留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深埋层状围岩引水隧洞直眼掏槽爆破技术优化

姜守国 罗帅兵 蒋楠 孙建斌 周海波

姜守国, 罗帅兵, 蒋楠, 孙建斌, 周海波. 深埋层状围岩引水隧洞直眼掏槽爆破技术优化[J]. 地质科技通报, 2023, 42(5): 20-26. doi: 10.19509/j.cnki.dzkq.tb20220072
引用本文: 姜守国, 罗帅兵, 蒋楠, 孙建斌, 周海波. 深埋层状围岩引水隧洞直眼掏槽爆破技术优化[J]. 地质科技通报, 2023, 42(5): 20-26. doi: 10.19509/j.cnki.dzkq.tb20220072
Jiang Shouguo, Luo Shuaibing, Jiang Nan, Sun Jianbin, Zhou Haibo. Optimization of direct-hole cutting blasting technology for deep-buried layered surrounding rock diversion tunnels[J]. Bulletin of Geological Science and Technology, 2023, 42(5): 20-26. doi: 10.19509/j.cnki.dzkq.tb20220072
Citation: Jiang Shouguo, Luo Shuaibing, Jiang Nan, Sun Jianbin, Zhou Haibo. Optimization of direct-hole cutting blasting technology for deep-buried layered surrounding rock diversion tunnels[J]. Bulletin of Geological Science and Technology, 2023, 42(5): 20-26. doi: 10.19509/j.cnki.dzkq.tb20220072

深埋层状围岩引水隧洞直眼掏槽爆破技术优化

doi: 10.19509/j.cnki.dzkq.tb20220072
基金项目: 

中国水利电力对外有限公司项目 CWE-GJ-296/20

国家自然科学基金项目 41807265

国家自然科学基金项目 41972286

详细信息
    作者简介:

    姜守国(1972-), 男, 高级工程师, 主要从事地下建筑工程施工研究。E-mail: jiang_shouguo@ctg.com.cn

    通讯作者:

    蒋楠(1986-), 男, 副教授, 主要从事工程爆破及岩石动力学、地下建筑工程施工技术、工程岩土体稳定性控制等研究。E-mail: jiangnan@cug.edu.cn

  • 中图分类号: TV732+.3

Optimization of direct-hole cutting blasting technology for deep-buried layered surrounding rock diversion tunnels

  • 摘要:

    近些年, 隧道爆破施工向纵深延伸的趋势日渐显著, 而深埋引水隧洞中的层状岩体在爆破施工中对掏槽质量的影响是爆破施工的关键。为研究深埋层状围岩中爆破所在位置对掏槽爆破效果的影响, 以秘鲁圣加旺(San Gabán)水电站引水隧洞爆破开挖工程为依托, 利用ANSYS/LS-DYNA建立了三维有限元数值计算模型, 分析了掏槽爆破产生的损伤区域, 提出了优化方案并进行了现场试验。研究结果表明: 层状围岩分界区域对掏槽爆破产生的岩石损伤范围存在一定影响, 离层状围岩分界区域越近岩石损伤的范围越小; 为增加掏槽爆破的损伤区域, 爆破所在位置要与层状围岩的分界区域保持一定的距离; 对优化后的爆破方案进行了现场试验, 取得了较好的爆破效果。利用数值模拟根据岩石损伤演化规律对掏槽孔位置进行优化, 可提高隧道施工的经济性与安全性。

     

  • 图 1  工程概况图

    Figure 1.  Diagram of engineering profill

    图 2  隧洞整体爆破图

    Figure 2.  Overall blasting diagram of the tunnel

    图 3  炮孔布置图

    Figure 3.  Layout of blast hole

    图 4  原有掏槽方案的爆破效果图

    Figure 4.  Blasting effect diagram of the original cutting scheme

    图 5  数值模型示意图

    Figure 5.  Diagram of numerical model

    图 6  掏槽孔周围岩石损伤过程云图

    Figure 6.  Nephogram of the rock damage process around the cut hole

    图 7  掏槽孔布置方案

    Figure 7.  Layout scheme of the cutting hole

    图 8  不同位置爆破损伤效果图

    Figure 8.  Diagrams of blasting damage at different positions

    图 9  引水隧洞优化后掏槽布置及爆破效果图

    Figure 9.  Cutting arrangement and blasting effect diagram of diversion tunnel after optimization

    表  1  现场地应力实测值

    Table  1.   In-situ measured stress values

    地应力/MPa 水平应力σx 垂直应力σy
    实测值 13.73 12.22
    下载: 导出CSV

    表  2  炸药材料参数

    Table  2.   Explosive material parameters

    ρe/(g·cm-3) ve/(m·s-1) A/GPa B/GPa R1 R2 E0/MPa ω
    1.15 4 000 214 0.182 4.15 0.95 4.19 0.15
    注:ρe为炸药密度;ve为炸药爆速;其余物理量含义见正文
    下载: 导出CSV

    表  3  炮泥材料参数

    Table  3.   Mud material parameters

    ρm/(g·cm-3) E/GPa μ Etan/MPa fy/MPa β
    0.85 11 0.35 2 6 0.1
    注:ρm为炮泥密度;E为弹性模量;μ为泊松比; Etan为剪切模量;fy为抗拉强度;β为硬化系数
    下载: 导出CSV

    表  4  空气材料参数

    Table  4.   Air material parameters

    绝热指数γ 参考密度ρ/(kg·m-3) 参考温度/K 恒定体积的比热/(J·kg-1·K-1)
    1.4 1.225 288.2 717.3
    下载: 导出CSV

    表  5  岩体材料参数

    Table  5.   Parameters of the rock mass material

    ρr/(g·cm-3) G/GPa T/MPa Pc/MPa Pl/MPa μl μc fc/MPa
    2.84 11.57 8 48.8 1.2 0.001 2 0.002 5 146.5
    A B C N Smax D1 D2 EFmin
    0.3 2.5 0.009 7 0.79 15 0.04 1 0.01
    注:各物理量的含义见正文
    下载: 导出CSV

    表  6  爆破效果对比

    Table  6.   Comparison of blasting effect

    方案 炮孔深度/m 循环进尺/m 炸药单耗/(kg·m-3)
    原方案 3.2 2.60 3.0
    方案一 3.2 2.80 2.7
    下载: 导出CSV
  • [1] Li X, Zhu Z, Wang M, et al. Influence of blasting load directions on tunnel stability in fractured rock mass[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2022, 14(2): 346-365. doi: 10.1016/j.jrmge.2021.06.010
    [2] 王雁冰. 爆炸的动静作用破岩与动态裂纹扩展机理研究[D]. 北京: 中国矿业大学(北京), 2016.

    Wang Y B. Dynamic and static rock breaking and dynamic crack propagation mechanism of explosion[D]. Beijing: China University of Mining and Technology (Beijing), 2016(in Chinese with English abstract).
    [3] Hashemi A S, Katsabanis P. Tunnel face preconditioning using destress blasting in deep underground excavations[J]. Tunnelling and Underground Space Technology, 2021, 117: 104126. doi: 10.1016/j.tust.2021.104126
    [4] Mei W, Xia Y, Pan P Z, et al. Transient responses of deep-buried unlined tunnels subjected to blasting P wave[J]. Computers and Geotechnics, 2022, 146: 104729. doi: 10.1016/j.compgeo.2022.104729
    [5] Yang L Y, Ding C X. Fracture mechanism due to blast-imposed loading under high static stress conditions[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 107: 150-158. doi: 10.1016/j.ijrmms.2018.04.039
    [6] 张宇菲. 高地应力岩巷掏槽爆破围压效应模型试验研究[D]. 北京: 中国矿业大学(北京), 2018.

    Zhang Y F. Model test study on confining pressure effect of cut blasting in high geo-stress rock lane[D]. Beijing: China University of Mining and Technology (Beijing), 2018(in Chinese with English abstract).
    [7] 穆朝民, 潘飞. 煤体在爆炸荷载和地应力耦合作用下裂纹扩展的数值模拟[J]. 高压物理学报, 2013, 27(3): 403-410. https://www.cnki.com.cn/Article/CJFDTOTAL-GYWL201303015.htm

    Mu C M, Pan F. Numerical simulation of crack propagation in coal under the coupling of explosion load and ground stress[J]. Journal of High Pressure Physics, 2013, 27(3): 403-410(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GYWL201303015.htm
    [8] Jayasinghe L B, Shang J, Zhao Z, et al. Numerical investigation into the blasting-induced damage characteristics of rocks considering the role of in-situ stresses and discontinuity persistence[J]. Computers and Geotechnics, 2019, 116: 103207. doi: 10.1016/j.compgeo.2019.103207
    [9] Han H, Fukuda D, Liu H, et al. Combined finite-discrete element modelling of rock fracture and fragmentation induced by contour blasting during tunnelling with high horizontal in-situ stress[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 127: 104214. doi: 10.1016/j.ijrmms.2020.104214
    [10] 黄佑鹏, 王志亮, 毕程程. 岩石爆破损伤范围及损伤分布特征模拟分析[J]. 水利水运工程学报, 2018(5): 95-102. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSY201805014.htm

    Huang Y P, Wang Z L, Bi C C. Simulation analysis of blast-induced damage scope and its distribution characteristics of rocks[J]. Journal of Water Conservancy and Hydraulic Engineering, 2018(5): 95-102(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SLSY201805014.htm
    [11] 李新平, 宋凯文, 罗忆, 等. 高地应力对掏槽爆破及爆破应力波影响规律的研究[J]. 爆破, 2019, 36(2): 13-18, 53. https://www.cnki.com.cn/Article/CJFDTOTAL-BOPO201902005.htm

    Li X P, Song K W, Luo Y, et al. Study on influence of high in-situ stress on cut blasting and blast waves[J]. Blasting, 2019, 36(2): 13-18, 53(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-BOPO201902005.htm
    [12] Miao Y, Li X, Kong L, et al. Study on the symmetric bilinear initiating technique of deep-hole boulder blasting in the TBM tunnel excavation[J]. Tunnelling and Underground Space Technology, 2021, 111: 103871. doi: 10.1016/j.tust.2021.103871
    [13] Luo X, Zhou S, Huang B, et al. Effect of freeze-thaw temperature and number of cycles on the physical and mechanical properties of marble[J]. Geotechnical and Geological Engineering, 2021, 39: 567-582. doi: 10.1007/s10706-020-01513-0
    [14] Zhu B, Jiang N, Zhou C, et al. Dynamic failure behavior of buried cast iron gas pipeline with local external corrosion subjected to blasting vibration[J]. Journal of Natural Gas Science and Engineering, 2021, 88: 103803. doi: 10.1016/j.jngse.2021.103803
    [15] Zhu B, Jiang N, Zhou C, et al. Dynamic failure behavior of buried cast iron gas pipeline with local external corrosion subjected to blasting vibration[J]. Journal of Natural Gas Science and Engineering, 2021, 88: 103803. doi: 10.1016/j.jngse.2021.103803
    [16] Xia Y, Jiang N, Zhou C, et al. Theoretical solution of the vibration response of the buried flexible HDPE pipe under impact load induced by rock blasting[J]. Soil Dynamics and Earthquake Engineering, 2021, 146: 106743. doi: 10.1016/j.soildyn.2021.106743
    [17] Grady D E, Kipp M E. Continuum modeling of explosive fracture in oil shale[J]. International Journal of Rock and Mining Science, 1980, 17(3): 147-157.
    [18] 钟权, 彭峥, 刘放. 玉瓦水电站引水隧洞爆破开挖损伤特性研究[J]. 人民长江, 2016, 47(23): 102-106, 125. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE201623022.htm

    Zhong Q, Peng Z, Liu F. Study on blasting excavation damage characteristics of diversion tunnel of Yuwa Hydropower Station[J]. Renmin Yangtze River, 2016, 47(23): 102-106, 125(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE201623022.htm
    [19] 张理维, 王卫华, 戴怡文. 基于岩石爆破损伤的炮孔布置优化研究[J]. 爆破, 2020, 37(1): 32-39. https://www.cnki.com.cn/Article/CJFDTOTAL-BOPO202001007.htm

    Zhang L W, Wang W H, Dai Y W. Optimization of blast hole layout based on rock blasting damage[J]. Blasting, 2020, 37(1): 32-39 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-BOPO202001007.htm
    [20] 徐超, 窦斌, 田红, 等. 二氧化碳爆破致裂建造增强型地热系统热储层工艺探讨[J]. 地质科技情报, 2019, 38(5): 247-252. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201905027.htm

    Xu C, Dou B, Tian H, et al. Process of carbon dioxide blasting to build EGS thermal reservoir[J]. Geological Science and Technology Information, 2019, 38(5): 247-252(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201905027.htm
    [21] 陈鸿, 欧阳宇峰, 余海忠. 抛石爆破挤淤过程的有限元数值模拟[J]. 地质科技情报, 2012, 31(4): 98-105. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201204018.htm

    Chen H, Ouyang Y F, Yu H Z. Finite element simulation to the process of explosion replacement[J]. Geological Science and Technology Information, 2012, 31(4): 98-105 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201204018.htm
  • 加载中
图(9) / 表(6)
计量
  • 文章访问数:  370
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-28
  • 录用日期:  2022-04-11
  • 修回日期:  2022-04-08

目录

    /

    返回文章
    返回