Research progress on the application of dynamic grids in the numerical simulation of unsaturated-saturated interfaces
-
摘要:
为了探讨结构和非结构动网格技术在地下水非饱和-饱和数值模拟领域未来的发展趋势, 总结了非饱和-饱和耦合数值模拟研究现状, 介绍了动网格技术原理及运动边界结构和非结构网格的变形方法, 综述了动网格技术在非饱和-饱和分界面的应用现状及存在的不足, 探讨了相关研究的未来发展趋势。综合分析表明: 结构动网格和非结构动网格均存在其固有优缺点, 结构、非结构混合网格以及多种动边界处理方法的结合使用在非饱和-饱和耦合数值模拟研究中具有重要的应用价值。在模拟潜水面的变动时, 可将多种网格变形方法结合使用, 当潜水面位置和形状变动较小时, 采用弹簧法更新网格; 当潜水面位置变化较大但形状变化较小时, 采用重叠结构动网格技术或铺层法更新网格; 当潜水面形状变动较大时, 则采用网格重构法更新网格, 从而更精确地模拟非饱和-饱和分界面的变化和移动。相关研究为场地非饱和带土壤与饱和带地下水协同防治工作提供了科学指导。
Abstract:In order to discuss the future development trend of structural and unstructured dynamic grid technology in the field of unsaturated-saturated groundwater numerical simulation, this paper summarizes the research status of unsaturated-saturated coupled numerical simulation, introduces the principle of dynamic grid technology and the deformation method of moving boundary structure and unstructured grid, summarizes the application status and shortcomings of dynamic grid technology in the unsaturated-saturated interface, and discusses the future development trend of related research. The review shows that both structural dynamic grids and unstructured dynamic grids have their inherent advantages and disadvantages, and the combination of structural/unstructured hybrid grids and multiple dynamic boundary treatment methods has important application value in the research of unsaturated-saturated coupling numerical simulation. When simulating the change of phreatic surface, a variety of mesh deformation methods can be combined. When the change of the position and shape of the phreatic surface is small, the spring method is used to update the mesh; When the position of the water table changes significantly but the shape changes little, the overlapping structure dynamic grid technology or the overlay method is used to update the grid; If the shape of the water table changes greatly, the grid reconstruction method is used to update the grid, so as to more accurately simulate the change and movement of the unsaturated-saturated interface. Relevant research provides scientific guidance for the coordinated prevention and control of unsaturated zone soil and saturated zone groundwater of the site.
-
图 1 非饱和模拟与MODFLOW耦合模型网格示意图[63]
Figure 1. Grid diagram of unsaturated-simulation and MODFLOW coupling model
图 2 区域非饱和-饱和带水流运动及溶质运移模型网格示意图[89]
Figure 2. Grid diagram of regional unsaturated-saturated flow movement and solute transport model
表 1 结构网格动边界处理方法
Table 1. Processing method of moving boundary of structured grid
原理 优点 缺点 刚性运动网格法[37-38] 网格随物体一起做刚性运动 计算量小 仅适用于单个刚性物体运动 超限插值动网格生成法[39-41] 外边界保持静止,物面边界由物体运动规律或运动方程得到,内场网格由超限插值的方法代数生成 计算量小 网格正交性难以保证 重叠结构动网格技术[42-45] 在计算域的各个子域采用区域共享(重叠部分)的方法来实现信息交换 减轻了子域网格生成的难度且能够保证子域的网格品质 计算量较大 滑移结构动网格技术[46-47] 在物体运动轨迹周围预先划出一个滑移子区域,在子区域和其他区域分别生成多块结构网格;在二者连接处,利用搭接边界与其他区域对接,从而实现整个流场的计算 计算效率高、适用性强 划分子域的多少会影响网格变形质量和计算量 表 2 非结构网格动边界处理方法
Table 2. Processing method of moving boundary of unstructured grid
原理 优点 缺点 弹簧法[48-51] 将整个网格区域看作一个弹性区域,在边界发生移动且变形较小的情况下,网格发生轻微变形 无需插值,可以保证流场中解的守恒,保证了计算精度 边界位移过大时会使网格严重变形,导致计算出错 扩散法[52-53] 对扩散方程进行求解,基于扩散方程结果更新网格节点位置 网格质量好、计算精度高 不适用时间较长的计算 铺层法[54] 在一个时间步长内,动边界扫过固定的网格,对运动边界周围变形的网格,进行合并或分割 无需对控制方程进行坐标转换,即可实现对复杂动边界的追踪拟合 应用贴体网格及求解N-S方程比较困难 网格重构法[55-58] 利用网格变形前后的变形率来判断网格是否符合要求;对于严重变形的网格区域则重新生成网格 对网格拓扑结构没有限制,同时可以保证边界周围网格单元的质量,对于任意的边界变形也可以得到很好的处理 在重新生成以后,空腔内的网格节点的流场参数必须通过插值的方法得到 -
[1] 陈晨, 胡立新, 叶力. 清洁场项目地下水污染迁移研究[J]. 世界生态学, 2018, 7(2): 80-88.Chen C, Hu L X, Ye L. Study on groundwater pollution transfer in clean field project[J]. International Journal of Ecology, 2018, 7(2): 80-88(in Chinese with English abstract). [2] 万力, 王旭升, 蒋小伟. 地下水循环结构的动力学研究进展[J]. 地质科技通报, 2022, 41(1): 19-29. doi: 10.19509/j.cnki.dzkq.2022.0003Wan L, Wang X S, Jiang X W. Advances in dynamics of groundwater circulation patterns[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 19-29(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0003 [3] Wei Y Q, Cao X. A COMSOL-PHREEQC coupled python framework for reactive transport modeling in soil and groundwater[J]. Groundwater, 2021, 60(2): 284-294. [4] 刘玲, 陈坚, 牛浩博, 等. 基于FEFLOW的三维土壤-地下水耦合铬污染数值模拟研究[J]. 水文地质工程地质, 2022, 49(1): 164-174. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202201019.htmLiu L, Chen J, Niu H B, et al. Numerical simulation of three-dimensional soil-groundwater coupled chromium contamination based on FEFLOW[J]. Hydrogeology & Engineering Geology, 2022, 49(1): 164-174(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202201019.htm [5] 殷乐宜, 魏亚强, 陈坚, 等. 土壤和地下水耦合数值模拟研究进展[J]. 环境保护科学, 2020, 46(3): 131-135. doi: 10.16803/j.cnki.issn.1004-6216.2020.03.022Yin L Y, Wei Y Q, Chen J, et al. A Review of coupled numerical simulation of soil and groundwater[J]. Environmental Protection Science, 2020, 46(3): 131-135(in Chinese with English abstract). doi: 10.16803/j.cnki.issn.1004-6216.2020.03.022 [6] 胡立堂, 陈崇希, 王旭升. 地下水流数值模拟中平面三角网格自动剖分的实现[J]. 安全与环境工程, 2005, 12(2): 15-22. doi: 10.3969/j.issn.1671-1556.2005.02.005Hu L T, Chen C X, Wang X S. Realization of automatic triangle mesh generation in plane domain of groundwater flow numerical simulation[J]. Safety and Environmental Engineering, 2005, 12(2), 15-22(in Chinese with English abstract). doi: 10.3969/j.issn.1671-1556.2005.02.005 [7] Hartmann D, Meinke M, Schröder W. A level-set based adaptive-grid method for premixed combustion[J]. Combustion and Flame, 2011, 158(7): 1318-1339. doi: 10.1016/j.combustflame.2010.11.007 [8] Albadawi A, Donoghue D B, Robinson A J, et al. Influence of surface tension implementation in volume of fluid and coupled volume of fluid with level set methods for bubble growth and detachment[J]. International Journal of Multiphase Flow, 2013, 53(0): 11-28. [9] Levy D W, Laflin K R, Tinoco E N, et al. Summary of data from the fifth computational fluid dynamics drag prediction workshop[J]. Journal of Aircraft, 2014, 51(4): 1194-1213. doi: 10.2514/1.C032389 [10] Warrick A W, Yeh T. One-dimensional, steady vertical flow in a layered soil profile: Science Direct[J]. Advances in Water Resources, 1990, 13(4): 207-210. doi: 10.1016/0309-1708(90)90042-3 [11] Srivastava R, Yeh T. Analytical solutions for one-dimensional, transient infiltration toward the water table in homogeneous and layered soils[J]. Water Resources Research, 1991, 27(5): 753-762. doi: 10.1029/90WR02772 [12] Chen J M, Tan Y C, Chen C H, et al. Analytical solutions for linearized richards equation with arbitrary time-dependent surface fluxes[J]. Water Resources Research, 2001, 37(4): 1091-1093. doi: 10.1029/2000WR900406 [13] Chen J, Tan Y, Chen C. Analytical solutions of one-dimensional infiltration before and after ponding[J]. Hydrological Processes, 2010, 17(4): 815-822. [14] Yuan F, Lu Z. Analytical solutions for vertical flow in unsaturated, rooted soils with variable surface fluxes[J]. Vadose Zone Journal, 2005, 4(4): 1210-1218. doi: 10.2136/vzj2005.0043 [15] Menziani M, Pugnaghi S, Vincenzi S. Analytical solutions of the linearized Richards equation for discrete arbitrary initial and boundary conditions[J]. Journal of Hydrology, 2007, 332(1/2): 214-225. [16] Beltman W H. Analytical modelling of pesticide transport from the soil surface to a drinking water well[J]. Journal of Hydrology, 1995, 169: 209-228. doi: 10.1016/0022-1694(94)02622-I [17] Domenico P A. An analytical model for multidimensional transport of a decaying contaminant species: Science Direct[J]. Journal of Hydrology, 1987, 91(1/2): 49-58. [18] Connell L D. Simple models for subsurface solute transport that combine unsaturated and saturated zone pathways[J]. Journal of Hydrology, 2007, 332(3/4): 361-373. [19] Borsi I, Rossetto R, Schifani C, et al. Modeling unsaturated zone flow and runoff processes by integrating MODFLOW-LGR and VSF and creating the new CFL package[J]. Journal of Hydrology, 2013, 488: 33-47. doi: 10.1016/j.jhydrol.2013.02.020 [20] Ivory C F. Several hydrodynamic instabilities illustrated using COMSOL Multiphysics[C]//Anon. Proceedings of the 2018 COMSOL Conference. Boston:, 2018. [21] Singh A K, Pilz P, Zimmer M, et al. Numerical simulation of tracer transport in the Altmark gas field[J]. Environmental Earth Sciences, 2012, 67(2): 537-548. doi: 10.1007/s12665-012-1688-x [22] Hwang H T, Park Y J, Frey S K, et al. A simple iterative method for estimating evapotranspiration with integrated surface/subsurface flow models[J]. Journal of Hydrology, 2015, 531: 949-959. doi: 10.1016/j.jhydrol.2015.10.003 [23] Maxwell R M, Putti M, Meyerhoff S, et al. Surface subsurface model intercomparison: A first set of benchmark results to diagnose integrated hydrology and feedbacks[J]. Water Resources Research, 2014, 50(2): 1531-1549. doi: 10.1002/2013WR013725 [24] Liggett J E, Partington D, Frei S, et al. An exploration of coupled surface-subsurface solute transport in a fully integrated catchment model[J]. Journal of Hydrology, 2015, 529: 969-979. doi: 10.1016/j.jhydrol.2015.09.006 [25] Brunner P, Simmons C T. HydroGeoSphere: A fully integrated, physically based hydrological model[J]. Groundwater, 2012, 50(2): 170-176. doi: 10.1111/j.1745-6584.2011.00882.x [26] Sachse A, Nixdorf E, Jang E, et al. OpenGeoSys-Tutorial[M]. London: Springerbriefs in Earth System Sciences, 2015. [27] Diersch H. FEFLOW: Finite element modeling of flow, mass and heat transport in porous and fractured media[M]. Berlin: Springer Berlin Heidelberg, 2013. [28] Ran Q, Loague K, VanderKwak J B. Hydrologie-respoise driven sediment transport at a regional scale, process-based simulation[J]. Hydrological Processes, 2012, 26(2): 159-167. doi: 10.1002/hyp.8122 [29] Ran Q, Su D, He Z. Prediction and application for rain induced shallow landslides in natural catchments[J]. IEEE, 2011: 2451-2455. [30] Wissmeier L, Barry D A. Simulation tool for variably saturated flow with comprehensive geochemical reactions in two and three dimensional domains[J]. Environmental Modelling and Software, 2011, 26(2): 210-218. doi: 10.1016/j.envsoft.2010.07.005 [31] Niswonger R G, Prudic D E. Modeling variably saturated flow using kinematic waves in MODFLOW: Groundwater recharge in a desert environment, the southwestern United States[M].: American Geophysical Union (AGU), 2013. [32] 魏亚强, 乔小娟, 李国敏. MODFLOW不同算法及参数设定对计算精度的影响[J]. 水文地质工程地质, 2015, 42(1): 14-21. doi: 10.16030/j.cnki.issn.1000-3665.2015.01.03Wei Y Q, Qiao X J, Li G M. Influence on calculation accuracy caused by different algorithms and parameters in MODFLOW[J]. Hydrogeology and Engineering Geology, 2015, 42(1): 14-21(in Chinese with English abstract). doi: 10.16030/j.cnki.issn.1000-3665.2015.01.03 [33] 伍贻兆, 田书玲, 夏健. 基于动网格的非定常流数值模拟方法[J]. 航空学报, 2015, 32(1): 15-26.Wu Y Z, Tian S L, Xia J. Numerical simulation method of unsteady flow based on unstructured dynamic grid[J]. Acta Aeronautica Sinica, 2015, 32(1): 15-26(in Chinese with English abstract). [34] 陈振宇. 动网格更新方法对数值计算精度的影响[D]. 辽宁大连: 大连海事大学, 2017.Chen Z Y. The influence of dynamic mesh updating method on accuracy of numerical computation[D]. Dalian, Liaoning: Dalian Maritime University, 2017(in Chinese with English abstract). [35] 张军, 杨连波, 任登凤, 等. 非结构动网格在多介质流体数值模拟中的应用[J]. 计算力学学报, 2008, 25(4): 454-458. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG200804010.htmZhang J, Yang L B, Ren D F, et al. Application of unstructured moving grids in multi-material flow fluids simulation[J]. Chinese Journal of Computational Mechanics, 2008, 25(4): 454-458(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG200804010.htm [36] 张来平, 邓小刚, 张涵信. 动网格生成技术及非定常计算方法进展综述[J]. 力学进展, 2010, 40(4): 424-447. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201004006.htmZhang L P, Deng X G, Zhang H X. Reviews of moving grid generation techniques and numerical methods for unsteady flow[J]. Advances in Mechanics, 2010, 40(4): 424-447(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201004006.htm [37] Ronch A D. Computation and evaluation of dynamic derivatives using CFD[R]. Chicago: Aiaa Applied Aerodynamics Conference, 2010. [38] Yeo H, Johnson W. Investigation of maximum blade loading capability of lift-offset rotors[J]. Journal of the American Helicopter Society, 2014, 59(1): 293-301. [39] Nakamichi J. Calculations of unsteady Navier-Stokes equations around an oscillating 3-D wing using moving grid system[C]//Anon. 8th Computational Fluid Dynamics Conference. Honolulu:, 1987. [40] Morton S A, Melville R B, Visbal M R. Accuracy and coupling issues of aeroelastic navier-stokes solutions on deforming meshes[J]. Journal of Aircraft, 1998, 35(5): 798-805. doi: 10.2514/2.2372 [41] 汪新光, 张辉, 陈之贺, 等. 琼东南盆地陵水区中央峡谷水道沉积数值模拟[J]. 地质科技通报, 2021, 40(5): 42-53. doi: 10.19509/j.cnki.dzkq.2021.0026Wang X G, Zhang H, Chen Z H, et al. Numerical simulation of sedimentation in the Central Canyon of Lingshui area, Qiongdongnan Basin[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 42-53(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0026 [42] Maple R C, Belk D M. Automated set up of blocked, patched, and embedded grids in the BEGGAR flow solver[C]//Weatherill N P, et al. Numerical grid generation in computational fluid dynamics and related fields.: Pine Ridge Press, 1994: 305-314. [43] Lijewski L E. Comparison of transonic store separation trajectory predictions using the Pegasus/DXEAGLE and BEGGER Codes[M].: AIAA, 1997. [44] Vuik C, Saghir A, Boerstoel G P. A fully automated Chimera methodology for multiple moving body problems[J]. International Journal for Numerical Methods in Fluids, 2000, 33: 919-938. doi: 10.1002/1097-0363(20000815)33:7<919::AID-FLD944>3.0.CO;2-G [45] Yen G W, Baysal O. Dynamic-overlapped-grid simulation of aerodynamically determined relative motion[C]//Anon. 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference. Orlando:, 1993. [46] Krist S L. CFL3D User's Manual (Version 5.0)[R]. Hampton: NASA/TM-1998-208444, 1998. [47] Henshaw W. Automatic grid generation[J]. Acta Numerica, 1996, 5: 121-148. doi: 10.1017/S0962492900002634 [48] Farhat C, Degand C, Koobus B, et al. Torsional springs for two-dimensional dynamic unstructured fluid meshes[J]. Computer Methods in Applied Mechanics and Engineering, 1998, 163(1/4): 231-245. [49] 郭正. 包含运动边界的多体非定常流场数值模拟方法研究[D]. 长沙: 国防科技大学, 2002.Guo Z. Numerical simulation of unsteady multi-body flow field with moving boundary[D]. Changsha: University of Defense Science and Technology, 2002(in Chinese with English abstract). [50] Tezduyar T E, Behr M, Liou J. A new strategy for finite element computations involving moving boundaries and interfaces-the deforming-spatial-domain/space-time procedure: Ⅰ. The concept and the preliminary test Comput[J]. Comput. Methods Appl. Mech. Engrg., 1992, 94(3): 339-351. doi: 10.1016/0045-7825(92)90059-S [51] Tezduyar T E, Behr M, Liou J. A new strategy for finite element computations involving moving boundaries and interfaces-the deforming-spatial-domain/space-time procedure: Ⅱ. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders[J]. Comput. Methods Appl. Mech. Engrg., 1992, 94(3): 353-371. [52] Nakahashi K. An intergrid-boundary definition method for overset unstructured grid approach[J]. American Institute of Aeronautics and Astronautics, 2000, 38(11): 2077-2084. doi: 10.2514/2.869 [53] Lohner R, Sharoy D, Luo H, et al. Overlapping unstructuned grids[C]//Anon. 39th Aerospace Sciences Meeting and Exhibit. Reno:, 2001. [54] Lee J, Ruffin S M. Application of a turbulent viscous Cartesian grid methodology to now fields with rotor-fuselage interaction[C]//Anon. 45th Aerospace Sciences Meeting and Exhibit. Reno:, 2007. [55] Joseph D, Hong L, Rainald L, et al. A new ALE adaptive unstructured methodology for the simulation of moving bodies[C]//Anon. 32th Aerospace Sciences Meeting and Exhibit. Reno:, 1994. [56] Formaggia L, Peraire J, Morgan K. Simulation of a store separation using the finite element method[J]. Applied Mathematical Modelling, 1988, 12(2): 175-181. doi: 10.1016/0307-904X(88)90009-1 [57] Lhner R. Adaptive remeshing for transient problems[J]. Computer Methods in Applied Mechanics and Engineering, 1989, 75(1/3): 195-214. [58] Löhner R, Baum J D. Three-dimensional store separation using a finite element solver and adaptive remeshing[C]//Anon. 29nd Aerospace Sciences Meeting and Exhibit. Reno:, 1991. [59] 姚超. 多块结构网格动网格方法与应用[D]. 南京: 南京航空航天大学, 2013.Yao C. Method of dynamic grid on multi-block structured mesh and application[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013(in Chinese with English abstract). [60] Baker T J. Mesh generation: Art or science: Science Direct[J]. Progress in Aerospace Sciences, 2005, 41(1): 29-63. [61] 齐欢, 秦品瑞, 赵振华, 等. 模型嵌套技术在济南趵突泉泉域数值模型中的应用[J]. 山东国土资源, 2017, 33(4): 55-61. https://www.cnki.com.cn/Article/CJFDTOTAL-SDDI201704010.htmQi H, Qin P R, Zhao Z H, et al. Application of model nesting technique in numerical model of Baotu Spring Field in Jinan[J]. Shandong Land and Resources, 2017, 33(4): 55-61(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SDDI201704010.htm [62] Li R Y, Pei X, Kun J. A coupled model for simulating surface water and groundwater interactions in coastal wetlands[J]. Hydrological Processes, 2011, 25: 2533-3546. [63] Niswonger R G, Prudic D E, Regan R S. Documentation of the unsaturated-zone flow(UZF1) Package for modeling unsaturated flow between the land surface and the water table with MODFLOW-2005[R]. Reston: U.S.: Geological Survey Techniques and Methods, 2006. [64] Lekula M, Lubczynski M W. Use of remote sensing and long-term in-situ time-series data in an integrated hydrological model of the Central Kalahari Basin, Southern Africa[J]. Hydrogeology Journal, 2019, 27(5): 1541-1562. [65] El-Zehairy A A, Lubczynski M W, Gurwin J. Interactions of artificial lakes with groundwater applying an integrated MODFLOW solution[J]. Hydrogeology Journal, 2017, 26(1): 109-132. [66] Wu M Z, Post V, Salmon S U, et al. PHT3D-UZF: A reactive transport model for variably-saturated porous media[J]. Ground Water, 2016, 54(1): 23-34. [67] Morway E D, Niswonger R G, Langevin C D, et al. Modeling variably saturated subsurface solute transport with MODFLOW-UZF and MT3DMS[J]. Ground Water, 2013, 51(2): 237-251. [68] Bailey R T, Morway E D, Niswonger R G, et al. Modeling variably saturated multispecies reactive groundwater solute transport with MODFLOW-UZF and RT3D[J]. Ground Water: Journal of Ground Water, 2013, 51(5): 752-761. http://europepmc.org/abstract/MED/23131109 [69] Bushira K M, Hernandez J R, Sheng Z. Surface and groundwater flow modeling for calibrating steady state using MODFLOW in Colorado River Delta, Baja California, Mexico[J]. Modeling Earth Systems and Environment, 2017, 3(2): 815-824. [70] Okkonen S. Impacts of future climate change and baltic sea level rise on groundwater recharge, groundwater levels, and surface leakage in the hanko aquifer in southern Finland[J]. Water, 2014, 6(12): 3671-3700. [71] Niswonger R G, Prudic D E. Reply to "Comment on 'Evaluating interactions between Groundwater and Vadose Zone Using the HYDRUS-based Flow Package for MODFLOW'" by Navin Kumar C. Twarakavi, Jirka imnek, and Sophia Seo[J]. Vadose Zone Journal, 2009, 8(3): 820-821. [72] Twarakavi N, Šimnek J, Seo S, et al. Evaluating interactions between groundwater and vadose zone using the HYDRUS-based flow package for MODFLOW[J]. Vadose Zone Journal, 2008, 7(2): 757-768. [73] Havard P L, Prasher S O, Bonnell R B, et al. LINKFLOW, A water flow computer model for water table management: Part Ⅰ. Model development[J]. Transactions of the Asae, 1995, 38(2): 481-488. [74] Querner E P, Froebrich J, Gallart F, et al. Simulating streamflow variability and aquatic states in temporary streams using a coupled groundwater-surface water model[J]. International Association of Scientific Hydrology Bulletin, 2016, 61(1): 146-161. [75] Doble R C, Pickett T, Crosbie R S, et al. Emulation of recharge and evapotranspiration processes in shallow groundwater systems[J]. Journal of Hydrology, 2017, 555: 894-908. [76] Facchi A, Ortuani B, Maggi D, et al. Coupled SVAT: Groundwater model for water resources simulation in irrigated alluvial plains[J]. Environmental Modelling & Software, 2004, 19(11): 1053-1063. [77] 刘路广, 崔远来. 灌区地表水-地下水耦合模型的构建[J]. 水利学报, 2012, 43(7): 826-833. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201207011.htmLiu L G, Cui Y L. Construction of integrated surface water and groundwater model for irrigation area[J]. Journal of Hydraulic Engineering, 2012, 43(7): 826-833(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201207011.htm [78] Loukika K N, Reddy K V, Rao K, et al. Estimation of groundwater recharge rate using SWAT MODFLOW model[J]. Application of Geomatics in Civil Engineering, 2020, 33: 143-154. [79] Molina N, Eugenio D, Bailey R, et al. Comparison of abstraction scenarios simulated by SWAT and SWAT-MODFLOW[J]. Hydrological Sciences Journal, 2019, 64(4): 434-454. [80] Jafari F, Kiem A S, Javadi S, et al. Fully integrated numerical simulation of surface water-groundwater interactions using SWAT-MODFLOW with an improved calibration tool[J]. Journal of Hydrology: Regional Studies, 2021, 35(1): 100822. [81] Rrf A, Mn B. The importance of subsurface drainage on model performance and water balance in an agricultural catchment using SWAT and SWAT-MODFLOW[J]. Agricultural Water Management, 2021, 255: 107058. [82] Mosase E, Ahiablame L, Park S, et al. Modelling potential groundwater recharge in the Limpopo River Basin with SWAT-MODFLOW[J]. Groundwater for Sustainable Development, 2019, 9: 100-126. [83] Seonggyu P, Anders N, Ryan T, et al. A QGIS-based graphical user interface for application and evaluation of SWAT-MODFLOW models[J]. Environmental Modelling & Software, 2019, 111: 493-497. [84] Liu W, Park S, Bailey R T, et al. Quantifying the stream flow response to groundwater abstractions for irrigation or drinking water at catchment scale using SWAT and SWAT-MODFLOW[J]. Environmental Sciences Europe, 2020, 32(113): 1-25. [85] Yifru B A, Chung I M, Kim M G, et al. Assessment of groundwater recharge in agro-urban watersheds using integrated SWAT-MODFLOW model[J]. Sustainability, 2020, 12(16): 6593. [86] Sabzzadeh I, Shourian M. Maximizing crops yield net benefit in a groundwater-irrigated plain constrained to aquifer stable depletion using a coupled PSO-SWAT-MODFLOW hydro-agronomic model[J]. Journal of Cleaner Production, 2020, 262(1): 121349. [87] Taie Semiromi M, Koch M. Analysis of spatio-temporal variability of surface-groundwater interactions in the Gharehsoo river basin, Iran, using a coupled SWAT-MODFLOW model[J]. Environmental Earth Sciences, 2019, 78(6): 1-21. doi: 10.1007/s12665-019-8206-3?utm_source=xmol&utm_content=meta [88] Fatemeh A, Ryan T B, Tasdighi A, et al. Coupled SWAT-MODFLOW model for large-scale mixed agro-urban river basins-ScienceDirect[J]. Environmental Modelling & Software, 2019, 115: 200-210. [89] 朱焱. 区域拟三維饱和非饱和水流与溶质运移模型研究与应用[D]. 武汉: 武汉大学, 2013.Zhu Y. Study on Quasi-3D water flow and solute transport model in regional scales and its application[D]. Wuhan: Wuhan University, 2013(in Chinese with English abstract). [90] 焦会青. 绿洲棉田膜下滴灌土壤水盐运移模型构建及应用[D]. 北京: 中国农业大学, 2018.Jiao H Q. Soil water and salt dynamics under mulched drip irrigation in an oasis cotton field: model development and application[D]. Beijing: China Agricultural University, 2018(in Chinese with English abstract). [91] Panday S, Huyakorn P S, René T, et al. Improved three-dimensional finite-element techniques for field simulation of variably saturated flow and transport[J]. Journal of Contaminant Hydrology, 1993, 12(1/2): 3-33. [92] Huyakorn P S, Thomas S D. Techniques for making finite elements competitve in modeling flow in variably saturated porous media[J]. Water Resources Research, 1984, 20(8): 1099-1115. [93] Huyakorn P S, Springer E P, Guvanasen V, et al. A three-dimensional finite element model for simulating water flow in variably saturated porous media[J]. Water Resources Research, 1986, 22(13): 1790-1808. [94] Jin Y, Holzbecher E, Sauter M. A novel modeling approach using arbitrary Lagrangian-Eulerian (ALE) method for the flow simulation in unconfined aquifers[J]. Computers & Geosciences, 2014, 62: 88-94. [95] Benek J A, Buning P G, Steger J L. A 3-D chimera grid embedding technique[C]//Anon. 7th Computational Physics Conference. Reno: [s. n. ], 2013. [96] Gomez R, Ma E. Validation of a large scale chimera grid system for the Space Shuttle Launch Vehicle[C]//Anon. 12th AIAA, Applied Aerodynamics Conference. Colorado Springs: [s. n. ], 2013. [97] 胡成, 陈刚, 曹孟雄, 等. 基于离散裂隙网络法和水流数值模拟技术的地下水封洞库水封性研究[J]. 地质科技通报, 2022, 41(1): 119-126. doi: 10.19509/j.cnki.dzkq.2022.0029Hu C, Chen G, Cao M X, et al. A case study on water sealing efficieny of groundwater storage caverns using discrete fracture network method and flow numerical simulation[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 119-126(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0029 [98] Shen C, Phanikumar M S. A process-based, distributed hydrologic model based on a large-scale method for surface-subsurface coupling[J]. Advances in Water Resources, 2010, 33(12): 1524-1541. [99] Shen C, Niu J, Phanikumar M S. Evaluating controls on coupled hydrologic and vegetation dynamics in a humid continental climate watershed using a subsurface-land surface processes model[J]. Water Resour. Res., 2013, 49(5): 2552-2572. [100] Niu J, Shen C P, Chambers J Q, et al. Interannual variation in hydrologic budgets in an Amazonian Watershed with a coupled subsurface-land surface process model[J]. J. Hydrometeorol, 2017, 18(9): 2597-2617. [101] Pelletier J D, Broxton P D, Hazenberg P, et al. A gridded global data set of soil, intact regolith, and sedimentary deposit thicknesses for regional and global land surface modeling[J]. Journal of Advances in Modeling Earth Systems, 2016, 8(1): 41-65. [102] Chavarri E, Crave A, Bonnet M P, et al. Hydrodynamic modelling of the Amazon River: Factors of uncertainty[J]. J. S. Am. Earth Sci., 2013, 44: 94-103. [103] Dai H, Ye M. Variance-based global sensitivity analysis for multiple scenarios and models with implementation using sparse grid collocation[J]. J. Hydrol., 2015, 5(28): 286-300. [104] Dai H, Chen X, Ye M, et al. A geostatistics-informed hierarchical sensitivity analysis method for complex groundwater flow and transport modeling[J]. Water Resour. Res., 2017, 53(5): 4327-4343. [105] Dai H, Ye M, Walker A P, et al. A new process sensitivity index to identify important system processes under process model and parametric uncertainty[J]. Water Resour. Res., 2017, 53(4): 3476-3490. [106] Grübe B, Carstens V. Computation of the unsteady transonic flow in harmonically oscillating turbine cascades taking into account viscous effects[J]. Journal of Turbomachinery, 1998, 120(1): 104-111. [107] 张慧, 刘刚, 陈麒玉. 带约束的体元属性插值方法与可视化表达[J]. 地质科技情报, 2017, 36(6): 267-272. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201706032.htmZhang H, Liu G, Chen Q Y. Attribute interpolation and visualization of voxel model with constraint[J]. Geological Science and Technology Information, 2017, 36(6): 267-272(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201706032.htm