Using temperature to trace river-groundwater interactions in alpine regions: A case study in the upper reaches of the Heihe River
-
摘要:
高寒地区是世界众多大型河流的源区,了解区内河水与地下水的相互作用对流域水资源科学管理具有重要意义。因广泛发育多年冻土,高寒地区河床底部局部融区的形成和动态变化控制着河水与地下水的转换,导致两者间水力关系的复杂性和特殊性。受观测条件限制,目前高寒地区河水与地下水相互作用的研究极少,少量已有研究也多采用同位素和水化学示踪方法,成本高且精度低。采用观测成本更低但精度与密度更高的温度信号作为示踪剂,以量化河水和地下水之间的交换;利用垂向一维瞬态热运移解析模型,定量计算不同深度处河水与地下水的交换流速;利用分布式测温光纤系统的观测结果,分析河水与地下水相互作用的时空动态变化特征。研究结果表明:高寒地区河水与地下水的交换存在强烈的时空差异, 季节与气候的转换对河水与地下水的交换量起着控制作用,甚至能够改变河水与地下水的交换方向,河水与地下水的交换量随着冻土活动层加深而增加。温度示踪方法适用于高寒冻土区河水与地下水相互作用研究,2种温度示踪方法的联合使用可有效提高研究精度与准确性,为缺乏基础水文地质数据的高寒地区提供一种可行的研究思路。
Abstract:Objective The alpine region is the source area of many large rivers globally, and understanding river-groundwater interactions in the region is critical to the scientific management of watershed water resources. Due to the widespread occurrence of permafrost, the distribution and dynamics of riverbed taliks play a vital role in controlling river-groundwater exchange in alpine regions, leading to the complex, unique characteristics of the hydraulic relationship between them. However, there have been few investigations on river-groundwater interactions in alpine regions due to the harsh field conditions, and these available studies have dominantly used isotope and hydrochemical tracing methods, which are expensive and not accurate.
Methods In this study, the low-cost and accurate temperature signal was used as a tracer to quantify the exchange between river and groundwater. A vertical 1D transient heat transport analytical model was used to quantify river-groundwater exchange rates at different depths. The spatiotemporal variations in river-groundwater interactions were analyzed using the temperature data measured by a distributed optical fibre sensing system.
Results Results show a substantial spatiotemporal variation in the exchange between river and groundwater in alpine regions. Season and climate can control the exchange rate between river and groundwater, and even the direction of exchange. It is also found that the exchange rate of river and groundwater increases with the depth of the active layer.
Conclusion The study indicates that the temperature tracing method is suitable for studying river-groundwater interactions in alpine areas dominated by permafrost. Furthermore, the combination of two temperature tracing methods can effectively improve the accuracy and provide a feasible research framework for alpine regions where hydrogeological data are scarce.
-
表 1 Hatch振幅法使用的热力学参数值[27]
Table 1. Thermodynamic parameter values used in the Hatch amplitude method
参数 符号 单位 取值 孔隙度 n 无量纲 0.28 基准导热系数 λ0 J·s-1·m-1·℃-1 1.30 热弥散度 β m 0.001 沉积物体积热容 C J·m-3·℃-1 2.09×106 水体积热容 Cw J·m-3·℃-1 4.18×106 -
[1] Bense V F, Kooi H, Ferguson G, et al. Permafrost degradation as a control on hydrogeological regime shifts in a warming climate[J]. Journal of Geophysical Research Earth Surface, 2012, 117: F03036. [2] Walvoord M A, Kurylyk B L, et al. Hydrologic impacts of thawing permafrost: A review[J]. Vadose Zone Journal, 2016, 15(6): 1-20. [3] Immerzeel W W, Lutz A F, Andrade M, et al. Importance and vulner-ability of the world's water towers[J]. Nature, 2019, 577(7790): 364-369. [4] 阳勇, 陈仁升, 叶柏生, 等. 寒区典型下垫面冻土水热过程对比研究(I): 模型对比[J]. 冰川冻土, 2013, 35(6): 1545-1554. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201306021.htmYang Y, Chen R S, Ye B S, et al. Heat and water transfer processes on the typical underlying surfaces of frozen soil in cold region(Ⅰ): Model comparison[J]. Journal of Glaciology and Geocryology, 2013, 35(6): 1545-1554(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201306021.htm [5] Carey S K, Boucher J L, Duarte C M. Inferring groundwater contributions and pathways to streamflow during snowmelt over multiple years in a discontinuous permafrost subarctic environment(Yukon, Canada)[J]. Hydrogeological Journal, 2013, 21(1): 67-77. doi: 10.1007/s10040-012-0920-9 [6] Wellman T P, Voss C I, Walvoord M A. Impacts of climate, lake size, and supra- and sub-permafrost groundwater flow on lake-talik evolution, Yukon Flats, Alaska (USA)[J]. Hydrogeological Journal, 2013, 21(1): 281-298. doi: 10.1007/s10040-012-0941-4 [7] Cheng G D, Li X, Zhao W Z, et al. Integrated study of the water ecosystem economy in the Heihe River Basin[J]. National Science Reviews, 2014, 1(3): 413-428. doi: 10.1093/nsr/nwu017 [8] 聂振龙, 陈宗宇, 程旭学, 等. 黑河干流浅层地下水与地表水相互转化的水化学特征[J]. 吉林大学学报: 地球科学版, 2005, 35(1): 48-53. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ20050100A.htmNie Z L, Chen Z Y, Cheng X X, et al. The chemical information of the interaction of unconfined groundwater and surface water along the Heihe River, Northwestern China[J]. Journal of Jilin University: Earth Science Edition, 2005, 35(1): 48-53(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ20050100A.htm [9] 雷义珍, 曹生奎, 曹广超, 等. 青海湖沙柳河流域不同时期地表水与地下水的相互作用[J]. 自然资源学报, 2020, 35(10): 2528-2538. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZX202010017.htmLei Y Z, Cao S K, Cao G C, et al. Study on surface water and groundwater interaction of Shaliu River Basin in Qinghai Lake in different periods[J]. Journal of Natural Resources, 2020, 35(10): 2528-2538(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZX202010017.htm [10] 马瑞, 董启明, 孙自永, 等. 地表水与地下水相互作用的温度示踪与模拟研究进展[J]. 地质科技情报, 2013, 32(2): 131-137. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201302018.htmMa R, Dong Q M, Sun Z Y, et al. Using heat to trace and model the surface water-groundwater interactions: A review[J]. Geological Science and Technology Information, 2013, 32(2): 131-137(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201302018.htm [11] Rau G C, Andersen M S, McCallum A M, et al. Heat as a tracer to quantify water flow in near-surface sediments[J]. Earth Science Reviews, 2014, 129: 40-58. doi: 10.1016/j.earscirev.2013.10.015 [12] Stallman S. Steady one-dimensional fluid flow in the semiinfinite porous medium with sinusoidal surface temperature[J]. Journal of Geophysical Research, 1965, 70(12): 2821-2827. doi: 10.1029/JZ070i012p02821 [13] Hatch C E, Fisher A T, Revenaugh J S, et al. Quantifying surface water-groundwater interactions using time series analysis of streambed thermal records: Method development[J]. Water Resource Research, 2006, 42(10): W10410. [14] Keery J, Binley A, Crook N, et al. Temporal and spatial variability of groundwater-surface water fluxes: Development and application of an analytical method using temperature time series[J]. Journal of Hydrology, 2007, 336(1/2): 1-16. [15] Mccallum A M, Andersen M S, Rau G C, et al. A 1-D analytical method for estimating surface water-groundwater interactions and effective thermal diffusivity using temperature time series[J]. Water Resources Research, 2012, 48 (11): W11532. [16] Luce C H, Tonina D, Gariglio F, et al. Solutions for the diurnally forced advection-diffusion equation to estimate bulk fluid velocity and diffusivity in streambeds from temperature time series[J]. Water Resources Research, 2013, 249 (1): 488-506. [17] 张文兵, 沈振中, 陈官运, 等. 基于温度失踪的潜流交换通量解析解模型对比[J]. 水利水电科技进展, 2022, 42(2): 63-71.Zhang W B, Shen Z Z, Chen G Y, et al. Comparison of analytical models for qualifying hyporheic exchange flux based on heat tracer method[J]. Advances in Science and Technology of Water Resources, 2022, 42(2): 63-71(in Chinese with English abstract). [18] Rau G C, Cuthbert M O, McCallum A M, et al. Assessing the accuracy of 1-D analytical heat tracing for estimating near-surface sediment thermal diffusivity and water flux under transient conditions[J]. Journal of Geophysical Research: Earth Surface, 2015, 120(8): 1551-1573. [19] Selker J, Giesen N, Westhoff M, et al. Fiber optics opens window on stream dynamics[J]. Geophysical Research Letters, 2006, 33(24): L24401. [20] Gao T G, Liu J, Zhang T J, et al. Estimating interaction between surface water and groundwater in a permafrost region of the northern Tibetan Plateau using heat tracing method[J]. Sciences in Cold and Arid Regions, 2020, 12(2): 71-82. [21] 安志宏, 孙自永, 胡雅璐, 等. 多年冻土区河流溶解性有机碳输出的研究进展[J]. 地质科技情报, 2018, 37(1): 204-211. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201801028.htmAn Z H, Sun Z Y, Hu Y L, et al. Export of dissolved organic carbon in streams draining permafrost-dominated areas: A review[J]. Geological Science and Technology Information, 2018, 37(1): 204-211(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201801028.htm [22] 肖生春, 肖洪浪, 蓝永超, 等. 近50 a来黑河流域水资源问题与流域集成管理[J]. 中国沙漠, 2011, 31(2): 529-535. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSS201102040.htmXiao S C, Xiao H L, Lan Y C, et al. Water issues and integrated water resource management in Heihe River basin in recent 50 years[J]. Journal of Desert Research, 2011, 31(2): 529-535(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSS201102040.htm [23] 邢文乐, 马瑞, 孙自永, 等. 敦煌盆地地下水水化学特征及水质评价[J]. 地质科技情报, 2016, 35(5): 196-202. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201605027.htmXing W L, Ma R, Sun Z Y, et al. Hydrochemical characteristics and water quality assessment of groundwater in the Dunhuang Basin, northwestern China[J]. Geological Science and Technology Information, 2016, 35(5): 196-202(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201605027.htm [24] 曹斌. 黑河上游祁连山区多年冻土状态与动态研究[D]. 兰州: 兰州大学, 2018.Cao B. Conditions and dynamics of permafrost in the Qilian Mountains over the upper reaches of Heihe River basin[D]. Lanzhou: Lanzhou University, 2018(in Chinese with English abstract). [25] 牟翠翠, 张廷军, 曹斌, 等. 祁连山区黑河上游俄博岭多年冻土区活动层碳储量研究[J]. 冰川冻土, 2013, 35(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201301002.htmMu C C, Zhang T J, Cao B, et al. Study of the organic carbon storage in the active layer of permafrost over the Eboling Mountain in the upper reaches of the Heihe River in the Eastern Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2013, 35(1): 1-9(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201301002.htm [26] Stallman R W. Computation of ground-water velocity from temperature data[J]. USGS Water Supply Paper, 1963, 1544(H): 36-46. [27] Gordon R P, Lautz K L, Briggs M A, et al. Automated calculation of vertical pore-water flux from field temperature time series using the VFLUX method and computer program[J]. Journal of Hydrology, 2012, 420/421: 142-158. [28] Irvine D J, Cartwright I, Post V E A, et al. Uncertainties in vertical groundwater fluxes from 1D steady state heat transport analyses caused by heterogeneity, multi-dimensional flow, and climate change[J]. Water Resources Research, 2016, 52(2): 813-826. [29] Healy R W, Ronan A D. Documentation of computer program VS2DH for simulation of energy transport in variably saturated porous media[R]. Denver: US Geological Survey Information Center, 1996. [30] Weast R C. Handbook of chemistry and physics[M]. Boca Raton: Chenistry Rubra Pun Co Press, 1982: 261-263. [31] Gorden R P. VFLUX2: Vertical fluid heat transport solver[M]. [S. l.]: [s. n.], 2011. [32] Dakin J P. Distributed optical fiber sensors[J]. Bellingham: SPIE, 1993, 10266: 284-311. [33] Selker J S, Thevenaz L, Huwald H, et al. Distributed fiber-optic temperature sensing for hydrologic systems[J]. Water Resources Research, 2006, 42(12): W12202. doi: 10.1029/2006WR005326/full [34] Constantz J. Heat as a tracer to determine streambed water exchanges[J]. Water Resources Research, 2008, 44(4): WOOD10. [35] Ma R, Sun Z Y, Chang Q X, et al. Control of the interactions between stream and groundwater by permafrost and seasonal frost in an Alpine Catchment, northeastern Tibet Plaueau, China[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(5): e2020JD033689.