留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

咸淡水混合对珊瑚砂渗透性影响的试验研究

李英豪 韩冬梅 曹天正 赵孝伟 宋献方 蔡砥柱

李英豪, 韩冬梅, 曹天正, 赵孝伟, 宋献方, 蔡砥柱. 咸淡水混合对珊瑚砂渗透性影响的试验研究[J]. 地质科技通报, 2023, 42(4): 194-200. doi: 10.19509/j.cnki.dzkq.tb20220048
引用本文: 李英豪, 韩冬梅, 曹天正, 赵孝伟, 宋献方, 蔡砥柱. 咸淡水混合对珊瑚砂渗透性影响的试验研究[J]. 地质科技通报, 2023, 42(4): 194-200. doi: 10.19509/j.cnki.dzkq.tb20220048
Li Yinghao, Han Dongmei, Cao Tianzheng, Zhao Xiaowei, Song Xianfang, Cai Dizhu. Experimental study on the effect of subsurface freshwater-saltwater mixing on the permeability of coral sand[J]. Bulletin of Geological Science and Technology, 2023, 42(4): 194-200. doi: 10.19509/j.cnki.dzkq.tb20220048
Citation: Li Yinghao, Han Dongmei, Cao Tianzheng, Zhao Xiaowei, Song Xianfang, Cai Dizhu. Experimental study on the effect of subsurface freshwater-saltwater mixing on the permeability of coral sand[J]. Bulletin of Geological Science and Technology, 2023, 42(4): 194-200. doi: 10.19509/j.cnki.dzkq.tb20220048

咸淡水混合对珊瑚砂渗透性影响的试验研究

doi: 10.19509/j.cnki.dzkq.tb20220048
基金项目: 

国家自然科学基金项目 42277066

中国科学院战略性先导科技专项项目 XDA13010303

中国地质调查局自然资源综合调查指挥中心地质调查专项项目 ZD20220606

详细信息
    作者简介:

    李英豪(1995—), 男, 现正攻读自然地理专业硕士学位, 主要从事水文水资源研究工作。E-mail: liyinghao1211@163.com

    通讯作者:

    韩冬梅(1978—), 女, 研究员, 主要从事滨海地下水水文过程和海水入侵研究工作。E-mail: handm@igsnrr.ac.cn

  • 中图分类号: P641

Experimental study on the effect of subsurface freshwater-saltwater mixing on the permeability of coral sand

  • 摘要:

    珊瑚砂渗透性是决定岛礁地下淡水储量的关键因素, 长期以来缺乏岛礁地下淡水形成过程中不同盐度溶滤液对珊瑚砂渗透性影响的分析研究。在实验室条件下利用3种盐度不同的溶液模拟淡水、过渡带水和海水, 分别对珊瑚砂进行了溶蚀和渗透试验, 分析了滤出液在溶蚀过程中的离子浓度变化以及珊瑚砂渗透系数的变化特征, 并基于X射线衍射分析和PHREEQC反向模拟, 探讨了珊瑚砂在不同盐度溶液中发生的主要水岩相互作用以及渗透性变化的可能原因。结果表明, 珊瑚砂渗透特性与砂体发生的溶蚀作用强弱有关, 一般来说, 溶滤液盐度越高, 溶蚀作用越强烈, 溶滤后砂体渗透系数增大。在纯水中, 珊瑚砂受溶蚀程度较小, 溶蚀前后渗透系数几乎不变; 在咸水中, 珊瑚砂发生了碳酸盐岩溶解和以Na+-Ca2+为主的离子交换作用等水岩作用, 且随盐度升高作用越强烈, 渗透系数越大。经过NaCl浓度为0.2, 0.4 mol/L的溶液溶蚀360 h后, 砂体渗透系数由0.58 m/d增加为0.64, 0.74 m/d, 推断溶蚀作用通过改变砂体整体孔隙度, 从而增加渗透系数。研究结果可为准确评估岛礁淡水资源储量及保障水资源可持续发展提供科学参考。

     

  • 图 1  砂样的颗粒级配曲线

    Figure 1.  Grain size curves of coral sand

    图 2  试验装置示意图

    1.砂柱; 2.广口瓶; 3.蠕动泵; 4.导管; 5.止水夹; 6.定水头供水瓶; 7.烧杯

    Figure 2.  Schematic diagram of the test device

    图 3  滤出液离子质量浓度动态变化特征

    R1.去离子水; R2.ρ(NaCl)为0.2 mol/L的溶液;R3.ρ(NaCl)为0.4 mol/L的溶液。其中,Na+, Cl-质量浓度为稀释后质量浓度,在R1、R2、R3三种溶液体系下分别稀释了10,100,100倍

    Figure 3.  Dynamic change characteristics of ions in different solutions during the test

    图 4  砂样X射线衍射测试分析结果

    Figure 4.  Sand sample X-ray test results

    图 5  砂样溶蚀前后的渗透系数变化

    Figure 5.  Change in the permeability coefficient of coral sand

    表  1  珊瑚砂溶蚀过程中所发生的主要反应

    Table  1.   Main reactions that occur during the dissolution of coral sand

    水化学反应 化学反应式
    石膏溶解 CaSO4·2H2O→Ca2++SO42-+2H2O
    方解石溶解 CaCO3+CO2+H2O→Ca2++2HCO3-
    白云石溶解 CaMg(CO3)2+2CO2+2H2O→Ca2++Mg2++4HCO3-
    离子交换 2Na++CaX(s)→2NaX(s)+Ca2+
    Ca2++2KX(s)→CaX(s)+2K+
    Ca2++2NaX(s)→CaX(s)+2Na+
    盐岩溶解 NaCl→Na++Cl-
    下载: 导出CSV

    表  2  模拟路径上可能反应相的交换量

    Table  2.   Exchange volume of possible reactive phases along the simulated path

    方解石/10-3 mol 石膏/10-4 mol 白云石/10-3 mol 盐岩/10-2 mol CO2/10-3 g NaX/10-3 mol CaX2/104 mol KX/10-4 mol
    W1 -1.08 11.6 1.58 1.16 1.97 1.0 -6.55 3.07
    W2 18.30 6.78 1.99 -4.95 19.7 36.9 -188 6.76
    W3 22.50 12.8 2.13 -9.78 22.5 47.0 -237 3.81
    注:负值代表沉淀,正值代表溶解
    下载: 导出CSV

    表  3  全新世珊瑚砂渗透系数的测定方法及其范围

    Table  3.   Previous research on the permeability coefficient of Holocene coral sand

    序号 研究区 测定方法 渗透系数范围/(m·d-1) 来源
    1 西沙某岛礁 室内常水头渗透试验 57.9~609.9 文献[33]
    2 某人工灰沙岛 现场双环渗透试验 1.0~52.0 文献[18]
    3 南海人工岛 室内常水头渗透试验 0.1~0.9 文献[25]
    4 西沙永兴岛 常水头渗透试验 70.0 文献[34]
    5 南海某人工岛 常水头渗透试验 58.6~176.9 文献[19]
    下载: 导出CSV
  • [1] 宋继伟, 蒋国盛, 李勇, 等. 中国南海珊瑚岛礁第四系覆盖层钻探取心技术[J]. 地质科技通报, 2020, 39(3): 211-215. doi: 10.19509/j.cnki.dzkq.2020.0323

    Song J W, Jiang G S, Li Y, et al. Coring drilling technology of coral-reef Quanternary overburden in South China Sea[J]. Bulletin of Geological Science and Technology, 2020, 39(3): 211-215(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0323
    [2] White I, Falkland T. Management of freshwater lenses on small Pacific islands[J]. Hydrogeology Journal, 2009, 18(1): 227-246.
    [3] Chui T F M, Terry J P. Influence of sea-level rise on freshwater lenses of different atoll island sizes and lens resilience to storm-induced salinization[J]. Journal of Hydrology, 2013, 502: 18-26. doi: 10.1016/j.jhydrol.2013.08.013
    [4] 赵焕庭, 王丽荣. 珊瑚礁岛屿淡水透镜体研究综述[J]. 热带地理, 2015, 35(1): 120-129. https://www.cnki.com.cn/Article/CJFDTOTAL-RDDD201501018.htm

    Zhao H T, Wang L R. Review on the study of freshwater lens in the coral reef island[J]. Tropical Geography, 2015, 35(1): 120-129(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-RDDD201501018.htm
    [5] Sheng C, Han D, Xu H, et al. Evaluating dynamic mechanisms and formation process of freshwater lenses on reclaimed atoll islands in the South China Sea[J]. Journal of Hydrology, 2020, 584: 124641. doi: 10.1016/j.jhydrol.2020.124641
    [6] Bailey R T, Khalil A, Chatikavanij V. Estimating transient freshwater lens dynamics for atoll islands of the Maldives[J]. Journal of Hydrology, 2014, 515: 247-256. doi: 10.1016/j.jhydrol.2014.04.060
    [7] 韩冬梅, 曹国亮, 宋献方. 南海珊瑚礁人工岛淡水透镜体形成过程及影响因素[J]. 地理学报, 2020, 75(5): 1053-1064. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB202005013.htm

    Han D M, Cao G L, Song X F. Formation processes and influencing factors of freshwater lens in artificial island of coral reef in South China Sea[J]. Acta Geographica Sinica, 2020, 75(5): 1053-1064(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB202005013.htm
    [8] 孙宗勋. 南沙群岛珊瑚砂工程性质研究[J]. 热带海洋, 2000, 19(2): 1-8. doi: 10.3969/j.issn.1009-5470.2000.02.001

    Sun Z X. Engineering properties of coral sands in Nansha Islands[J]. Tropic Oceanology, 2000, 19(2): 1-8(in Chinese with English abstract). doi: 10.3969/j.issn.1009-5470.2000.02.001
    [9] 袁征, 余克服, 王英辉, 等. 珊瑚礁岩土的工程地质特性研究进展[J]. 热带地理, 2016, 36(1): 87-93. https://www.cnki.com.cn/Article/CJFDTOTAL-RDDD201601013.htm

    Yuan Z, Yu K F, Wang Y H, et al. Research progress in the engineering geological characteristics of coral reefs[J]. Tropical Geography, 2016, 36(1): 87-93(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-RDDD201601013.htm
    [10] 王新志, 汪稔, 孟庆山, 等. 钙质砂室内载荷试验研究[J]. 岩土力学, 2009, 30(1): 147-151, 156. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200901035.htm

    Wang X Z, Wang R, Meng Q S, et al. Study of plate load test of calcareous sand[J]. Rock and Soil Mechanics, 2009, 30(1): 147-151, 156(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200901035.htm
    [11] 张家铭, 张凌, 刘慧, 等. 钙质砂剪切特性试验研究[J]. 岩石力学与工程学报, 2008, 27(增刊1): 3010-3015. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2008S1065.htm

    Zhang J M, Zhang L, Liu H, et al. Experimental research of shear behavior of calcareous sand[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(S1): 3010-3015(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2008S1065.htm
    [12] Shahnazari H, Rezvani R. Effective parameters for the particle breakage of calcareous sands: An experimental study[J]. Engineering Geology, 2013, 159: 98-105. doi: 10.1016/j.enggeo.2013.03.005
    [13] 刘崇权, 单华刚, 汪稔. 钙质土工程特性及其桩基工程[J]. 岩石力学与工程学报, 1999, 18(3): 331-335. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX199903022.htm

    Liu C Q, Shan H G, Wang R. The geotechnical characters of calcareous soils and the pile foundation engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 1999, 18(3): 331-335(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX199903022.htm
    [14] 秦月, 孟庆山, 汪稔, 等. 钙质砂地基单桩承载特性模型试验研究[J]. 岩土力学, 2015, 36(6): 1714-1720, 1736. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201506025.htm

    Qin Y, Meng Q S, Wang R, et al. A study on bearing characteristics of single pile in calcareous sand based on model experiment[J]. Rock and Soil Mechanics, 2015, 36(6): 1714-1720, 1736(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201506025.htm
    [15] 朱纪康, 周杨, 王殿龙, 等. 基于微生物诱导矿化的钙质砂加固影响因素[J]. 地质科技情报, 2019, 38(6): 206-211. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201906025.htm

    Zhu J K, Zhou Y, Wang D L, et al. Affecting factors for calcareous sand reinforcement based on microbial induced mineralization[J]. Geological Science and Technology Information, 2019, 38(6): 206-211(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201906025.htm
    [16] 束龙仓, 周从直, 甄黎, 等. 珊瑚砂含水介质水理性质的实验室测定[J]. 河海大学学报: 自然科学版, 2008, 36(3): 330-332. https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX200803009.htm

    Shu L C, Zhou C Z, Zhen L, et al. Measurement of the hydrological properties of coral sand in a laboratory[J]. Journal of Hohai University: Natural Sciences Edition, 2008, 36(3): 330-332(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX200803009.htm
    [17] 王新志, 王星, 胡明鉴, 等. 吹填人工岛地基钙质粉土夹层的渗透特性研究[J]. 岩土力学, 2017, 38(11): 3127-3135. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201711008.htm

    Wang X Z, Wang X, Hu M J, et al. Study of permeability of calcareous silty layer of foundation at an artificial reclamation island[J]. Rock and Soil Mechanics, 2017, 38(11): 3127-3135(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201711008.htm
    [18] 胡明鉴, 蒋航海, 朱长歧, 等. 钙质砂的渗透特性及其影响因素探讨[J]. 岩土力学, 2017, 38(10): 2895-2900. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201710017.htm

    Hu M J, Jiang H H, Zhu C Q, et al. Discussion on permeability of calcareous sand and its influencing factors[J]. Rock and Soil Mechanics, 2017, 38(10): 2895-2900(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201710017.htm
    [19] 胡明鉴, 崔翔, 王新志, 等. 细颗粒对钙质砂渗透性的影响试验研究[J]. 岩土力学, 2019, 40(8): 2925-2930. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201908006.htm

    Hu M J, Cui X, Wang X Z, et al. Experimental study of the effect of fine particles on permeability of the calcareous sand[J]. Rock and Soil Mechanics, 2019, 40(8): 2925-2930(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201908006.htm
    [20] 任玉宾, 王胤, 杨庆. 颗粒级配与形状对钙质砂渗透性的影响[J]. 岩土力学, 2018, 39(2): 491-497. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201802011.htm

    Ren Y B, Wang Y, Yang Q. Effects of particle size distribution and shape on permeability of calcareous sand[J]. Rock and Soil Mechanics, 2018, 39(2): 491-497(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201802011.htm
    [21] 廖仁国, 周先齐, 蔡燕燕, 等. 钙质砂与石英砂渗透性差异对比试验[J]. 华侨大学学报: 自然科学版, 2019, 40(5): 600-605. https://www.cnki.com.cn/Article/CJFDTOTAL-HQDB201905007.htm

    Liao R G, Zhou X Q, Cai Y Y, et al. Comparative experiment on permeability difference between calcareous sand and quartz sand[J]. Journal of Huaqiao University: Natural Science Edition, 2019, 40(5): 600-605(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HQDB201905007.htm
    [22] Wang Y, Ren Y B, Yang Q. Experimental study on the hydraulic conductivity of calcareous sand in South China Sea[J]. Marine Georesources & Geotechnology, 2017, 35(7): 1037-1047.
    [23] 崔翔, 朱长歧, 胡明鉴, 等. 珊瑚砂渗透性的微观机理研究[J]. 岩土工程学报, 2020, 42(12): 2336-2341. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202012029.htm

    Cui X, Zhu C Q, Hu M J, et al. Microscopic mechanism of permeability of coral sand[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2336-2341(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202012029.htm
    [24] 任玉宾. 南海钙质砂渗透特性试验研究[D]. 辽宁大连: 大连理工大学, 2016.

    Ren Y B. Experimental study on the permeability characteristics of calcareous sand in South China Sea[D]. Dalian Liaoning: Dalian University of Technology, 2016(in Chinese with English abstract).
    [25] 钱琨, 王新志, 陈剑文, 等. 南海岛礁吹填钙质砂渗透特性试验研究[J]. 岩土力学, 2017, 38(6): 1557-1564, 1572. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201706003.htm

    Qian K, Wang X Z, Chen J W, et al. Experimental study on permeability of calcareous sand for islands in the South China Sea[J]. Rock and Soil Mechanics, 2017, 38(6): 1557-1564, 1572(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201706003.htm
    [26] Aizawa S, Akaiwa H. Geochemical behavior of fluorine during the formation of Pleistocene limestones in Yoron-Jima Island, Southwestern Japan[J]. The Chemical Society of Japan, 1995, 68(3): 825-830.
    [27] 钱会, 马致远, 李培月. 水文地球化学[M]. 北京: 地质出版社, 2012.

    Qian H, Ma Z Y, Li P Y. Hydrogeochemistry[M]. Beijing: Geological Publishing House, 2012(in Chinese).
    [28] 李越煊, 李鹏飞, 潘杰, 等. 草酸对珊瑚砂的溶蚀作用及其机理的研究[J]. 生态与农村环境学报, 2020, 36(1): 1-16.

    Li Y X, Li P F, Pan J, et al. Study on the corrosion process of coral sand by oxalic acid[J]. Journal of Ecology and Rural Environment, 2020, 36(1): 1-16(in Chinese with English abstract).
    [29] 吴文菲, 刘波, 李红军, 等. pH, 盐度对微生物还原硫酸盐的影响研究[J]. 环境工程学报, 2011, 5(11): 2527-2531. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201111023.htm

    Wu W F, Liu B, Li H J, et al. Effect of pH and salinity on sulfate reduction by microorganism[J]. Techniques and Equipment for Environmental Pollution Control, 2011, 5(11): 2527-2531(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201111023.htm
    [30] 杨磊, 龚绪龙, 陆徐荣, 等. 连云港北部地区高氟地下水分布特征及成因[J]. 中国地质, 2015, 42(4): 1161-1169. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201504029.htm

    Yang L, Gong X L, Lu X R, et al. Distribution and genesis of high-fluoride groundwater in northern Lianyungang area[J]. Geology in China, 2015, 42(4): 1161-1169(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201504029.htm
    [31] Gao X, Wang Y, Li Y, et al. Enrichment of fluoride in groundwater under the impact of saline water intrusion at the salt lake area of Yuncheng Basin, northern China[J]. Environmental Geology, 2008, 53(4): 795-803.
    [32] Parkhurst D L. User's guide to PHREEQC: A computer program for speciation, reaction-path, advective-transport, and inverse geochemical calculations[R]. [S. l. ]: US Department of the Interior US Geological Survey, 1995.
    [33] 周从直, 何丽, 杨琴, 等. 珊瑚岛礁淡水透镜体三维数值模拟研究[J]. 水利学报, 2010, 41(5): 560-566. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201005009.htm

    Zhou C Z, He L, Yang Q, et al. Three-dimensional numerical simulation of freshwater lens in coral islands[J]. Journal of Hydraulic Engineering, 2010, 41(5): 560-566(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201005009.htm
    [34] 赵孝伟. 咸淡水混合对珊瑚砂溶蚀及渗透特性影响试验研究[D]. 北京: 中国地质大学(北京), 2018.

    Zhao X W. Experimental study on the effect of freshwater seawater mixing on the dissolution and permeability of coral sand[D]. Beijing: China University of Geosciences (Beijing), 2018(in Chinese with English abstract).
    [35] 唐健健. 珊瑚礁岛地下水化学特征及渗透溶蚀作用研究[D]. 南宁: 广西大学, 2020.

    Tang J J. Study on the chemical characteristics of groundwater and its permeability dissolution in coral reef island[D]. Nanning: Guangxi University, 2020(in Chinese with English abstract).
    [36] 周从直, 方振东, 魏营, 等. 珊瑚岛礁淡水透镜体的开发利用[M]. 重庆: 重庆大学出版社, 2017.

    Zhou C Z, Fang Z D, Wei Y, et al. Development and utilization of freshwater lenses on coral reefs[M]. Chongqing: Chongqing University Press, 2017.
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  484
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-09
  • 录用日期:  2022-09-13
  • 修回日期:  2022-08-30

目录

    /

    返回文章
    返回