留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于MatDEM的黄泥扁滑坡支护效果分析

王飞 徐楚 黎伟

王飞, 徐楚, 黎伟. 基于MatDEM的黄泥扁滑坡支护效果分析[J]. 地质科技通报, 2023, 42(5): 52-60. doi: 10.19509/j.cnki.dzkq.tb20220015
引用本文: 王飞, 徐楚, 黎伟. 基于MatDEM的黄泥扁滑坡支护效果分析[J]. 地质科技通报, 2023, 42(5): 52-60. doi: 10.19509/j.cnki.dzkq.tb20220015
Wang Fei, Xu Chu, Li Wei. Supporting effect analysis of the Huangnibian landslide based on MatDEM[J]. Bulletin of Geological Science and Technology, 2023, 42(5): 52-60. doi: 10.19509/j.cnki.dzkq.tb20220015
Citation: Wang Fei, Xu Chu, Li Wei. Supporting effect analysis of the Huangnibian landslide based on MatDEM[J]. Bulletin of Geological Science and Technology, 2023, 42(5): 52-60. doi: 10.19509/j.cnki.dzkq.tb20220015

基于MatDEM的黄泥扁滑坡支护效果分析

doi: 10.19509/j.cnki.dzkq.tb20220015
基金项目: 

国家自然科学基金项目 42102327

详细信息
    作者简介:

    王飞(1999—),男,现正攻读地质工程专业硕士学位, 主要从事岩土工程数值模拟的研究工作。E-mail: 764731655@qq.com

    通讯作者:

    黎伟(1989—),男,副教授,主要从事特殊土工程力学特性及其加固改良技术工作。E-mail: liwei890508@126.com

  • 中图分类号: P642.22

Supporting effect analysis of the Huangnibian landslide based on MatDEM

  • 摘要:

    黄泥扁滑坡是一个小型中层土质滑坡,已出现滑移的迹象,急需对其进行支护治理,分析该滑坡的破坏机理、验证现有的支护结构是否满足滑坡的稳定性要求以及探索合理且有效的支护部位和支护形式具有十分重要的意义。基于MatDEM建立了黄泥扁滑坡在20年一遇洪水位下的三维模型,模拟了滑坡在无支护、挡土墙支护、挡土墙和抗滑桩共同支护3种情况下的变形,并根据位移场分析了不同支护方案的支护效果。模拟结果显示:①该滑坡在无支护的情况下处于不稳定状态;②在无支护的情况下,滑体从滨河路的坡脚处剪出,在有挡土墙支护的情况下,滑体从快速通道的坡脚处剪出,表明现有的挡土墙支护结构并不满足滑坡的稳定性需求,需要对快速通道的坡脚进行重点支护;③采用抗滑桩对快速通道的坡脚进行支护,并在抗滑桩之间加设挡土板,此方案不仅在很大程度上提高了滑坡的整体稳定性,而且有效地解决了部分土体从桩间滑落的问题。研究成果可以为后续的工程设计、施工等提供一定的参考,同时也验证了MatDEM在滑坡分析中的适用性。

     

  • 图 1  黄泥扁滑坡工程地质平面图(a)和剖面图(b)

    Figure 1.  Engineering geological plane (a) and profile (b) of the Huangnibian landslide

    图 2  建筑物墙体开裂

    Figure 2.  Building wall cracks

    图 3  滑坡的基本模型

    ①为人工填土;②为粉质黏土;③为强风化砂质泥岩;④为中风化砂质泥岩

    Figure 3.  Basic model of the landslide

    图 4  无支护时的滑坡位移云图

    Figure 4.  Landslide displacement diagram of the case without support

    图 5  无支护时的Geostudio计算结果

    Figure 5.  Geostudio calculation results of the case without support

    图 6  挡土墙结构示意图

    a. 挡土墙截面尺寸(单位:m);b. 挡土墙模型(单位:m);c. 挡土墙支护的滑坡模型

    Figure 6.  Structure diagram of the retaining wall

    图 7  挡土墙支护时的滑坡位移云图

    Figure 7.  Landslide displacement diagram of the case with retaining wall support

    图 8  无支护和挡土墙支护下的模拟结果对比图

    a. 无支护时的剪出口位置;b. 挡土墙支护时的剪出口位置;c. 滑体平均速度和平均位移曲线

    Figure 8.  Comparison of simulation results between the case under no support and that with retaining wall support

    图 9  挡土墙支护时的Geostudio计算结果

    Figure 9.  Geostudio calculation results of the case with retaining wall support

    图 10  抗滑桩位置示意图

    Figure 10.  Distribution map of the anti-slide pile

    图 11  抗滑桩支护时的滑坡位移云图

    Figure 11.  Landslide displacement diagram of the case with anti-slide piles support

    图 12  抗滑桩-挡土板支护时的滑坡位移云图

    Figure 12.  Landslide displacement diagram of the case with anti-slide piles and retaining plate support

    图 13  抗滑桩支护时的Geostudio计算结果

    Figure 13.  Geostudio calculation results of the case with the anti-slide pile support

    表  1  各材料的宏观力学参数取值

    Table  1.   Macroscopic mechanical parameters of the materials

    状态 岩性 杨氏模量E/MPa 泊松比ν 抗拉强度Tu/MPa 抗压强度Cu/MPa 内摩擦系数μi 密度ρ/(kg·m-3)
    天然 ①人工填土 5 0.17 0.002 0.2 0.46 2 110
    ②粉质黏土 10 0.18 0.004 0.4 0.22 2 060
    1强风化砂质泥岩 200 0.10 2.500 6.2 0.50 2 490
    2中风化砂质泥岩 400 0.15 5.000 15.4 0.60 2 590
    挡土墙和抗滑桩 20 000 0.15 10.000 50.0 0.60 2 850
    饱和 ①人工填土 3 0.18 0.001 0.1 0.36 2 130
    ②粉质黏土 8 0.19 0.002 0.2 0.17 2 090
    1强风化砂质泥岩 100 0.12 1.200 3.1 0.30 2 510
    2中风化砂质泥岩 300 0.16 2.500 7.4 0.48 2 600
    下载: 导出CSV

    表  2  各材料的微观力学参数取值

    Table  2.   Microscopic mechanical parameters of the materials

    状态 岩性 法向刚度Kn/(MN·m-1) 切向刚度Ks/(MN·m-1) 断裂位移Xb/mm 初始抗剪力Fs0/MN 摩擦系数μp
    天然 ①人工填土 1.9 0.2 0.30 0.2 0.46
    ②粉质黏土 3.5 0.3 0.40 0.6 0.22
    1强风化砂质泥岩 75.0 37.3 0.50 3.1 0.50
    2中风化砂质泥岩 147.5 59.6 0.80 5.0 0.60
    挡土墙和抗滑桩 4 630.0 195.0 0.08 2.8 0.60
    饱和 ①人工填土 1.3 0.2 0.30 0.1 0.36
    ②粉质黏土 3.1 0.3 0.40 0.4 0.17
    1强风化砂质泥岩 56.3 15.5 0.40 2.4 0.30
    2中风化砂质泥岩 134.1 23.2 0.70 4.5 0.48
    下载: 导出CSV
  • [1] 罗丽娟, 赵法锁. 滑坡防治工程措施研究现状与应用综述[J]. 自然灾害学报, 2009, 18(4): 158-164. doi: 10.3969/j.issn.1004-4574.2009.04.027

    Luo L J, Zhao F S. Status of research and application of engineering measures for preventing and controlling landslide[J]. Journal of Natural Disasters, 2009, 18(4): 158-164(in Chinese with English abstract). doi: 10.3969/j.issn.1004-4574.2009.04.027
    [2] 张倬元. 滑坡防治工程的现状与发展展望[J]. 地质灾害与环境保护, 2000, 11(2): 89-97, 181. doi: 10.3969/j.issn.1006-4362.2000.02.001

    Zhang Z Y. The present status, technical advance and development trends of landslide remedial measures[J]. Journal of Geological Hazards and Environment Preservation, 2000, 11(2): 89-97, 181(in Chinese with English abstract). doi: 10.3969/j.issn.1006-4362.2000.02.001
    [3] 魏金花. 地质灾害治理工程施工中边坡稳定问题及滑坡治理方法[J]. 西部资源, 2020(3): 28-30. doi: 10.3969/j.issn.1672-562X.2020.03.011

    Wei J H. Slope stability problem and landslide treatment method in construction of geological hazard control project[J]. Western Resource, 2020(3): 28-30(in Chinese with English abstract). doi: 10.3969/j.issn.1672-562X.2020.03.011
    [4] 黄润秋, 张倬元, 王士天. 工程地质学中的数值模拟与拟合[J]. 水文地质工程地质, 1991(5): 7-10. doi: 10.16030/j.cnki.issn.1000-3665.1991.05.006

    Huang R Q, Zhang Z Y, Wang S T. Numerical simulation and fitting in engineering geology[J]. Hydrogeology and Engineering Geology, 1991(5): 7-10(in Chinese with English abstract). doi: 10.16030/j.cnki.issn.1000-3665.1991.05.006
    [5] 宁宇, 黄青富, 郝李坤, 等. 联合h型桩在滑坡体阻滑中应用数值模拟研究[J]. 科学技术与工程, 2021, 21(23): 10004-10012. doi: 10.3969/j.issn.1671-1815.2021.23.046

    Ning Y, Huang Q F, Hei L K, et al. Numerical simulation research on application of combined h-pile in sliding resistance of landslide[J]. Science Technology and Engineering, 2021, 21(23): 10004-10012(in Chinese with English abstract). doi: 10.3969/j.issn.1671-1815.2021.23.046
    [6] 陶连金, 沈小辉, 王开源, 等. 某大型高速公路滑坡稳定性分析及锚桩加固的模拟研究[J]. 工程地质学报, 2012, 20(2): 259-265. doi: 10.3969/j.issn.1004-9665.2012.02.015

    Tao L J, Shen X H, Wang K Y, et al. Stability analysis and supporting effect modeling of a large scale landslide on highway[J]. Journal of Engineering Geology, 2012, 20(2): 259-265(in Chinese with English abstract). doi: 10.3969/j.issn.1004-9665.2012.02.015
    [7] Trojnar K. Numerical analysis of the landslide geohazards: Case study with gabions and piles solutions[C]//Anon. Proceedings of CEE 2019. Cham: Springer International Publishing, 2020: 474-479.
    [8] Kahyaoglu M R, Imanch G, Ozden G. Numerical simulations of landslide-stabilizing piles: A remediation project in Soke, Turkey[J]. Environmental Earth Sciences, 2017, 76(19): 656. doi: 10.1007/s12665-017-6989-7
    [9] 吴恒, 张信贵, 易念平, 等. 水土作用与土体细观结构研究[J]. 岩石力学与工程学报, 2000, 19(2): 199-204. doi: 10.3321/j.issn:1000-6915.2000.02.015

    Wu H, Zhang X G, Yi N P, et al. Research on water-soil interaction and mesostructure of soilmass[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(2): 199-204(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2000.02.015
    [10] Cundall P A, Strack O D L. A discrete numerical model for granular assemblies[J]. Geotechnique, 1980, 30(3): 331-336. doi: 10.1680/geot.1980.30.3.331
    [11] 王泳嘉, 邢纪波. 离散单元法同拉格朗日元法及其在岩土力学中的应用[J]. 岩土力学, 1995, 16(2): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX502.000.htm

    Wang Y J, Xing J B. Discrete element method and lagrangian element method and their applications in geomechanics[J]. Rock and Soil Mechanics, 1995, 16(2): 1-14(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX502.000.htm
    [12] 张泽林, 吴树仁, 唐辉明, 等. 反倾岩质边坡的时效变形破坏研究[J]. 地质科技情报, 2014, 33(5): 181-187. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201405027.htm

    Zhang Z L, Wu S R, Tang H M, et al. Time dependent deformation of antithetic dip rock slope[J]. Geological Science and Technology Information, 2014, 33(5): 181-187(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201405027.htm
    [13] 张江晖, 徐守余, 蒋静, 等. 含夹层碳酸盐岩储层裂缝发育规律研究[J]. 地质科技情报, 2019, 38(2): 75-80. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201902009.htm

    Zhang J H, Xu S Y, Jiang J, et al. Fracture development in the carbonate reservoir with interlayers[J]. Geological Science and Technology Information, 2019, 38(2): 75-80(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201902009.htm
    [14] 井旭, 谢婉丽, 单帅. 原状及重塑黄土双轴试验微观力学特征离散元模拟[J]. 地质科技通报, 2021, 40(3): 184-193. doi: 10.19509/j.cnki.dzkq.2021.0311

    Jing X, Xie W L, Shan S. Discrete element simulation study on micromechanical characteristics of undisturbed and remolded loess in biaxial test[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 184-193(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0311
    [15] 陆敏凤, 唐朝晖, 柴波, 等. 矿渣类颗粒介质结构对力链发展规律的影响[J]. 地质科技通报, 2022, 41(4): 274-281. doi: 10.19509/j.cnki.dzkq.2022.0094

    Lu M F, Tang Z H, Chai B, et al. Granule structure influences on force chain development in the slag medium[J]. Bulletin of Geological Science and Technology, 2022, 41(4): 274-281. doi: 10.19509/j.cnki.dzkq.2022.0094
    [16] 刘春, 施斌, 顾凯, 等. 岩土体大型三维离散元模拟系统的研发与应用[C]//佚名. 2014年全国工程地质学术大会论文集. [出版地不详]: [出版社不详], 2014: 560-566.

    Liu C, Shi B, Gu K, et al. Development and application of large-scale discrete element simulation system for rock and soil[C]//Anon. Papers of 2014 National Engineering Geology Academic Conference. [S. l. ]: [s. n. ], 2014: 560-566(in Chinese with English abstract).
    [17] Xue Y D, Zhou J, Huang H W, et al. Analysis of large soil rock mixture slope based on DEM[J]. International Society for Rock Mechanics and Rock Engineering, 2019, 27(3): 651-658.
    [18] 朱晨光, 刘春, 许强, 等. 滑坡滑带摩擦热离散元数值模拟研究[J]. 工程地质学报, 2019, 27(3): 651-658. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201903024.htm

    Zhu C G, Liu C, Xu Q, et al. Discrete element numerical simulation research on friction heat in sliding zone of the landslide[J]. Journal of Engineering Geology, 2019, 27(3): 651-658(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201903024.htm
    [19] Luo H, Xing A G, Jin K P, et al. Discrete element modeling of the Nayong rock avalanche, Guizhou, China constrained by dynamic parameters from seismic signal inversion[J]. Rock Mechanics and Rock Engineering, 2021, 15(7): 1359-1375.
    [20] Gianvito S, Fan X M, Xu Q, et al. Some considerations on the use of numerical methods to simulate past landslides and possible new failures: The case of the recent Xinmo landslide (Sichuan, China)[J]. Landslides, 2018, 15(7): 1359-1375.
    [21] 汪志林, 叶海旺, 李子旋, 等. 含双裂隙组灰岩边坡渐进失稳过程分析[J]. 矿冶工程, 2021, 41(2): 20-23, 32. https://www.cnki.com.cn/Article/CJFDTOTAL-KYGC202102005.htm

    Wang Z L, Ye H W, Li Z X, et al. Analysis of progressive instability process of limestone slope with two groups of fissures[J]. Mining and Metallurgical Engineering, 2021, 41(2): 20-23, 32(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KYGC202102005.htm
    [22] 栗晓松, 范文, 曹琰波, 等. 基于MatDEM的烟家沟滑坡演化过程数值模拟分析[J]. 地质与资源, 2021, 30(2): 199-206. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSD202102012.htm

    Li X S, Fan W, Cao Y B, et al. Matdem-based numerical simulation analysis of Yanjiagou landslide evolution process[J]. Geology and Resources, 2021, 30(2): 199-206(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GJSD202102012.htm
    [23] Liu C, Xu Q, Shi B, et al. Mechanical properties and energy conversion of 3D close-packed lattice model for brittle rocks[J]. Computers & Geosciences, 2017, 103: 12-20.
    [24] 刘春. 地质与岩土工程矩阵离散元分析[M]. 北京: 科学出版社, 2019.

    Liu C. Matrix discrete element analysis of geology and geotechnical engineering[M]. Beijing: Science Publishing, 2019(in Chinese).
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  710
  • PDF下载量:  139
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-11
  • 录用日期:  2022-04-18
  • 修回日期:  2022-03-24

目录

    /

    返回文章
    返回