): 333-347.
    [20] 付萍杰, 张景发, 王鑫. 基于遥感和重力多源数据研究沂沭断裂带南段及周边断裂的交切关系[J]. 地震学报, 2017, 39(5): 708-724. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB201705007.htm

    Fu P J, Zhang J F, Wang X. Intersection relationship between south segment of Yishu fault zone and surrounding faults derived from remote sensing and gravity multi-source data[J]. Acta Seismologica Sinica, 2017, 39(5): 708-724(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB201705007.htm
    [21] 潘光永, 王鑫, 张景发, 等. 太阳山断裂带及周边地区多源遥感断层构造解译与分析[J]. 大地测量与地球动力学, 2021, 41(7): 754-758. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB202107016.htm

    Pan G Y, Wang X, Zhang J F, et al. Interpretation and analysis of multi-source remote sensing fault structure in Taiyangshan fault zone and surrounding areas[J]. Journal of Geodesy and Geodynamics, 2021, 41(7): 754-758(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB202107016.htm
    [22] Taillefer A, Guillou-Frottier L, Soliva R, et al. Topographic and faults control of hydrothermal circulation along dormant faults in an orogen[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(12): 4972-4995.
    [23] Wang D J, Qian J Z, Zhao W D, et al. Distribution characteristics and processes along flow paths of shallow groundwater in the Tan-Lu fault zone in Anhui Province, China[J]. Geosciences Journal, 2022, 26(4): 529-543. doi: 10.1007/s12303-022-0004-3
    [24] Medici G, Engdahl N B, Langman J B. A basin-scale groundwater flow model of the Columbia Plateau regional aquifer system in the Palouse(USA): Insights for aquifer vulnerability assessment[J]. International Journal of Environment Research, 2021, 15(2): 299-312. doi: 10.1007/s41742-021-00318-0
    [25] Manga M, Beresnev I, Brodsky E E, et al. Changes in permeability caused by transient stresses: Field observations, experiments, and mechanisms[J]. Review of Geophysics, 2018, 50: RG2004.
    [26] Dewandel B, Hakoun V, Lanini S, et al. Analytical solutions for analysing pumping tests near an infinite vertical and anisotropic fault zone based upon unconventional application of well-image theory[J]. Advance in Water Resources, 2022, 160: 104107. doi: 10.1016/j.advwatres.2021.104107
    [27] Hadley D R, Abrams D B, Roadcap G S. Modeling a large-scale historic aquifer test: Insight into the hydrogeology of a regional fault zone[J]. Groundwater, 2019, 58(3): 453-463.
    [28] Zhan H B, Bian A G. A method of calculating pumping induced leakage[J]. Journal of Hydrology, 2006, 328(3/4): 659-667.
    [29] Doan M L, Brodsky E E, Kano Y, et al. In situ measurement of the hydraulic diffusivity of the active Chelungpu Fault, Taiwan[J]. Geophysical Research Letters, 2006, 33(16): L16317. doi: 10.1029/2006GL026889
    [30] Marler J, Ge S M. The permeability of the Elkhorn fault zone, South Park, Colorado[J]. Groundwater, 2003, 41(3): 321-332. doi: 10.1111/j.1745-6584.2003.tb02601.x
    [31] Fu Y, Dong Y, Wang L, et al. Characteristics of hydraulic conductivity in mountain block systems and its effects on mountain block recharge: Insights from field investigation and numerical modeling[J]. Journal of Hydrology, 2022, 612: 128184. doi: 10.1016/j.jhydrol.2022.128184
    [32] 包锡麟, 费宇红, 李亚松, 等. 大武水源地断裂带关键水动力参数确定及污染防治对策[J]. 水文地质工程地质, 2020, 47(5): 56-63. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202005007.htm

    Bao X L, Fei Y H, Li Y S, et al. Determination of the key hydrodynamic parameters of the fault zone using colloidal borescope in the Dawu well field and strategies for contamination prevention and control[J]. Hydrogeology & Engineering Geology, 2020, 47(5): 56-63(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202005007.htm
    [33] Mang M. Using springs to study groundwater flow and active geologic processes[J]. Annual Review on Earth and Planetary Science, 2001, 29: 201-228. doi: 10.1146/annurev.earth.29.1.201
    [34] Wu G, Zhao K, Qu H, et al. Permeability distribution and scaling in multi-stages carbonate damage zones: Insight from strike-slip fault zones in the Tarim Basin, NW China[J]. Marine and Petroleum Geology, 2020, 114: 104208.
    [35] Ceccato A, Tartaglia G, Antonellini M, et al. Multiscale lineament analysis and permeability heterogeneity of fractured crystalline basement blocks[J]. Journal of Geophysical Research: Solid Earth, 2022, 13(9): 1431-1453.
    [36] Fairley J, Hinds J. Rapid transport pathways for geothermal fluids in an active Great Basin fault zone[J]. Geology, 2004, 32(9): 825-828.
    [37] Shi Z M, Wang G C. Evaluation of the permeability properties of the Xiaojiang Fault Zone using hot springs and water wells[J]. Geophysical Journal International, 2017, 209(3): 1526-1533.
    [38] Saar M O, Manga M. Depth dependence of permeability in the Oregon Cascades inferred from hydrogeologic, thermal, seismic, and magmatic modeling constraints[J]. Journal of Geophysical Research: Solid Earth, 2004, 109(B4): B04204.
    [39] Ingebritsen S, Gleeson T. Crustal permeability[J]. Hydrogeology Journal, 2017, 25(8): 2221-2224.
    [40] Shalev E, Kurzon I, Doan M L, et al. Sustained water level changes caused by damage and compaction induced by teleseismic earthquakes[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(7): 4943-4954.
    [41] Shi Z M, Wang G C. Sustained groundwater level changes and permeability variation in a fault zone following the 12 May 2008, Mw 7.9 Wenchuan earthquake[J]. Hyrological Processes, 2015, 29(12): 2659-2667.
    [42] Xue L, Li H B, Brodsky E E, et al. Continuous permeability measurements record healing inside the Wenchuan Earthquake Fault Zone[J]. Science, 2013, 340: 1555-1559.
    [43] Yan R, Wang G C, Shi Z M. Sensitivity of hydraulic properties to dynamic strain within a fault damage zone[J]. Journal of Hydrology, 2016, 543: 721-728.
    [44] Kitagawa Y, Fujimori K, Koizumi N. Temporal change in permeability of the Nojima fault zone by repeated water injection experiments[J]. Tectonophysics, 2007, 443(3/4): 183-192.
    [45] McMillan T C, Rau G C, Timms W A, et al. Utilizing the impact of Earth and atmospheric tides on groundwater systems: A review reveals the future potential[J]. Review of Geophysics, 2019, 57(2): 281-315.
    [46] He G R, Shi Z M, Rasmussen T C, et al. Fault zone hyydraulic parameter estimation by passive methods using natural forces[J]. Water Resources Research, 2023, 59(2): e2022WR033377.
    [47] Hsieh P A, Bredehoeft J D, Farr J M. Determination of aquifer transmissivity from earth tide analysis[J]. Water Resources Research, 1987, 23(10): 1824-1832.
    [48] Spane F A. Considering barometric pressure in groundwater flow investigations[J]. Water Resources Research, 2002, 38(6): 1078.
    [49] Zhang H, Shi Z M, Wang G C, et al. Different sensitivities of earthquake-induced water level and hydrogeological property variations in two aquifer systems[J]. Water Resources Research, 2021, 57(5): e2020WR028217.
    [50] Shi Z M, Zhang S C, Yan R, et al. Fault zone permeability decrease following large earthquakes in a hydrothermal system[J]. Geophysical Research Letters, 2018, 45(3): 1387-1394.
    [51] Jeanne P, Guglielmi Y, Rutqvist J, et al. Evaluation of faults stability due to passing seismic waves: Study case of groundwater level changes induced by the 2011 Tohoku earthquake in Central Japan[J]. Journal of Hydrology X, 2021, 13: 100103.
    [52] Li B, Shi Z M, Wang G C, et al. Earthquake-related hydrochemical changes in thermal springs in the Xianshuihe Fault zone, Western China[J]. Journal of Hydrology, 2019, 579: 124175.
    [53] Shi Y, Liao X, Zhang D, et al. Seismic waves could decrease the permeability of the shallow crust[J]. Geophysical Research Letters, 2019, 46(12): 6371-6377.
    [54] Shi Z M, Wang C Y, Yan R. Frequency-dependent groundwater response to earthquakes in carbonate aquifer[J]. Journal of Hydrology, 2021, 603: 127153.
    [55] Zhang Y, Manga M, Fu L Y, et al. Changes of hydraulic transmissivity orientation induced by tele-seismic waves[J]. Water Resources Research, 2022, 58(11): e2022WR033272.
    [56] Wang C Y, Liao X, Wang L P, et al. Large earthquakes create vertical permeability by breaching aquitards[J]. Water Resources Research, 2016, 52(8): 5923-5937.
    [57] Fleeger G M, Goode D J, Buckwalter T F, et al. Hydrologic effects of the Pymatuning earthquake of September 25, 1998, in northwestern Pennsylvania[R]. [S. l. ]: U.S. Department of the Interior, US Geological Survey, 1999.
    [58] Liao X, Wang C Y, Liu C P. Disruption of groundwater systems by earthquakes[J]. Geophysical Research Letters, 2015, 42(22): 9758-9763.
    [59] Mastrorillo L, Saroli M, Viaroli S, et al. Sustained post-seismic effects on groundwater flow in fractured carbonate aquifers in Central Italy[J]. Hydrological Processes, 2019, 34(5): 1167-1181.
    [60] Renard P, Allard D. Connectivity metrics for subsurface flow and transport[J]. Advance in Water Resources, 2013, 51: 168-196.
    [61] McCallum J, Noorduijn S, Simmons C. Including vertical fault structures in layered groundwater flow models[J]. Groundwater, 2021, 59(6): 799-807.
    [62] McCallum J, Simmons C, Mallants D, et al. Simulating the groundwater flow dynamics of fault zones MODFLOW Un-Structured Grid: A comparison of methods for representing fault properties and a regional implementation[M]. [S. l. ]: The Commonwealth Scientific and Industrial Research Organisation, 2016.
    [63] Hsu S M, Ke C C, Dong M C, et al. Investigating fault zone hydraulic properties and groundwater potential in a fault-dominated aquifer system: A case study of the Dili fault in Central Taiwan[J]. Engineering Geology, 2022, 308: 106805.
    [64] Leray S, de Dreuzy J-R, Bour O, et al. Numerical modeling of the productivity of vertical to shallowly dipping fractured zones in crystalline rocks[J]. Journal of Hydrology, 2013, 481: 64-75.
    [65] Bense V F, Person M A. Faults as conduit-barrier systems to fluid flow in siliciclastic sedimentary aquifers[J]. Water Resources Research, 2016, 42(5): W05421.
    [66] Manzocchi T, Childs C, Walsh J J. Faults and fault properties in hydrocarbon flow models[J]. Geofluids, 2010, 10(1/2): 94-113.
    [67] McCallum J, Noorduijn S, Simmons C. Including vertical fault structures in layered groundwater flow models[J]. Groundwater, 2021, 59(6): 799-807.
    [68] Brunetti E, Jones J P, Petitta M, et al. Assessing the impact of large-scale dewatering on fault-controlled aquifer systems: A case study in the Acque Albule basin(Tivoli, central Italy)[J]. Hydrogeology Journal, 2012, 21(2): 401-423.
    [69] Yan X, Shi Z M, Zhou P P, et al. Modeling earthquake-Induced spring discharge and temperature changes in a fault zone hydrothermal system[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(7): e2020JB019344.
  • 加载中
图(3)
计量
  • 文章访问数:  649
  • PDF下载量:  113
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-11
  • 录用日期:  2023-05-11
  • 修回日期:  2023-04-11

目录

    /

    返回文章
    返回